Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climatic Conditions and Rainfall Variability
2.3. Sampling, Laboratory Analysis, and Analytical Method
2.4. Spatial Analysis
2.5. Data Treatment by Statistical Method
2.6. K-Means Clustering
2.7. Water Quality Index (WQI)
2.8. Health Risk Assessment
3. Results and Discussion
3.1. Physicochemical Analysis
3.2. Heavy Metals
3.3. The Correlation Matrix
3.4. Principal Component Analysis (PCA)
3.5. Hierarchical Cluster Analysis
3.6. K-Means Clustering
3.7. Water Quality Index
3.8. Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faraji, H.; Shahryari, A. Assessment of Groundwater Quality for Drinking, Irrigation, and Industrial Purposes Using Water Quality Indices and GIS Technique in Gorgan Aquifer. Desalination Water Treat. 2024, 320, 100821. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Rising Threats to Groundwater Recharge: Adaptive Strategies for the Sahel under Climate Change. Groundw. Sustain. Dev. 2025, 30, 101468. [Google Scholar] [CrossRef]
- Pavelic, P.; Patankar, U.; Acharya, S.; Jella, K.; Gumma, M.K. Role of Groundwater in Buffering Irrigation Production against Climate Variability at the Basin Scale in South-West India. Agric. Water Manag. 2012, 103, 78–87. [Google Scholar] [CrossRef]
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; El Moçayd, N. Climate Change Effect on Groundwater Characteristics within Semi-Arid Zones from Western Morocco. Groundw. Sustain. Dev. 2020, 11, 100380. [Google Scholar] [CrossRef]
- Ghachoui, E.; Taouil, H.; Naser, R.S.M.; Said, I.A. Spatial Assessment of Groundwater Quality for Drinking in Souk El Arbaa, Morocco. Water Supply 2024, 24, 1267–1281. [Google Scholar] [CrossRef]
- Snousy, M.G.; Elshafie, H.M.; Abouelmagd, A.R.; Hassan, N.E.; Abd-Elmaboud, M.E.; Mohammadi, A.A.; Elewa, A.M.T.; EL-Sayed, E.; Saqr, A.M. Enhancing the Prediction of Groundwater Quality Index in Semi-Arid Regions Using a Novel ANN-Based Hybrid Arctic Puffin-Hippopotamus Optimization Model. J. Hydrol. Reg. Stud. 2025, 59, 102424. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, H.; Miao, Q.; Zhao, Y.; Nie, X.; Li, Z.; Pan, M.; Feng, W.; Gonçalves, J.M.; Duarte, I.M. Evolution of Chemical Characteristics and Irrigation Suitability of Groundwater in Arid and Semi-Arid Regions. Agric. Water Manag. 2025, 311, 109361. [Google Scholar] [CrossRef]
- Snousy, M.G.; Wu, J.; Su, F.; Abdelhalim, A.; Ismail, E. Groundwater Quality and Its Regulating Geochemical Processes in Assiut Province, Egypt. Expo. Health 2022, 14, 305–323. [Google Scholar] [CrossRef]
- Paudel, G.; Pant, R.R.; Joshi, T.R.; Saqr, A.M.; Đurin, B.; Cetl, V.; Kamble, P.N.; Bishwakarma, K. Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus. Water 2024, 16, 3373. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, H.; Sun, C.; Li, H.; Gao, Y. Multivariate Statistical Approaches to Identify the Major Factors Governing Groundwater Quality. Appl. Water Sci. 2018, 8, 215. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Li, Q.; Zou, K.; Li, J.; Ye, H. Water Quality Analysis Using the CCME-WQI Method with Time Series Analysis in a Water Supply Reservoir. Water Supply 2022, 22, 6281–6295. [Google Scholar] [CrossRef]
- Benmarce, K.; Zighmi, K.; Hadji, R.; Hamed, Y.; Gentilucci, M.; Barbieri, M.; Pambianchi, G. Integration of GIS and Water-Quality Index for Preliminary Assessment of Groundwater Suitability for Human Consumption and Irrigation in Semi-Arid Region. Hydrology 2024, 11, 71. [Google Scholar] [CrossRef]
