Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Scratching Characteristics
3.2. Surface Morphology Analysis
3.3. Subsurface Damage Analysis
3.3.1. FIB Sampling
3.3.2. Subsurface Damage
- Cross-section I
- 2.
- Cross-section II
- 3.
- Cross-section III
4. Discussion
5. Conclusions
- (1)
- Nanoscratching under a linearly increasing load revealed three distinct regimes: ductile removal (<14.5 mN), characterised by smooth surfaces and fine debris; the brittle-to-ductile transition, marked by increasing fluctuations in scratch depth, blocky chip formation, and micro-crack initiation; and brittle removal (>59.3 mN), exhibiting severe surface cracking, tearing, spalling, and significant depth oscillations.
- (2)
- TEM analysis of FIB cross-sections demonstrated substantial SSD, including deep median cracks (>4 μm) and dislocation clusters (up to ~1.2 μm in depth), even within the brittle-to-ductile transition zone where the scratch surface appeared defect-free. This highlights the inadequacy of relying solely on surface morphology to assess processing quality.
- (3)
- A thin amorphous layer formed at the indenter–substrate interface. While this sup-pressed surface damage and dislocation formation, it also concentrated stress, trig-gering subsurface cracks. These propagated along slip lines or their intersections (forming median cracks), with propagation direction sensitive to local stress. Beneath the amorphous layer, phase transitions occurred: amorphous, crystalline/nanocrystalline, and undamaged crystalline zones.
- (4)
- With increasing scratch load or depth, the SSD layer and dislocation clusters did not exhibit a simple linear correlation, indicating complex stress field interactions. Nev-ertheless, the overall severity of damage—including crack length, dislocation density and depth, and amorphous layer thickness—showed a clear increasing trend with applied load.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsieh, C.-H.; Chang, C.-Y.; Hsiao, Y.-K.; Chen, C.-C.A.; Tu, C.-C.; Kuo, H.-C. Recent advances in silicon carbide chemical mechanical polishing technologies. Micromachines 2022, 13, 1752. [Google Scholar] [CrossRef]
- Ban, X.; Tian, Z.; Zhu, J.; Duan, T.; Zheng, S.; Wang, N.; Han, S.; Qiu, H.; Wang, X.; Li, Z. Compound mechanical and chemical-mechanical polishing processing technique for single-crystal silicon carbide. Precis. Eng. 2024, 86, 160–169. [Google Scholar] [CrossRef]
- Chaturvedi, M.; Haasmann, D.; Moghadam, H.-A.; Dimitrijev, S. Electrically active defects in SiC power MOSFETs. Energies 2023, 16, 1771. [Google Scholar] [CrossRef]
- Li, C.; Liu, G.; Gao, C.; Yang, R.; Zakharov, O.; Hu, Y.; Yan, Y.; Geng, Y. Atomic-scale understanding of graphene oxide lubrication-assisted grinding of GaN crystals. Int. J. Mech. Sci. 2025, 286, 109934. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Zakharov, O.; Cui, H.; Wu, M.; Zhao, T.; Yan, Y.; Geng, Y. Damage evolution mechanism and low-damage grinding technology of silicon carbide ceramics. Int. J. Extreme Manuf. 2025, 7, 022015. [Google Scholar] [CrossRef]
- Li, C.; Wang, K.; Piao, Y.; Cui, H.; Zakharov, O.; Duan, Z.; Zhang, F.; Yan, Y.; Geng, Y. Surface micro-morphology model involved in grinding of GaN crystals driven by strain-rate and abrasive coupling effects. Int. J. Mach. Tools Manuf. 2024, 201, 104197. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Huang, H.; Dong, Z.; Kang, R. Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding. Int. J. Extreme Manuf. 2025, 7, 035103. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Zhang, P.; Zuo, D.; Xie, W. Study of damage mechanism on single crystal 4H-SiC surface layer by picosecond laser modification (PLM). Appl. Surf. Sci. 2024, 672, 160722. [Google Scholar] [CrossRef]
