Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = ceramic-based coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3491 KB  
Article
Rapid Screening of Liquid Metal Wetting for a Materials Compatibility Library
by Shahryar Mooraj, Alexander Baker, Connor J. Rietema, Jesse Ahlquist, Hunter Henderson and Viktor Sukhotskiy
Metals 2025, 15(10), 1121; https://doi.org/10.3390/met15101121 - 10 Oct 2025
Viewed by 113
Abstract
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at [...] Read more.
Wetting behavior of molten metals on solid substrates is a critical phenomenon influencing numerous industrial applications, including welding, anti-corrosion coatings, and metal additive manufacturing (AM). In particular, molten metal jetting (MMJ), an emerging AM technology, requires that the molten metal remain pinned at the nozzle exit. Thus, each new metal requires a specific nozzle material to ensure consistent droplet ejection and deposition, making it important to rapidly identify the appropriate wetting combinations. However, traditional measurements of wetting angles require expensive equipment and only allow one combination of materials to be investigated at a time which can be time consuming. This work introduces a rapid screening method based on sessile droplet experiments to evaluate wetting profiles across multiple metal–substrate combinations simultaneously. This study investigates the wetting interactions of molten Al alloy (Al4008), Cu, and Sn on various ceramic and metal substrates to identify optimal material combinations for MMJ nozzle designs. Results demonstrate that Al4008 achieves wetting on ceramic substrates such as AlN, TiO2, and SiC, with varying mechanisms including chemical reactions and weak surface interactions. Additionally, theoretical predictions regarding miscibility gaps and melting point differences were verified for Cu and Sn on refractory metals like Mo and W. Findings from this study contribute to the establishment of a materials compatibility library, enabling the selection of wetting/non-wetting combinations for stable MMJ operation. This resource not only advances MMJ technologies but also provides valuable insights for broader applications such as welding, coating, and printed electronics. Full article
Show Figures

Figure 1

17 pages, 1807 KB  
Article
First-Principles Study on the Microheterostructures of N-GQDs@Si3N4 Composite Ceramics
by Wei Chen, Yetong Li, Yucheng Ma, Enguang Xu, Rui Lou, Zhuohao Sun, Yu Tian and Jianjun Zhang
Coatings 2025, 15(10), 1172; https://doi.org/10.3390/coatings15101172 - 7 Oct 2025
Viewed by 237
Abstract
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene [...] Read more.
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene quantum dots (N-GQDs). This composite material demonstrated excellent comprehensive mechanical properties and friction-wear performance. Based on the existing experimental results, the first-principles plane wave mode conservation pseudopotential method of density functional theory was adopted in this study to build a microscopic heterostructure model of Si3N4-based composite ceramics containing N-GQDs. Meanwhile, the surface energy of Si3N4 and the system energy of the N-GQDs@Si3N4 heterostructure were calculated. The calculation results showed that when the distance between N-GQDs and Si3N4 in the heterostructure was 2.3 Å, the structural energy was the smallest and the structure was the steadiest. This is consistent with the previous experimental results and further validates the coating mechanism of N-GQDs covering the Si3N4 column-shaped crystals. Simultaneously, based on the results of the previous experiments, the stress of the heterostructure composed of Si3N4 particles coated with different numbers of layers of nitrogen quantum dots was calculated to predict the optimal lignin doping amount. It was found that when the doping amount was between 1% and 2%, the best microstructure and mechanical properties were obtained. This paper provides a new method for studying the graphene quantum dot coating structure. Full article
Show Figures

Figure 1

17 pages, 3452 KB  
Article
Formation of Protective Coatings on TZM Molybdenum Alloy by Complex Aluminosiliconizing and Application of a Preceramic Layer
by Tetiana Loskutova, Volodymyr Taran, Manja Krüger, Nadiia Kharchenko, Myroslav Karpets, Yaroslav Stelmakh, Georg Hasemann and Michael Scheffler
Coatings 2025, 15(10), 1168; https://doi.org/10.3390/coatings15101168 - 5 Oct 2025
Viewed by 276
Abstract
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective [...] Read more.
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective coatings. In this study, we investigate the influence of a two-step coating process on the properties and performance of the TZM molybdenum alloy. In the first step, pack cementation was performed. Simultaneous surface saturation with aluminum and silicon, a process known as aluminosiliconizing, was conducted at 1000 °C for 6 h. The saturating mixture comprised powders of aluminum, silicon, aluminum oxide, and ammonium chloride. The second step involved the application of a pre-ceramic coating based on polyhydrosiloxane modified with silicon and boron. This treatment effectively eliminated pores and cracks within the coating. Thermodynamic calculations were carried out to evaluate the likelihood of aluminizing and siliconizing reactions under the applied conditions. Aluminosiliconizing of the TZM alloy resulted in the formation of a protective layer 20–30 µm thick. The multiphase structure of this layer included intermetallics (Al63Mo37, MoAl3), nitrides (Mo2N, AlN, Si3N4), oxide (Al2O3), and a solid solution α-Mo(Al). Subsequent treatment with silicon- and boron-modified polyhydrosiloxane led to the development of a thicker surface layer, 130–160 µm in thickness, composed of crystalline Si, amorphous SiO2, and likely amorphous boron. A transitional oxide layer ((Al,Si)2O3) 5–7 µm thick was also observed. The resulting coating demonstrated excellent structural integrity and chemical inertness in an argon atmosphere at temperatures up to 1100 °C. High-temperature stability at 800 °C was observed for both coating types: aluminosiliconizing, and aluminosiliconizing followed by the pre-ceramic coating. Moreover, additional oxide layers of SiO2 and B2O3 formed on the two-step coated TZM alloy during heating at 800 °C for 24 h. These layers acted as an effective barrier, preventing the evaporation of the substrate material. Full article
Show Figures

