Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. E-Tongue Analysis
2.3. E-Nose Analysis
2.4. GC-IMS Analysis
2.5. Data Collection and Statistical Analysis
3. Results
3.1. E-Tongue Analysis
3.2. E-Nose Analysis
3.3. GC-IMS Analysis
3.3.1. Fingerprint Analysis of Volatile Compounds in A. cinnamomea with Different Culture Methods
3.3.2. Qualitative Results of Volatile Compounds in A. cinnamomea with Different Culture Methods
3.3.3. Partial Least Squares Discriminant Analysis (PLS-DA) of Volatile Compounds in A. cinnamomea with Different Culture Methods
3.3.4. Analysis of Significantly Different Volatile Compounds in Pairwise Comparisons
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, C.; Xie, Q.; Kuo, C.-L.; Yang, X.; Huang, D. Evidence-Based Nutraceuticals Derived from Antrodia cinnamomea. Foods 2025, 14, 1212. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Phan, S.-N.-C.; Tran, D.-N.-H.; Lu, M.-K.; Lin, T.-Y. Anti-Inflammatory and Anticancer Effects of Polysaccharides from Antrodia cinnamomea: A Review. J. Chin. Med. Assoc. 2025, 88, 1–11. [Google Scholar] [CrossRef]
- Ming, Y.; Li, Y.; Chu, J.; Zhou, X.; Huang, Y.; Yang, S.; Mu, Y.; Wang, L.; Zhang, R.; Cheng, X. Comparative Analysis of Metabolites and In Vitro Hypoglycemic Activity of Taiwanofungus camphoratus Cultured Using Various Methods. Appl. Biol. Chem. 2024, 67, 40. [Google Scholar] [CrossRef]
- Liu, Q.; Qiang, S.; Tang, J.; Dai, J.; Liu, B.; Ye, Q.; Li, H. Research Progress on the Antibacterial Properties of Antrodia cinnamomea and Its Host Against Foodborne Pathogens. Food Ferment. Ind. 2025, 51, 359–366. [Google Scholar]
- Chu, J.; Ming, Y.; Cui, Q.; Zheng, N.; Yang, S.; Li, W.; Gao, H.; Zhang, R.; Cheng, X. Efficient Extraction and Antioxidant Activity of Polyphenols from Antrodia cinnamomea. BMC Biotechnol. 2022, 22, 9. [Google Scholar] [CrossRef]
- Xia, Y.; Li, W.; Xu, G. Analysis of Active Metabolites in Solid-State Fermentation Products of Antrodia cinnamomea. Food Ferment. Ind. 2011, 37, 86–90. [Google Scholar]
- Dudekula, U.T.; Doriya, K.; Devarai, S.K. A Critical Review on Submerged Production of Mushroom and Their Bioactive Metabolites. Biotech 2020, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Liu, B.; Ji, D.; Yuan, L.; Zhou, W.; Li, H. Extraction, Isolation, Identification, and Bioactivity of Polysaccharides from Antrodia cinnamomea. Qual. Assur. Saf. Crops Foods 2023, 15, 60–76. [Google Scholar] [CrossRef]
- Jiang, H.; Duan, W.; Zhao, Y.; Liu, X.; Wen, G.; Zeng, F.; Liu, G. Development of a Flavor Fingerprint Using HS-GC-IMS for Volatile Compounds from Steamed Potatoes of Different Varieties. Foods 2023, 12, 2252. [Google Scholar] [CrossRef]
- Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Prediction of Residual NPK Levels in Crop Fruits by Electronic-Nose VOC Analysis Following Application of Multiple Fertilizer Rates. Appl. Sci. 2022, 12, 11263. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Escourrou, A.; Monteau, F.; Le Bizec, B.; Dervilly-Pinel, G. Current Applications and Perspectives of Ion Mobility Spectrometry to Answer Chemical Food Safety Issues. Trends Anal. Chem. 2017, 94, 39–53. [Google Scholar] [CrossRef]