- Cao, Z.C.; Zhang, Y.; Wang, Z. Surface evolution and subsurface damage mechanism in fixed abrasive lapping of Silicon carbide. Int. J. Adv. Manuf. Technol. 2024, 132, 4525–4540. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.C.; Li, Z. Damage assessment of 6H-SiC under repeated nano-scratching. Wear 2025, 570, 205898. [Google Scholar] [CrossRef]
- Tang, K.; Ou, W.; Mao, C.; Liang, J.; Zhang, M.; Zhang, M.; Hu, Y. Material removal characteristics of single-crystal 4H-SiC based on varied-load nanoscratch tests. Chin. J. Mech. Eng. 2023, 36, 111. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, P.; Wu, D.; Li, D.; Wang, S.; Gao, X.; Wang, D.; Wu, X.; Huang, S.; Tan, J. Investigate on material removal of 3C-SiC crystals in nano-polishing via molecular dynamics. J. Manuf. Process. 2024, 120, 467–477. [Google Scholar] [CrossRef]
- Ban, X.; Zhu, J.; Sun, G.; Han, S.; Duan, T.; Wang, N. Molecular simulation of ultrasonic assisted diamond grit scratching 4H-SiC single-crystal. Tribol. Int. 2024, 192, 109330. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, F.; Li, Z. Deformation and removal characteristics in nanoscratching of 6H-SiC with Berkovich indenter. Mater. Sci. Semicond. Process. 2015, 31, 160–165. [Google Scholar] [CrossRef]
- Zhang, F.; Meng, B.; Geng, Y.; Zhang, Y. Study on the machined depth when nanoscratching on 6H-SiC using Berkovich indenter: Modelling and experimental study. Appl. Surf. Sci. 2016, 368, 449–455. [Google Scholar] [CrossRef]
- Liang, L.; Li, S.; Chai, P.; Lan, K.; Yu, R. Molecular dynamics simulation of single-crystal 4H-SiC nano scratching with different scratching directions of the tool. Crystals 2023, 13, 1044. [Google Scholar] [CrossRef]
- Hu, J.; He, Y.; Li, Z.; Zhang, L. On the deformation mechanism of SiC under nano-scratching: An experimental investigation. Wear 2023, 522, 204871. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Huang, H.; Kang, R. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal. Int. J. Mech. Sci. 2023, 247, 108147. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, H.; Wang, N.; Huang, Y.; Yu, Y.; Huang, H.; Duan, N. Effect of dislocation defects on the nano-scratching process of 4H–SiC. Wear 2024, 546, 205343. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, J.; Wang, X.; Ye, S.; Guo, L.; Lei, Z.; Dong, S.; Li, H. Atomistic insight into the surface formation mechanism of scratching 6H-SiC substrates by constructing atomic steps. Mater. Sci. Semicond. Process. 2025, 198, 109791. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Gao, X.; He, L.; Zhou, D. Material removal characteristic of single abrasive scratching 4H–SiC crystal with different crystal surface. Maert. Sci. Semicond. Process. 2024, 177, 108382. [Google Scholar] [CrossRef]
- Shi, S.; Yu, Y.; Wang, N.; Zhang, Y.; Shi, W.; Liao, X.; Duan, N. Investigation of the anisotropy of 4H-SiC materials in nanoindentation and scratch experiments. Materials 2022, 15, 2496. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, L.; Liu, W. Structural anisotropy effect on the nanoscratching of monocrystalline 6H-silicon carbide. Wear 2021, 476, 203677. [Google Scholar] [CrossRef]
- Ni, Z.; Chen, Z.; Chen, G.; Lu, X.; Chen, G.; Liu, M. Influence of the anisotropy of single crystal 4H-SiC on contact responses during nanoindentation and microscratch. Appl. Phys. A 2025, 131, 206. [Google Scholar] [CrossRef]