- Dandge, K.P.; Patil, S.S. Spatial Distribution of Ground Water Quality Index Using Remote Sensing and GIS Techniques. Appl. Water Sci. 2021, 12, 7. [Google Scholar] [CrossRef]
- Chergui, A.; Hafid, L.E.; Ajal, E.A.; Zakariya, I.; Nejjari, R.; Reda Tazi, M. Evolution of Biometric Parameters and Oil Fatty Acid Composition of Argan “Argania spinosa L. Skeels” Fruits from Beni- Snassen (Eastern Region of Morocco) During Ripening. Pharmacogn. J. 2020, 13, 296–308. [Google Scholar] [CrossRef]
- Ganoudi, M.; Ouallal, I.; El Mekkaoui, A.; Mounir, M.; Ibriz, M.; Iraqi, D. Diversity of Endomycorrhizal Fungi in Argan Forest Stands: Implications for the Success of Reforestation Programs. Forests 2023, 14, 1649. [Google Scholar] [CrossRef]
- Lamhamedi, M.S.; Khasa, D.P.; Pepin, S. (Eds.) Production in Forest Nurseries and Field Performance of Seedlings; MDPI: Basel, Switzerland, 2023; ISBN 978-3-0365-8769-1. [Google Scholar]
- Miklavčič, M.B.; Taous, F.; Valenčič, V.; Elghali, T.; Podgornik, M.; Strojnik, L.; Ogrinc, N. Fatty Acid Composition of Cosmetic Argan Oil: Provenience and Authenticity Criteria. Molecules 2020, 25, 4080. [Google Scholar] [CrossRef]
- Gharby, S.; Charrouf, Z. Argan Oil: Chemical Composition, Extraction Process, and Quality Control. Front. Nutr. 2022, 8, 804587. [Google Scholar] [CrossRef]
- Ganoudi, M.; Calonne-Salmon, M.; Ibriz, M.; Declerck, S. In Vitro Mycorrhization of Argania spinosa L. Using Germinated Seeds. Symbiosis 2021, 85, 57–68. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Sustainable Development in Northern Africa: The Argan Forest Case. Sustainability 2009, 1, 1012–1022. [Google Scholar] [CrossRef]
- Ait Hammou, R.; Harrouni, C.; Ben El Caid, M.; Hallouti, A.; Baroud, S.; Daoud, S. Establishment of Argan Tree Plantlets (Argania spinosa (L.) Skeels) Grown from Generative and Vegetative Propagation under Different Watering Regimes at the Nursery Stage. Biocatal. Agric. Biotechnol. 2022, 44, 102457. [Google Scholar] [CrossRef]
- Barradas, M.C.D.; Zunzunegui, M.; Esquivias, M.P.; Boutaleb, S.; Valera-Burgos, J.; Tagma, T.; Ain-Lhout, F. Some Secrets of Argania spinosa Water Economy in a Semiarid Climate. Nat. Prod. Commun. 2013, 8, 1934578X1300800. [Google Scholar] [CrossRef]
- Fahmi, F. Assessment of Aridity Effects on Phytochemistry and Ecophysiology of Argania spinosa (L.). Agric. Nat. Resour. 2020, 54, 397–404. [Google Scholar] [CrossRef]
- Font Tullot, I. El clima del África Occidental Española; Servicio Meteorológico Nacional: Madrid, Spain, 1949.
- Chakhchar, A.; Lamaoui, M.; Aissam, S.; Ferradous, A.; Wahbi, S.; El Mousadik, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; El Modafar, C. Physiological and Biochemical Mechanisms of Drought Stress Tolerance in the Argan Tree. In Plant Metabolites and Regulation Under Environmental Stress; Elsevier: Amsterdam, The Netherlands, 2018; pp. 311–322. ISBN 978-0-12-812689-9. [Google Scholar]
- Chakhchar, A.; Lamaoui, M.; Aissam, S.; Ferradous, A.; Wahbi, S.; El Mousadik, A.; Ibnsouda-Koraichi, S.; Filali-Maltouf, A.; El Modafar, C. Differential Physiological and Antioxidative Responses to Drought Stress and Recovery among Four Contrasting Argania spinosa Ecotypes. J. Plant Interact. 2016, 11, 30–40. [Google Scholar] [CrossRef]
- Marzol, M.V.; Sánchez, J.L.; Yanes, A. Meteorological Patterns and Fog Water Collection in Morocco and the Canary Islands. Erdkunde 2011, 65, 291–303. [Google Scholar] [CrossRef]