- Perl, T.; Jünger, M.; Vautz, W.; Nolte, J.; Kuhns, M.; Borg-von Zepelin, M.; Quintel, M. Detection of Characteristic Metabolites of Aspergillus Fumigatus and Candida Species Using Ion Mobility Spectrometry—Metabolic Profiling by Volatile Organic Compounds: Fungal Volatile Metabolites. Mycoses 2011, 54, e828–e837. [Google Scholar] [CrossRef]
- Chang, M.; Liu, Y.; Li, Z.; Feng, X.; Xiao, Y.; Huang, W.; Liu, Y. Fingerprint Analysis of Volatile Flavor Compounds in Twenty Varieties of Lentinula Edodes Based on GC-IMS. Sci. Hortic. 2024, 328, 112893. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, L.; Huang, Y.; Jia, L.; Wang, J. Characteristic Flavor Compounds in Guizhou Green Tea and the Environmental Factors Influencing Their Formation: Investigation Using Stable Isotopes, Electronic Nose, and Headspace-Gas Chromatography Ion Migration Spectrometry. LWT 2024, 196, 115887. [Google Scholar] [CrossRef]
- Duan, Z.; Dong, S.; Dong, Y.; Gao, Q. Geographical Origin Identification of Two Salmonid Species via Flavor Compound Analysis Using Headspace-Gas Chromatography-Ion Mobility Spectrometry Combined with Electronic Nose and Tongue. Food Res. Int. 2021, 145, 110385. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-Optimized Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS) for Non-Targeted Olive Oil Profiling. Anal. Bioanal. Chem. 2017, 409, 3933–3942. [Google Scholar] [CrossRef] [PubMed]
- Cavanna, D.; Zanardi, S.; Dall’Asta, C.; Suman, M. Ion Mobility Spectrometry Coupled to Gas Chromatography: A Rapid Tool to Assess Eggs Freshness. Food Chem. 2019, 271, 691–696. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, B.; Li, W.; Xu, G. Changes in Volatile Compound Composition of Antrodia camphorata during Solid State Fermentation: Volatile Compound Composition of Antrodia camphorata during Fermentation. J. Sci. Food Agric. 2011, 91, 2463–2470. [Google Scholar] [CrossRef]
- Liu, H.; Jia, W.; Zhang, J.; Pan, Y. GC-MS and GC-Olfactometry Analysis of Aroma Compounds Extracted from Culture Fluids of Antrodia camphorata. World J. Microbiol. Biotechnol. 2008, 24, 1599–1602. [Google Scholar] [CrossRef]
- He, Z.; Lu, Z.; Xu, H.; Shi, J.; Xu, Z. Determination of Volatile Compounds in Antrodia cinnamomea Mycelia by Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry. Chin. J. Med. Mater. 2011, 34, 1722–1725. [Google Scholar]
- Sebzalli, Y.M.; Wang, X.Z. Knowledge Discovery from Process Operational Data Using PCA and Fuzzy Clustering. Eng. Appl. Artif. Intell. 2001, 14, 607–616. [Google Scholar] [CrossRef]
- Buratti, S.; Malegori, C.; Benedetti, S.; Oliveri, P.; Giovanelli, G. E-Nose, e-Tongue and e-Eye for Edible Olive Oil Characterization and Shelf Life Assessment: A Powerful Data Fusion Approach. Talanta 2018, 182, 131–141. [Google Scholar] [CrossRef]
- Jin, W.; Zhao, S.; Sun, H.; Pei, J.; Gao, R.; Jiang, P. Characterization and Discrimination of Flavor Volatiles of Different Colored Wheat Grains after Cooking Based on GC-IMS and Chemometrics. Curr. Res. Food Sci. 2023, 7, 100583. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, L.; Liu, H.; Liu, H.; Zhou, Y.; Li, M.; Gao, R. Analysis of the Changes of Volatile Flavor Compounds in a Traditional Chinese Shrimp Paste during Fermentation Based on Electronic Nose, SPME-GC-MS and HS-GC-IMS. Food Sci. Hum. Wellness 2023, 12, 173–182. [Google Scholar] [CrossRef]