- Zhou, P.; Li, X.; Cheung, C.F.; Wang, C.; Zhu, Y. Dependence of deformation and damage behaviors on nano scratch defects of monocrystalline 3C-SiC in fixed abrasive processes. Surf. Interfaces 2025, 59, 105931. [Google Scholar] [CrossRef]
- Meng, B.; Yuan, D.; Xu, S. Coupling effect on the removal mechanism and surface/subsurface characteristics of SiC during grinding process at the nanoscale. Ceram. Int. 2019, 45, 2483–2491. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Yang, S.; Wu, C.; Xu, K.; Zheng, D. Effects of temperature on the deformation of 6H–SiC during nanoscratching. Wear 2023, 523, 204843. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Y.; Li, J.; Zhu, F. Effect of water film on the nano-scratching process of 4H-SiC under the constant load. Tribol. Int. 2022, 175, 107802. [Google Scholar] [CrossRef]
- Ban, X.; Tian, Z.; Zheng, S.; Zhu, J.; Ba, W.; Wang, N.; Han, S.; Qiu, H.; Wang, X.; Li, Z. Scratching properties of 4H–SiC single crystal after oxidation under different conditions. Wear 2024, 556, 205503. [Google Scholar] [CrossRef]
- Wu, M.; Huang, H.; Luo, Q.; Wu, Y. A novel approach to obtain near damage-free surface/subsurface in machining of single crystal 4H-SiC substrate using pure metal mediated friction. Appl. Surf. Sci. 2022, 588, 152963. [Google Scholar] [CrossRef]
- Huang, W.; Yan, J. Influences of tool tip geometry on surface/subsurface damage formation in nanoscratching of single-crystal 4H-SiC. Procedia CIRP 2024, 123, 185–190. [Google Scholar] [CrossRef]
- Geng, W.; Yang, G.; Zhang, X.; Zhang, X.; Wang, Y.; Song, L.; Chen, P.; Zhang, Y.; Pi, X.; Yang, D.; et al. Identification of subsurface damage of 4H-SiC wafers by combining photo-chemical etching and molten-alkali etching. J. Semicond. 2022, 43, 102801. [Google Scholar] [CrossRef]
- Sanchez, E.-K.; Ha, S.; Grim, J.; Skowronski, M.; Vetter, W.-M.; Dudley, M.; Bertke, R.; Mitchel, W.-C. Assessment of polishing-related surface damage in silicon carbide. J. Electrochem. Soc. 2002, 149, G131. [Google Scholar] [CrossRef]
- Li, H.; Cui, C.; Bian, S.; Lu, J.; Xu, X.; Arteaga, O. Double-sided and single-sided polished 6H-SiC wafers with subsurface damage layer studied by Mueller matrix ellipsometry. J. Appl. Phys. 2020, 128, 235304. [Google Scholar] [CrossRef]
- Nakashima, S.-I.; Mitani, T.; Tomobe, M.; Kato, T.; Okumura, H. Raman characterization of damaged layers of 4H-SiC induced by scratching. AIP. Adv. 2016, 6, 015207. [Google Scholar] [CrossRef]
- Vicente, P.; David, D.; Camassel, J. Raman scattering as a probing method of subsurface damage in SiC. Mater. Sci. Eng. B–Adv. 2001, 80, 348–351. [Google Scholar] [CrossRef]
- Tan, T.-H.; Yan, J. Atomic-scale characterization of subsurface damage and structural changes of single-crystal silicon carbide subjected to electrical discharge machining. Acta Mater. 2017, 123, 362–372. [Google Scholar] [CrossRef]
- Agarwal, S.; Rao, P.-V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. Int. J. Mach. Tools Manuf. 2008, 48, 698–710. [Google Scholar] [CrossRef]
- Sako, H.; Matsuhata, H.; Sasaki, M.; Nagaya, M.; Kido, T.; Kawata, K.; Kato, T.; Senzaki, J.; Kitabatake, M.; Okumura, H. Micro-structural analysis of local damage introduced in subsurface regions of 4H-SiC wafers during chemo-mechanical polishing. J. Appl. Phys. 2016, 119, 135702. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, F.; Zhang, Y.; Luo, X. Experimental investigation on the surface and subsurface damages characteristics and formation mechanisms in ultra-precision grinding of SiC. Int. J. Adv. Manuf. Technol. 2017, 92, 2677–2688. [Google Scholar] [CrossRef]