- Lekouch, I.; Muselli, M.; Kabbachi, B.; Ouazzani, J.; Melnytchouk-Milimouk, I.; Beysens, D. Dew, Fog, and Rain as Supplementary Sources of Water in South-Western Morocco. Energy 2011, 36, 2257–2265. [Google Scholar] [CrossRef]
- Díaz-Barradas, M.C.; Zunzunegui, M.; Ain-Lhout, F.; Jáuregui, J.; Boutaleb, S.; Álvarez-Cansino, L.; Esquivias, M.P. Seasonal Physiological Responses of Argania spinosa Tree from Mediterranean to Semi-Arid Climate. Plant Soil 2010, 337, 217–231. [Google Scholar] [CrossRef]
- Zahidi, A. Seasonal Change Effects on Phenology of Argania spinosa (L.) in the Fields. J. Ecol. Nat. Environ. 2013, 5, 189–205. [Google Scholar] [CrossRef]
- Reda Tazi, M.; Boukroute, A.; Berrichi, A.; Rharrabti, Y.; Kouddane, N. Growth of Young Argan Tree Seedlings (Argania spinosa L. Skeels) in North—East of Morocco under Controlled Conditions at Different NaCl Concentrations. J. Mater. Environ. Sci. 2018, 9, 212–218. [Google Scholar] [CrossRef]
- Bani-Aameur, F.; Sipple-Michmerhuizen, J. Germination and Seedling Survival of Argan (Argania spinosa) under Experimental Saline Conditions. J. Arid Environ. 2001, 49, 533–540. [Google Scholar] [CrossRef]
- Bouzoubaâ, Z.; El Mousadik, A. Effet de La Température, Du Déficit Hydrique et de La Salinité Sur La Germination de l’Arganier, Argania spinosa (L.) Skeels. Acta Bot. Gall. 2003, 150, 321–330. [Google Scholar] [CrossRef]
- Afi, C.; Hallam, J.; Mimouni, A.; Msanda, F.; Aabd, N.A. Saline Water Irrigation Effect on Oil Yield and Quality of Argan Trees Domesticated in Laâyoune, Morocco. Environ. Sci. Proc. 2022, 16, 45. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; El Ghorfi, M.; Zouhri, L.; Heddoun, O.; Khalil, A.; Maacha, L. Origin and Salinization Processes of Groundwater in the Semi-Arid Area of Zagora Graben, Southeast Morocco. Water 2023, 15, 2172. [Google Scholar] [CrossRef]
- Al-Qawati, M.; El-Qaysy, M.; Darwish, N.; Sibbari, M.; Hamdaoui, F.; Kherrati, I.; El Kharrim, K.; Belghyti, D. Hydrogeochemical Study of Groundwater Quality in the West of Sidi Allal Tazi, Gharb Area, Morocco. J. Mater. Environ. Sci. 2018, 9, 293–304. [Google Scholar] [CrossRef]
- Boudellah, A.; Moustaine, R.E.; Gharmali, A.E.; Maliki, A.; Moutaouakil, S.; Bouriqi, A.; Khouz, A.; Boulanouar, M.; Ibouh, H.; Ghamizi, M.; et al. Groundwater Quality in Zagora Southeast of Morocco by Using Physicochemical Analysis and Geospatial Techniques. Environ. Monit. Assess. 2023, 195, 624. [Google Scholar] [CrossRef] [PubMed]
- Ouhakki, H.; Hmouni, D.; El Fallah, K.; El Mejdoub, N.; Adiba, A. Groundwater Quality Dynamics in Doukkala, Morocco—Exploring Seasonal and Temporal Variations in Physicochemical and Bacteriological Traits. J. Ecol. Eng. 2024, 26, 95–108. [Google Scholar] [CrossRef]
- CHRS Data Portal. Available online: http://chrsdata.eng.uci.edu/ (accessed on 11 June 2024).
- Dove, M. Climate Risk Profile: Morocco (2021); The World Bank Group: Washington, DC, USA, 2021. [Google Scholar]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef]
- Verner, D.; Treguer, D.; Redwood, J.; Christensen, J.; McDonnell, R.; Elbert, C.; Konishi, Y.; Belghazi, S. Climate Variability, Drought, and Drought Management in Morocco’s Agricultural Sector; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- NASA Earth Observations (NEO). Available online: https://neo.gsfc.nasa.gov/ (accessed on 11 June 2024).
- NASA POWER|Prediction of Worldwide Energy Resources. Available online: https://power.larc.nasa.gov/ (accessed on 11 June 2024).