- Moses, T.; Pollier, J.; Thevelein, J.M.; Goossens, A. Bioengineering of Plant (Tri)Terpenoids: From Metabolic Engineering of Plants to Synthetic Biology In Vivo and In Vitro. New Phytol. 2013, 200, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Kawata, A.; Suzuki, S.; Fujisawa, S. Cytotoxicity and Pro-/Anti-Inflammatory Properties of Cinnamates, Acrylates and Methacrylates against RAW264.7 Cells. Vivo 2018, 32, 1309–1322. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Wang, J.; Vidyarthi, S.K.; Wang, H.; Zhang, X.-G.; Gao, L.; Yang, K.-W.; Zhang, J.-S.; Xiao, H.-W. Effects of Postharvest Ripening on Water Status and Distribution, Drying Characteristics, Volatile Profiles, Phytochemical Contents, Antioxidant Capacity and Microstructure of Kiwifruit (Actinidia Deliciosa). Food Control 2022, 139, 109062. [Google Scholar] [CrossRef]
- Deveci, E.; Tel-Cayan, G.; Emin Duru, M.; Turkoglu, A. Characterization of Aromatic Volatile Compounds of Eight Wild Mushrooms by Headspace GC-MSD. Chem. Nat. Compd. 2017, 53, 383–385. [Google Scholar] [CrossRef]
- Lu, J.; Lin, X.; Zhang, R.; Wu, J.; Dai, Q.; Luo, D.; Li, L.; Chen, X.; Huang, G. Roger RUAN Analysis of Aroma Components in American Almonds by HS-SPME-GC-MS. Food Sci. 2015, 36, 120–125. [Google Scholar]
- Han, X.; Guan, Q.; Liu, X. Analysis of Volatile Flavors and Non-Volatile Taste Compounds in Seven Common Edible Fungi. Food Technol. 2024, 49, 133–140. [Google Scholar]
- Li, H.; Xi, B.; Lin, S.; Tang, D.; Gao, Y.; Zhao, X.; Liang, J.; Yang, W.; Li, J. Volatile Flavor Analysis in Yak Meat: Effects of Different Breeds, Feeding Methods, and Parts Using GC-IMS and Multivariate Analyses. Foods 2024, 13, 3130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Gui, X.J.; Fan, X.H.; Li, H.Y.; Li, X.P.; Dong, F.Y.; Wang, Y.L.; Shi, J.H.; Liu, R.X. Quality Identification of Amomi Fructus Using E-Nose, HS-GC-IMS, and Intelligent Data Fusion Methods. Front. Chem. 2025, 13, 1544743. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zuo, Z.T.; Wang, Y.Z.; Xu, F.R. A Fast Multi-Source Information Fusion Strategy Based on FTIR Spectroscopy for Geographical Authentication of Wild Gentiana Rigescens. Microchem. J. 2020, 159, 105360. [Google Scholar] [CrossRef]
Cultivation Method | Culture Medium and Conditions |
---|---|
Solid-state cultivation (SAC) | Oat: water = 1:2, natural pH, cultivated at 26 °C for 60 days |
Liquid-state cultivation (LAC) | 200 g potato, 20 g glucose, 1 g potassium dihydrogen phosphate, 0.5 g magnesium Sulfate, 3 g yeast extract powder, natural pH, cultivated at 26 °C with a rotation speed of 120 r/min for 14 days |
Dish-type cultivation (DAC) | 200 g potatoes, 20 g glucose, 20 g agar powder, 1 g potassium dihydrogen phosphate, 0.5 g magnesium sulfate, 3 g yeast extract powder, natural pH, cultivated at 26 °C for 25 days |
Sensor | Responding Substances | Sensor | Responding Substances |
---|---|---|---|
S1 | Propane, Smoke | S10 | Hydrogen |