- Guo, F.; Shao, C.; Chen, X.; Xie, X.; Yang, X.; Hu, X.; Xu, X. Shape modulation due to sub-surface damage difference on N-type 4H–SiC wafer during lapping and polishing. Mater. Sci. Semicond. Process. 2022, 152, 107124. [Google Scholar] [CrossRef]
- Ban, X.; Duan, T.; Tian, Z.; Li, Y.; Zhu, J.; Wang, N.; Han, S.; Qiu, H.; Li, Z. Process optimization of 4H-SiC chemical mechanical polishing based on grey relational analysis. Semicond. Sci. Technol. 2023, 38, 075014. [Google Scholar] [CrossRef]
- Cheng, Z.; Luo, Q.; Lu, J.; Tian, Z. Understanding the mechanisms of SiC–water reaction during nanoscale scratching without chemical reagents. Micromachines 2022, 13, 930. [Google Scholar] [CrossRef]
- Ban, X.; Zheng, S.; Tian, Z.; Zhu, J.; Ba, W.; Wang, N.; Han, S.; Qiu, H.; Wang, X.; Li, Z. Microscopic removal mechanism of 4 H-SiC during abrasive scratching in aqueous H2O2 and H2O: Insights from ReaxFF molecular dynamics. Tribol. Int. 2024, 200, 110109. [Google Scholar] [CrossRef]
- Kojima, K.; Nakajima, A.; Yamada, H.; Harada, S. Epitaxial growth of 4H-SiC layers on 4H-SiC vicinal off-cut substrates for GaN/SiC hybrid devices. Mater. Sci. Semicond. Process. 2025, 198, 109767. [Google Scholar] [CrossRef]
- Xin, B.; Jia, R.X.; Hu, J.C.; Tsai, C.Y.; Lin, H.H.; Zhang, Y.M. A step-by-step experiment of 3C-SiC hetero-epitaxial growth on 4H-SiC by CVD. Appl. Surf. Sci. 2015, 357, 985–993. [Google Scholar] [CrossRef]
- Chai, P.; Li, S.; Li, Y.; Liang, L.; Yin, X. Mechanical behavior investigation of 4H-SiC single crystal at the micro–nano scale. Micromachines 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-S.; Zhao, N.; Zhang, L.-C.; Ding, J.-J.; Sun, L.; Duan, D.-Z.; Kang, C.-W.; Jiang, Z.-D. An analytical method for assessing the initiation and interaction of cracks in fused silica subjected to contact sliding. Adv. Manuf. 2023, 11, 363–377. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W.; Zhang, L.; Lim, S. Amorphization and dislocation evolution mechanisms of single crystalline 6H-SiC. Acta Mater. 2020, 182, 60–67. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, X.; Chen, J. Surface deformation, phase transition and dislocation mechanisms of single crystalline 6H-SiC in oblique nano-cutting. Appl. Surf. Sci. 2022, 588, 152944. [Google Scholar] [CrossRef]
- Matsumoto, M.; Huang, H.; Harada, H.; Kakimoto, K.; Yan, J. On the phase transformation of single-crystal 4H–SiC during nanoindentation. J. Phys. D Appl. Phys. 2017, 50, 265303. [Google Scholar] [CrossRef]
- Roder, M.; Steiner, J.; Wellmann, P.; Kabukcuoglu, M.; Hamann, E.; Haaga, S.; Hänschke, D.; Danilewsky, A. Dislocation arrangements in 4H-SiC and their influence on the local crystal lattice properties. J. Appl. Crystallogr. 2023, 56, 776–786. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, J.; Ban, X.; Hui, Z.; Ba, W.; Deng, L.; Qiu, H. Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC. Micromachines 2025, 16, 935. https://doi.org/10.3390/mi16080935
Xi J, Ban X, Hui Z, Ba W, Deng L, Qiu H. Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC. Micromachines. 2025; 16(8):935. https://doi.org/10.3390/mi16080935
Chicago/Turabian StyleXi, Jianpu, Xinxing Ban, Zhen Hui, Wenlan Ba, Lijuan Deng, and Hui Qiu. 2025. "Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC" Micromachines 16, no. 8: 935. https://doi.org/10.3390/mi16080935
APA StyleXi, J., Ban, X., Hui, Z., Ba, W., Deng, L., & Qiu, H. (2025). Investigating Surface Morphology and Subsurface Damage Evolution in Nanoscratching of Single-Crystal 4H-SiC. Micromachines, 16(8), 935. https://doi.org/10.3390/mi16080935