- Rodier, J.; Legube, B.; Merlet, N. Collectif L’analyse de L’eau, 9th ed.; Dunod: Paris, France, 2009; ISBN 978-2-10-007246-0. [Google Scholar]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of Water Quality of Polluted Lake Using Multivariate Statistical Techniques: A Case Study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Tang, Q.; Xu, H.; Huang, S.; Shang, D.; Liu, R. Water Quality Assessment and Source Identification of the Shuangji River (China) Using Multivariate Statistical Methods. PLoS ONE 2021, 16, e0245525. [Google Scholar] [CrossRef]
- Sharma, G.; Lata, R.; Thakur, N.; Bajala, V.; Kuniyal, J.C.; Kumar, K. Application of Multivariate Statistical Analysis and Water Quality Index for Quality Characterization of Parbati River, Northwestern Himalaya, India. Discov. Water 2021, 1, 5. [Google Scholar] [CrossRef]
- Adnan, R.M.; Khosravinia, P.; Karimi, B.; Kisi, O. Prediction of Hydraulics Performance in Drain Envelopes Using Kmeans Based Multivariate Adaptive Regression Spline. Appl. Soft Comput. 2021, 100, 107008. [Google Scholar] [CrossRef]
- Peña, J.M.; Lozano, J.A.; Larrañaga, P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm. Pattern Recognit. Lett. 1999, 20, 1027–1040. [Google Scholar] [CrossRef]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10 Algorithms in Data Mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef]
- Capó, M.; Pérez, A.; Lozano, J.A. An Efficient Approximation to the K-Means Clustering for Massive Data. Knowl.-Based Syst. 2017, 117, 56–69. [Google Scholar] [CrossRef]
- Yang, X.; Liu, S.; Jia, C.; Liu, Y.; Yu, C. Vulnerability Assessment and Management Planning for the Ecological Environment in Urban Wetlands. J. Environ. Manag. 2021, 298, 113540. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Monedero, D.; Forné, J.; Pallarès, E.; Parra-Arnau, J. A Modification of the Lloyd Algorithm for K-Anonymous Quantization. Inf. Sci. 2013, 222, 185–202. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L. Multiple Evaluations of the Spatial and Temporal Characteristics of Surface Water Quality in the Typical Area of the Yangtze River Delta of China Using the Water Quality Index and Multivariate Statistical Analysis: A Case Study in Shengzhou City. Int. J. Environ. Res. Public Health 2023, 20, 2883. [Google Scholar] [CrossRef] [PubMed]
- Aljanabi, Z.Z.; Jawad Al-Obaidy, A.-H.M.; Hassan, F.M. A Brief Review of Water Quality Indices and Their Applications. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012088. [Google Scholar] [CrossRef]
- Cash, K.; Saffran, K.; Wright, C. Application of Canadian Water Quality Index (CWQI) to PPWB Monitoring Program; Prairie Provinces Water Board: Regina, SK, Canada, 2001. [Google Scholar]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Bilgin, A. Evaluation of Surface Water Quality by Using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) Method and Discriminant Analysis Method: A Case Study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554. [Google Scholar] [CrossRef]
- Dzhangi, T.R.; Atangana, E. Evaluation of the Impact of Coal Mining on Surface Water in the Boesmanspruit, Mpumalanga, South Africa. Environ. Earth Sci. 2024, 83, 159. [Google Scholar] [CrossRef]
- Lechhab, W.; Lechhab, T.; Tligui, Y.; Lanjri, A.; Fath Allah, R.; Cacciola, F.; Salmoun, F. Assessing Hydrogeochemical Characteristics, Pollution Sources, Water Quality, and Health Risks in Northwest Moroccan Springs Using Statistical Analysis. Sustain. Water Resour. Manag. 2024, 10, 169. [Google Scholar] [CrossRef]
- U.S. EPA. US EPA Archive Document; U.S. EPA: Washington, DC, USA, 1989.
- Barzegar, R.; Asghari Moghaddam, A.; Soltani, S.; Fijani, E.; Tziritis, E.; Kazemian, N. Heavy Metal(Loid)s in the Groundwater of Shabestar Area (NW Iran): Source Identification and Health Risk Assessment. Expo. Health 2019, 11, 251–265. [Google Scholar] [CrossRef]
- Maleki, A.; Jari, H. Evaluation of Drinking Water Quality and Non-Carcinogenic and Carcinogenic Risk Assessment of Heavy Metals in Rural Areas of Kurdistan, Iran. Environ. Technol. Innov. 2021, 23, 101668. [Google Scholar] [CrossRef]
- Santha, N.; Sangkajan, S.; Saenton, S. Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand. Water 2022, 14, 465. [Google Scholar] [CrossRef]
- Sanad, H.; Mouhir, L.; Zouahri, A.; Moussadek, R.; El Azhari, H.; Yachou, H.; Ghanimi, A.; Oueld Lhaj, M.; Dakak, H. Assessment of Groundwater Quality Using the Pollution Index of Groundwater (PIG), Nitrate Pollution Index (NPI), Water Quality Index (WQI), Multivariate Statistical Analysis (MSA), and GIS Approaches: A Case Study of the Mnasra Region, Gharb Plain, Morocco. Water 2024, 16, 1263. [Google Scholar] [CrossRef]
- Zouahri, A.; Dakak, H.; Douaik, A.; El Khadir, M.; Moussadek, R. Evaluation of Groundwater Suitability for Irrigation in the Skhirat Region, Northwest of Morocco. Environ. Monit. Assess. 2015, 187, 4184. [Google Scholar] [CrossRef]
- Jones, S. Conductivity in Drinking Water—Water Library|Acorn Water. 2020. Available online: https://www.h2olabcheck.com/blog/view/conductivity (accessed on 1 August 2024).