S2 | Alcohol, Smoke, Isobutane, Formaldehyde | S11 | Liquefied Gas, Alkanes |
S3 | Ozone | S12 | Liquefied Gas, Methane |
S4 | Hydrogen Sulfide | S13 | Methane |
S5 | Ammonia | S14 | Combustible Gas, Smoke |
S6 | Toluene, Acetone, Ethanol, Hydrogen | S15 | Smoke, Isobutane |
S7 | Methane, Natural Gas, Biogas | S16 | Sulfide |
S8 | Liquefied Gas | S17 | Nitride |
S9 | Toluene, Formaldehyde, Benzene, Alcohol, Acetone | S18 | Acetone, Ethanol |
Count | Compound | CAS # | Formula | MW | RI | Rt [s] | Dt [a.u.] | Aroma Characteristic |
---|---|---|---|---|---|---|---|---|
1 | Isoeugenol | C97541 | C10H12O2 | 164.2 | 1454.5 | 1670.115 | 1.30445 | Sweet and spicy, clove-like |
2 | Linalyl butanoate | C78364 | C14H24O2 | 224.3 | 1419.4 | 1547.341 | 1.23106 | Floral, fruity, sweet |
3 | α-Ionone | C127413 | C13H20O | 192.3 | 1419.3 | 1546.983 | 1.5014 | Floral |
4 | Methyl 2-methoxybenzoate | C606451 | C9H10O3 | 166.2 | 1305.5 | 1208.219 | 1.23242 | Fruity and floral |
5 | Undecanal | C112447 | C11H22O | 170.3 | 1306.1 | 1209.78 | 1.60863 | Soapy |
6 | Cinnamyl alcohol | C104541 | C9H10O | 134.2 | 1302 | 1199.055 | 1.08834 | Cinnamon-like spice, floral |
7 | 1(H)-Indole | C120729 | C8H7N | 117.2 | 1279.6 | 1142.099 | 1.15998 | Spicy |
8 | 3-Methylphenol | C108394 | C7H8O | 108.1 | 1261.5 | 1098.096 | 1.12095 | Medicinal, woody, leathery, phenolic aldehyde |
9 | Geranyl formate | C105862 | C11H18O2 | 182.3 | 1266.9 | 1111.099 | 1.22086 | Floral, fruity |
10 | Piperitone | C89816 | C10H16O | 152.2 | 1259.3 | 1092.781 | 1.28315 | Herbaceous |
11 | (4-Methylphenyl) methyl acetate | C2216457 | C10H12O2 | 164.2 | 1275 | 1130.658 | 1.48133 | Floral |
12 | Benzothiazole | C95169 | C7H5NS | 135.2 | 1206.3 | 973.999 | 1.15162 | Rubber-like, nutty |
13 | 5-Ethyl-3-hydroxy-4-methyl-2(5H)-furanone | C698102 | C7H10O3 | 142.2 | 1206.6 | 974.59 | 1.46926 | Sweet, fruity, caramel-like |
14 | (E, Z)-2,6-Nonadien-1-ol | C28069729 | C9H16O | 140.2 | 1165 | 890.372 | 1.15638 | Violet leaf |
15 | (Z)-6-Nonen-1-ol | C35854865 | C9H18O | 142.2 | 1167.8 | 895.744 | 1.33275 | Muskmelon |
16 | 6-Ethyltetrahydro-2H-pyran-2-one | C3301904 | C7H12O2 | 128.2 | 1164 | 888.401 | 1.59717 | Coconut oil, earthy |
17 | Isophorone | C78591 | C9H14O | 138.2 | 1114.4 | 797.615 | 1.77656 | Woody, camphoraceous, and musty |
18 | (E)-2-Octenal | C2548870 | C8H14O | 126.2 | 1071.1 | 726.127 | 1.33062 | Fresh cucumber, banana |
19 | Ethyl levulinate | C539888 | C7H12O3 | 144.2 | 1071.7 | 726.956 | 1.6537 | - |
20 | Bergamal | C106729 | C9H16O | 140.2 | 1051.6 | 695.941 | 1.17552 | Muskmelon with floral notes |
21 | (E)-Ocimene | C13877913 | C10H16 | 136.2 | 1038.3 | 676.172 | 1.66822 | Floral |
22 | 2-Phenylacetaldehyde (M) | C122781 | C8H8O | 120.2 | 1036 | 672.754 | 1.2547 | Rose, clover |
23 | 2-Phenylacetaldehyde (D) | C122781 | C8H8O | 120.2 | 1036.3 | 673.157 | 1.53661 | Rose, clover |
24 | 3-Methylbutyl butanoate | C109193 | C9H18O2 | 158.2 | 1035.2 | 671.55 | 1.38177 | Fruity, sweet, pineapple-like |
25 | Benzyl alcohol | C100516 | C7H8O | 108.1 | 1014.2 | 641.684 | 1.16795 | Sweet, floral, fruity |