- Latif, M.; Nasir, N.; Nawaz, R.; Nasim, I.; Sultan, K.; Irshad, M.A.; Irfan, A.; Dawoud, T.M.; Younous, Y.A.; Ahmed, Z.; et al. Assessment of Drinking Water Quality Using Water Quality Index and Synthetic Pollution Index in Urban Areas of Mega City Lahore: A GIS-Based Approach. Sci. Rep. 2024, 14, 13416. [Google Scholar] [CrossRef]
- Akoto, O.; Adopler, A.; Tepkor, H.E.; Opoku, F. A Comprehensive Evaluation of Surface Water Quality and Potential Health Risk Assessments of Sisa River, Kumasi. Groundw. Sustain. Dev. 2021, 15, 100654. [Google Scholar] [CrossRef]
- McLusky, D.S. Estuarine Benthic Ecology: A European Perspective. Aust. J. Ecol. 1999, 24, 302–311. [Google Scholar] [CrossRef]
- Perumal, M.; Sekar, S.; Carvalho, P.C.S. Global Investigations of Seawater Intrusion (SWI) in Coastal Groundwaters in the Last Two Decades (2000–2020): A Bibliometric Analysis. Sustainability 2024, 16, 1266. [Google Scholar] [CrossRef]
- Nassri, I. Hydrogeochemical Assessment and Spatial Analysis of Groundwater Quality Parameters in North West of Morocco. J. Saudi Soc. Agric. Sci. 2024, in press. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Singh, A.K. Hydrogeochemical Investigation and Groundwater Quality Assessment of Pratapgarh District, Uttar Pradesh. J. Geol. Soc. India 2014, 83, 329–343. [Google Scholar] [CrossRef]
- Ayotte, J.D.; Medalie, L.; Qi, S.L.; Backer, L.C.; Nolan, B.T. Estimating the High-Arsenic Domestic-Well Population in the Conterminous United States. Environ. Sci. Technol. 2017, 51, 12443–12454. [Google Scholar] [CrossRef]
- Jat Baloch, M.; Zhang, W.; Zhang, D.; Al Shoumik, B.; Iqbal, J.; Li, S.; Chai, J.; Farooq, M.; Parkash, A. Evolution Mechanism of Arsenic Enrichment in Groundwater and Associated Health Risks in Southern Punjab, Pakistan. Int. J. Environ. Res. Public Health 2022, 19, 13325. [Google Scholar] [CrossRef]
- Alazmah, A. Primary Teeth Stains and Discoloration: A Review. J. Child Sci. 2021, 11, e20–e27. [Google Scholar] [CrossRef]
- Bellinger, D.C. Neurological and Behavioral Consequences of Childhood Lead Exposure. PLoS Med. 2008, 5, e115. [Google Scholar] [CrossRef]
- Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 30 July 2024).
- Lokhande, R.S.; Singare, P.U.; Pimple, D.S. Toxicity Study of Heavy Metals Pollutants in Waste Water Effluent Samples Collected from Taloja Industrial Estate of Mumbai, India. Resour. Environ. 2011, 1, 13–19. [Google Scholar]
- McNeill, L.S.; Edwards, M. The Importance of Temperature in Assessing Iron Pipe Corrosion in Water Distribution Systems. Environ. Monit. Assess. 2002, 77, 229–242. [Google Scholar] [CrossRef]
- Saana, S.B.B.M.; Fosu, S.A.; Sebiawu, G.E.; Jackson, N.; Karikari, T. Assessment of the Quality of Groundwater for Drinking Purposes in the Upper West and Northern Regions of Ghana. SpringerPlus 2016, 5, 2001. [Google Scholar] [CrossRef] [PubMed]
- Ewaid, S.; Abed, S.; Al-Ansari, N.; Salih, R. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67. [Google Scholar] [CrossRef]
- Adimalla, N. Groundwater Quality for Drinking and Irrigation Purposes and Potential Health Risks Assessment: A Case Study from Semi-Arid Region of South India. Expo. Health 2019, 11, 109–123. [Google Scholar] [CrossRef]
- Mateo, L.F.; Más-López, M.I.; García-del-Toro, E.M.; García-Salgado, S.; Quijano, M.Á. Artificial Neural Networks to Predict Electrical Conductivity of Groundwater for Irrigation Management: Case of Campo de Cartagena (Murcia, Spain). Agronomy 2024, 14, 524. [Google Scholar] [CrossRef]
- Rabeiy, R.E. Assessment and Modeling of Groundwater Quality Using WQI and GIS in Upper Egypt Area. Environ. Sci. Pollut. Res. 2017, 25, 30808–30817. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.A.; Azad, C.; Mukherjee, S.; Rina, K. An Assessment of Groundwater Salinization in Haryana State in India Using Hydrochemical Tools in Association with GIS. Environ. Earth Sci. 2017, 76, 465. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Koleli, N.; Kantar, Ç. Fosfat kayası,fosforik asit ve fosforlu gübrelerdeki toksit ağır metal (Cd, Pb, Ni, As) konsantrasyounu. Ekoloji 2005, 14, 1–5. [Google Scholar]
- Chakraborty, P.; Jayachandran, S.; Chakraborty, S. Chromium Speciation in the Sediments across the Oxygen Minimum Zone, Western Continental Margin of India. Geol. J. 2019, 54, 1132–1140. [Google Scholar] [CrossRef]
- Helena, B. Temporal Evolution of Groundwater Composition in an Alluvial Aquifer (Pisuerga River, Spain) by Principal Component Analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Oketola, A.; Okekunle, M.; Osibanjo, O. Water Quality Assessment of River Ogun Using Multivariate Statistical Techniques. J. Environ. Prot. 2013, 4, 466–479. [Google Scholar] [CrossRef]
- Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; Esteves Da Silva, J.C.G.; Salmoun, F. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2022, 15, 130. [Google Scholar] [CrossRef]
- Liang, C.-P.; Wang, C.-H.; Wang, S.-W.; Chang, T.-W.; Chen, J.-S. Application of Factor Analysis for Characterizing the Relationships between Groundwater Quality and Land Use in Taiwan’s Pingtung Plain. Sustainability 2020, 12, 10608. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.A.; Rocha-Gutiérrez, B.A.; Ballinas-Casarrubias, M.D.L.; Valles-Aragón, M.C.; Peralta-Pérez, M.D.R.; Pinedo-Alvarez, A. Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico. Water 2018, 10, 1037. [Google Scholar] [CrossRef]