26 | 1-Methyl-2-pyrrolidinone | C872504 | C5H9NO | 99.1 | 1016 | 644.121 | 1.10704 | - |
27 | 2-Octanone | C111137 | C8H16O | 128.2 | 996.7 | 617.726 | 1.32846 | Earthy, weedy |
28 | 3-Carene | C13466789 | C10H16 | 136.2 | 997.2 | 618.388 | 1.2144 | Citrus |
29 | 2-Ethyl-3-methylpyrazine | C15707230 | C7H10N2 | 122.2 | 996.8 | 617.835 | 1.16281 | Roasted, nutty |
30 | 3-Octanone (M) | C106683 | C8H16O | 128.2 | 978.4 | 581.395 | 1.3092 | Herbaceous, musty, mushroom-like |
31 | 3-Octanone (D) | C106683 | C8H16O | 128.2 | 978.2 | 581.082 | 1.71545 | Herbaceous, musty, mushroom-like |
32 | 2-Ethyl-5-methylpyrazine | C13360640 | C7H10N2 | 122.2 | 984.4 | 593.014 | 1.20065 | Coffee bean, nutty |
33 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 961.9 | 550.356 | 1.25845 | Fruity |
34 | 2-Methylpropyl butanoate (M) | C539902 | C8H16O2 | 144.2 | 943.3 | 517.252 | 1.33593 | Fruity |
35 | 2-Methylpropyl butanoate (D) | C539902 | C8H16O2 | 144.2 | 942 | 515.106 | 1.80487 | Fruity |
36 | 2-Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 917.4 | 474.695 | 1.51856 | Nutty |
37 | Cyclohex-2-en-1-one | C930687 | C6H8O | 96.1 | 914.9 | 470.716 | 1.41778 | Roasted |
38 | 2-Ethylpyridine | C100710 | C7H9N | 107.2 | 909.3 | 461.994 | 1.09344 | Grass-like |
39 | Butyl propanoate | C590012 | C7H14O2 | 130.2 | 893.7 | 438.659 | 1.29013 | - |
40 | 3-(Methylthio)propionaldehyde | C3268493 | C4H8OS | 104.2 | 893.8 | 438.789 | 1.39152 | Vegetable |
41 | Propyl butanoate | C105668 | C7H14O2 | 130.2 | 893.7 | 438.605 | 1.67308 | Fruity |
42 | (E)-2-Hexenal (M) | C6728263 | C6H10O | 98.1 | 874.6 | 412.448 | 1.17875 | Fruity |
43 | (E)-2-Hexenal (D) | C6728263 | C6H10O | 98.1 | 874.3 | 412.021 | 1.52814 | Fruity |
44 | 3-Methylbutyl acetate | C123922 | C7H14O2 | 130.2 | 874.4 | 412.193 | 1.29612 | Sweet, banana-like, fruity |
45 | Ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 853.7 | 385.513 | 1.23938 | Fruity |
46 | 3-Methyl-1-pentanol (M) | C589355 | C6H14O | 102.2 | 834 | 361.798 | 1.31184 | Spicy, wine-like, cocoa-like |
47 | 3-Methyl-1-pentanol (D) | C589355 | C6H14O | 102.2 | 832.2 | 359.803 | 1.61025 | Dry wine-like, cocoa-like |
48 | 4-Hydroxy-4-methyl-2-pentanone | C123422 | C6H12O2 | 116.2 | 835.7 | 363.877 | 1.54105 | - |
49 | 2-Furanmethanol | C98000 | C5H6O2 | 98.1 | 833.8 | 361.585 | 1.36965 | Bread and coffee |
50 | Tetrahydrothiophene | C110010 | C4H8S | 88.2 | 820.8 | 346.819 | 1.30684 | Chinese cabbage |
51 | 2-Methyl-1-pentanol | C105306 | C6H14O | 102.2 | 822.4 | 348.601 | 1.59109 | - |
52 | Butanoic acid (D) | C107926 | C4H8O2 | 88.1 | 801.4 | 325.822 | 1.39448 | Dairy-like, buttery, fruity |
53 | Butanoic acid (M) | C107926 | C4H8O2 | 88.1 | 799.7 | 324.037 | 1.17068 | Dairy-like, buttery, fruity |
54 | 2-Hexanol | C626937 | C6H14O | 102.2 | 766.5 | 291.668 | 1.27341 | Wine-like |
55 | 2,3-Butanediol | C513859 | C4H10O2 | 90.1 | 766.5 | 291.695 | 1.36916 | - |
56 | 3-Methyl-2-pentanone | C565617 | C6H12O | 100.2 | 754.3 | 280.786 | 1.18103 | - |
57 | Pentan-1-ol | C71410 | C5H12O | 88.2 | 752 | 278.827 | 1.2556 | Fermentation |
58 | (Z)-2-Penten-1-ol | C1576950 | C5H10O | 86.1 | 750 | 277.096 | 1.45179 | Cherry narcissus |