- Liu, C.-W.; Lin, K.-H.; Kuo, Y.-M. Application of Factor Analysis in the Assessment of Groundwater Quality in a Blackfoot Disease Area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Shrestha, S.; Kazama, F. Assessment of Surface Water Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- El Khalki, S.; Ghalit, M.; Elbarghmi, R.; Azzaoui, K.; Jodeh, S.; Hanbali, G.; Lamhamdi, A. Identification of Hydrochemical Processes of Groundwater in Nekor-Ghiss Plain (Morocco): Using the Application of Multivariate Statistics and Geographic Information Systems (GIS) to Map Groundwater. Appl. Water Sci. 2024, 14, 166. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Xiao, Y.; Zhong, H. Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China. Int. J. Environ. Res. Public Health 2019, 16, 2227. [Google Scholar] [CrossRef]
- Rangeti, I.; Dzwairo, B. Guide for Organising a Community Clean-up Campaign. In Strategies of Sustainable Solid Waste Management; Saleh, H.M., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83962-559-6. [Google Scholar]
- Mohod, C.V.; Dhote, J. Review of heavy metals in drinking water and their effect on human health. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2992–2996. [Google Scholar]
- Khan, S.A.; Din, Z.U.; Zubair, A. Levels of selected heavy metals in drinking water of peshawar city. Int. J. Sci. Nat. 2011, 2, 648–652. [Google Scholar]
- Gregoriadou, A.; Delidou, K.; Dermosonoglou, D.; Tsoumparis, P.; Edipidi, C.; Katsougiannopoulos, B. Heavy metals in drinking water in Thessaloniki area, Greece. In Proceedings of the 7th International Conference on Environmental Science and Technology Ermoupolis, Syros Island, Greece, 3–6 September 2001. [Google Scholar]
- Mebrahtu, G.; Zerabruk, S. Concentration of Heavy Metals in Drinking Water from Urban Areas of the Tigray Region, Northern Ethiopia. Momona Ethiop. J. Sci. 2011, 3, 105–121. [Google Scholar] [CrossRef]
- Hanaa, M.; Farag, A. Heavy Metals in Drinking Water and Their Environmental Impact on Human Health; Cairo University: Giza, Egypt, 2000. [Google Scholar]
Categorization | Score | Water Quality Interpretation |
---|---|---|
Excellent | 95–100 | Water quality protected, near natural or pristine levels, virtually without threat or impairment. |
Good | 80–94 | Water quality protected with minimal threats, rarely deteriorating. |
Fair | 65–79 | Water quality is generally protected, but can be threatened or impaired. |
Marginal | 45–64 | Water quality frequently deviates from natural or desirable levels due to risks and deterioration. |
Poor | 0–44 | Water quality is often threatened or impaired, deviating from natural or desirable levels. |
Sample Name | T (°C) | pH | EC (µS/cm) | DO (mg/L) | ORP (mVH) | TUR (NTU) | SAL (%) | (mg/L) | TH (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | Cl− (mg/L) | Fe2+ (mg/L) | COD (mg/L) | As (mg/L) | Cr (mg/L) | Cd (mg/L) | Pb (mg/L) | Ni (mg/L) | Mo (mg/L) | Cu (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AW1 | 22.4 | 7.02 | 3760 | 4.5 | 208 | 0.23 | 2.2 | 484.95 | 138.52 | 55.41 | 32.31 | 15.69 | 136.02 | 0.00079 | 4.28 | 899.925 | 0.018 | 8.5 | 0.0093 | 0.0004 | 0 | 0.0646 | 0 | 0.0029 | 0 |
AW2 | 20.2 | 7.18 | 970 | 4.5 | 194 | 2.62 | 0.8 | 192.15 | 139.80 | 55.92 | 22.40 | 4.13 | 221.05 | 0.00081 | 0.62 | 159.75 | 0.019 | 9 | 0.0029 | 0 | 0 | 0.0529 | 0.002 | 0.0044 | 0 |
AW3 | 21.6 | 7.06 | 2850 | 2.3 | 208 | 7.61 | 1.6 | 372.10 | 118.85 | 47.54 | 60.42 | 16.05 | 122.55 | 0.00073 | 0.71 | 736.625 | 0.019 | 8.45 | 0 | 0 | 0 | 0.0209 | 0 | 0.0081 | 0 |
AW4 | 21.8 | 7.34 | 823 | 9.1 | 187 | 0.25 | 0.4 | 399.55 | 85.08 | 34.03 | 29.99 | 32.51 | 55.55 | 0.00065 | 1.20 | 124.25 | 0.019 | 9.35 | 0.0002 | 0.0003 | 0 | 0.0571 | 0 | 0.004 | 0 |
AW5 | 21.4 | 7.49 | 695 | 8.8 | 171 | 1.01 | 0.3 | 372.10 | 57.72 | 23.09 | 27.77 | 15.61 | 25.22 | 0.00069 | 1.09 | 53.25 | 0.018 | 9.2 | 0.002 | 0 | 0 | 0 | 0 | 0.0025 | 0 |
AW6 | 22 | 7.26 | 1268 | 9 | 192 | 5.75 | 0.6 | 381.25 | 80.80 | 32.32 | 25.08 | 12.62 | 82.40 | 0.00098 | 1.14 | 131.35 | 0.017 | 9.3 | 0.0081 | 0 | 0 | 0.0291 | 0.0039 | 0.0023 | 0 |
AW7 | 20.2 | 7.65 | 3330 | 6.3 | 170 | 2.63 | 1.6 | 405.65 | 69.26 | 27.70 | 25.70 | 13.66 | 125.11 | 0.00065 | 0.80 | 749.05 | 0.018 | 8.25 | 0.0003 | 0 | 0 | 0.052 | 0.0004 | 0.0012 | 0 |
AW8 | 19.7 | 7.16 | 1153 | 13.6 | 198 | 4.08 | 0.6 | 344.65 | 94.91 | 37.96 | 36.96 | 2.69 | 123.87 | 0.00072 | 0.83 | 523.625 | 0.022 | 7.9 | 0.0023 | 0 | 0 | 0.0236 | 0 | 0.0061 | 0 |
AW9 | 21.9 | 6.23 | 233 | 8.4 | 213 | 0.24 | 0.1 | 219.60 | 87.21 | 34.89 | 22.40 | 19.88 | 90.21 | 0.00067 | 0.81 | 108.275 | 0.018 | 8.3 | 0.0049 | 0 | 0 | 0 | 0.0011 | 0.0001 | 0 |
AW10 | 17.9 | 8.01 | 509 | 8.1 | 147 | 0.36 | 0.2 | 247.05 | 53.87 | 21.55 | 13.52 | 4.74 | 33.73 | 0.00072 | 0.75 | 86.975 | 0.018 | 8.6 | 0.0043 | 0 | 0 | 0.013 | 0.0013 | 0.001 | 0 |
AW11 | 22.2 | 8.16 | 2200 | 8 | 136 | 0.67 | 1.1 | 308.05 | 154.33 | 61.73 | 53.26 | 17.89 | 61.97 | 0.00080 | 1.00 | 649.65 | 0.019 | 8.8 | 0.0104 | 0 | 0 | 0.0565 | 0.0044 | 0.0097 | 0 |
AW12 | 28 | 7.35 | 597 | 6.5 | 182 | 0.22 | 0.3 | 329.40 | 55.15 | 22.06 | 20.50 | 12.01 | 34.35 | 0.00075 | 0.91 | 33.725 | 0.017 | 8.95 | 0.0024 | 0 | 0 | 0.0237 | 0.002 | 0.0011 | 0 |
AW13 | 29 | 6.96 | 1113 | 7.9 | 206 | 0.9 | 0.5 | 442.25 | 150.49 | 60.19 | 16.65 | 24.00 | 108.94 | 0.00068 | 0.74 | 99.4 | 0.017 | 8.7 | 0.0098 | 0 | 0 | 0.0555 | 0 | 0.0046 | 0 |
Min | 17.9 | 6.23 | 233 | 2.3 | 136 | 0.22 | 0.1 | 192.15 | 53.87 | 21.55 | 13.52 | 2.69 | 25.22 | 0.00065 | 0.619 | 33.725 | 0.016 | 7.9 | 0 | 0 | 0 | 0 | 0 | 0.0001 | 0 |
Max | 29 | 8.16 | 3760 | 13.6 | 213.000 | 7.610 | 2.20 | 484.95 | 154.33 | 61.734 | 60.422 | 32.506 | 221.04 | 0.001 | 4.281 | 899.925 | 0.022 | 9.350 | 0.0104 | 0.000 | 0.000 | 0.065 | 0.004 | 0.010 | 0.000 |
Mean | 22.177 | 7.298 | 1500.077 | 7.462 | 185.538 | 2.044 | 0.725 | 346.058 | 98.922 | 39.569 | 29.766 | 14.729 | 93.921 | 0.001 | 1.142 | 335.065 | 0.018 | 8.715 | 0.004 | 0.000 | 0.000 | 0.035 | 0.001 | 0.004 | 0.000 |
STDEV | 3.08 | 0.486 | 1150.472 | 2.780 | 23.905 | 2.411 | 0.62 | 86.003 | 37.151 | 14.860 | 13.610 | 8.225 | 54.297 | 0.000 | 0.960 | 321.668 | 0.001 | 0.438 | 0.004 | 0.000 | 0.000 | 0.023 | 0.002 | 0.003 | 0.000 |
Moroccan Standard | 6.5–8.5 | 2700 | 5–8 | 5 | 50 | 400 | 0.5 | 750 | 0.3 | 30 | 0.01 | 0.05 | 0.003 | 0.01 | 0.02 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tligui, Y.; Cherif, E.K.; Lechhab, W.; Lechhab, T.; Laghzal, A.; Nouayti, N.; Azzirgue, E.M.; Silva, J.C.G.E.d.; Salmoun, F. Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions. Water 2025, 17, 2393. https://doi.org/10.3390/w17162393
Tligui Y, Cherif EK, Lechhab W, Lechhab T, Laghzal A, Nouayti N, Azzirgue EM, Silva JCGEd, Salmoun F. Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions. Water. 2025; 17(16):2393. https://doi.org/10.3390/w17162393
Chicago/Turabian StyleTligui, Yousra, El Khalil Cherif, Wafae Lechhab, Touria Lechhab, Ali Laghzal, Nordine Nouayti, El Mustapha Azzirgue, Joaquim C. G. Esteves da Silva, and Farida Salmoun. 2025. "Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions" Water 17, no. 16: 2393. https://doi.org/10.3390/w17162393
APA StyleTligui, Y., Cherif, E. K., Lechhab, W., Lechhab, T., Laghzal, A., Nouayti, N., Azzirgue, E. M., Silva, J. C. G. E. d., & Salmoun, F. (2025). Integrated Multivariate and Spatial Assessment of Groundwater Quality for Sustainable Human Consumption in Arid Moroccan Regions. Water, 17(16), 2393. https://doi.org/10.3390/w17162393