59 | Butyl formate (M) | C592847 | C5H10O2 | 102.1 | 717.3 | 250.238 | 1.19881 | Fruity |
60 | Butyl formate (D) | C592847 | C5H10O2 | 102.1 | 708.2 | 243.275 | 1.53149 | Fruity |
61 | 3-Hydroxybutan-2-one | C513860 | C4H8O2 | 88.1 | 729.6 | 259.981 | 1.33219 | - |
62 | 3-Methyl-3-buten-1-ol | C763326 | C5H10O | 86.1 | 727.2 | 258.1 | 1.4198 | Fruity |
63 | 2-Ethylfuran | C3208160 | C6H8O | 96.1 | 707 | 242.317 | 1.30749 | Malt, coffee, nuts |
64 | Propanoic acid | C79094 | C3H6O2 | 74.1 | 692.1 | 231.366 | 1.26102 | Pungent acidity |
65 | Pentanal | C110623 | C5H10O | 86.1 | 692.2 | 231.425 | 1.42491 | Fermented bread, fruity, nuts |
66 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 687.5 | 228.314 | 1.39665 | Cocoa |
67 | 1,2-Dimethoxyethane | C110714 | C4H10O2 | 90.1 | 655.8 | 213.273 | 1.29706 | - |
68 | 1-Propanethiol | C107039 | C3H8S | 76.2 | 613.7 | 194.821 | 1.17255 | Cabbage, sweet onion |
69 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 601.2 | 189.644 | 1.10211 | Fruity |
70 | 2-Butanone | C78933 | C4H8O | 72.1 | 583.3 | 182.487 | 1.24177 | Etheric, diffusive, slightly fruity |
71 | Butanal | C123728 | C4H8O | 72.1 | 574.3 | 178.999 | 1.28661 | Chocolate |
72 | 2-Butanol | C78922 | C4H10O | 74.1 | 614.6 | 195.193 | 1.32263 | Sweet apricot |
73 | 2-Propanone | C67641 | C3H6O | 58.1 | 487.9 | 148.638 | 1.11428 | Apple pear |
74 | Propanal | C123386 | C3H6O | 58.1 | 488.3 | 148.782 | 1.15269 | Whiskey, cocoa nuts |
75 | Methyl acetate | C79209 | C3H6O2 | 74.1 | 483.7 | 147.297 | 1.19243 | Fruity |
76 | Ethyl formate | C109944 | C3H6O2 | 74.1 | 535.7 | 164.731 | 1.22221 | Fermentation, wine |
77 | 3-Methylpentanoic acid | C105431 | C6H12O2 | 116.2 | 956.6 | 540.777 | 1.60365 | Acidic cheesy flavor |
78 | γ-Valerolactone | C108292 | C5H8O2 | 100.1 | 933.4 | 500.594 | 1.13124 | Herbaceous |
79 | Ethyl 3-oxobutanoate | C141979 | C6H10O3 | 130.1 | 922.2 | 482.244 | 1.60577 | - |
80 | 1-Propanol | C71238 | C3H8O | 60.1 | 555.2 | 171.805 | 1.11225 | Alcoholic, fermented flavor |
81 | 3-Ethylpyridine | C536787 | C7H9N | 107.2 | 962.1 | 550.747 | 1.52004 | Tobacco |
82 | Cyclohexanone | C108941 | C6H10O | 98.1 | 897.7 | 444.525 | 1.16542 | Minty flavor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhang, N.; Yu, S.; Shi, T.; Yang, S.; Cheng, X.; Ming, Y.; Zhang, R. Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints. Foods 2025, 14, 2790. https://doi.org/10.3390/foods14162790
Ma X, Zhang N, Yu S, Shi T, Yang S, Cheng X, Ming Y, Zhang R. Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints. Foods. 2025; 14(16):2790. https://doi.org/10.3390/foods14162790
Chicago/Turabian StyleMa, Xiaofeng, Na Zhang, Shiyuan Yu, Tianyu Shi, Shude Yang, Xianhao Cheng, Yongfei Ming, and Rui Zhang. 2025. "Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints" Foods 14, no. 16: 2790. https://doi.org/10.3390/foods14162790
APA StyleMa, X., Zhang, N., Yu, S., Shi, T., Yang, S., Cheng, X., Ming, Y., & Zhang, R. (2025). Cultivation Method-Driven Aroma Diversification in Antrodia cinnamomea: GC-IMS and Bioelectronic Sensors Reveal Distinctive Volatile Fingerprints. Foods, 14(16), 2790. https://doi.org/10.3390/foods14162790