Figure 1

15 pages, 9549 KB  
Article
Failure Analysis of a Novel Ceramic-Coated Floating Oil Seal Considering O-Ring Initial Assembly Deformation
by Yuehao Zhang, Fengsen Wang, Zhumin Li, Bozhao Sun, Tianci Chen and Jiao Wang
Materials 2025, 18(19), 4592; https://doi.org/10.3390/ma18194592 - 3 Oct 2025
Viewed by 306
Abstract
The floating oil seal (FOS) is a critical component in coal mining machinery, where frictional wear and high stress on the O-ring can lead to oil leakage and eventual FOS failure, significantly impairing equipment performance. To address this issue, this study proposes a [...] Read more.
The floating oil seal (FOS) is a critical component in coal mining machinery, where frictional wear and high stress on the O-ring can lead to oil leakage and eventual FOS failure, significantly impairing equipment performance. To address this issue, this study proposes a novel ceramic-coated floating oil seal (NCCFOS) composite structure that enhances wear resistance without modifying the existing sealing cavity configuration. A two-dimensional axisymmetric finite element model of the NCCFOS was developed based on the Mooney–Rivlin constitutive model, considering the O-ring assembly process for improved accuracy. The model was analyzed under oil pressure loading, with parametric studies examining the influence of oil pressure, assembly clearance, and material hardness on O-ring stress, contact pressure, and frictional stress distribution in the floating seal ring. The results demonstrate that accounting for the assembly process yielded more realistic stress predictions compared to conventional modeling approaches. The NCCFOS design effectively mitigated stress concentrations, reduced O-ring wear, and extended fatigue life, offering a practical solution for enhancing the reliability of coal mining machinery seals. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 12909 KB  
Article
Corrosion Behavior and Failure Mechanism of (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 Double-Ceramic Thermal Barrier Coatings in Na2SO4 + V2O5 Environment
by Chunman Wang, Hao Mei, Yong Shang, Xunxun Hu, Huidong Wu, Haiyuan Yu, Keke Chang, Jian Sun, Guanghua Liu, Guijuan Zhou, Chunlei Wan and Shengkai Gong
Coatings 2025, 15(10), 1147; https://doi.org/10.3390/coatings15101147 - 2 Oct 2025
Viewed by 346
Abstract
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the [...] Read more.
To meet gas turbines’ growing demand for high-performance thermal barrier coatings (TBCs), this study addresses the limitations of traditional single-layer 8% Y2O3-stabilized ZrO2 (YSZ) coatings in high-temperature corrosive environments. Atmospheric plasma spraying (APS) was used to fabricate the double-ceramic TBCs with (Sm0.2Gd0.2Dy0.2Er0.2Yb0.2)2(Zr0.7Hf0.3)2O7 (RHZ) as the outer layer and YSZ as the inner layer; thermal cycling corrosion tests (1000 °C, Na2SO4 + V2O5 molten salt) were conducted to compare its performance with traditional single-layer YSZ. The results showed that the YSZ corrosion products were m-ZrO2 and YVO4, while RHZ/YSZ produced rare-earth vanadates, m-(Zr,Hf)O2, and t′-(Zr,Hf)O2, and corrosion degree was positively correlated with salt concentration (which was more impactful) and the number of cycles. Both coatings failed via molten salt penetration, thermochemical reaction, and crack-induced spallation. The corrosion mechanism between the RHZ/YSZ coating and the mixed salt can be explained based on the Lewis acid–base theory and the optical basicity. The RHZ layer on the surface of RHZ/YSZ coatings indeed hinders the penetration of corrosive molten salts into the underlying YSZ layer to some extent. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Viewed by 375
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

14 pages, 5326 KB  
Article
Microstructure, Hardness, and Corrosion Behavior of Oxidized AA6061 Using Potentiostatic Plasma Electrolytic Oxidation
by Salvacion B. Orgen and Eden May B. Dela Peña
Coatings 2025, 15(10), 1129; https://doi.org/10.3390/coatings15101129 - 29 Sep 2025
Viewed by 329
Abstract
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and [...] Read more.
Aluminum and its alloys are widely used in aerospace and industrial sectors due to their high specific strength, low density, and abundance. However, their low hardness, high corrosion susceptibility, and poor wear resistance limit broader applications. Surface treatments such as electroplating, PVD/CVD, and anodizing have been used to enhance surface properties. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), has emerged as a promising technique for producing durable ceramic coatings on light metals like Al, Mg, and Ti alloys. In this study, PEO was applied to AA6061 aluminum alloy using an AC power source in potentiostatic mode at 350 V and 400 V, 1000 Hz, and 80% duty cycle for 30 min in a silicate-based electrolyte (5 g/L Na2SiO3 + 5 g/L KOH) maintained at 25–40 °C. The effect of voltage on the coating morphology, thickness, and corrosion resistance was investigated. The coatings exhibited porous structures with pancake-like, crater, and nodular features, and thicknesses ranged from 0.053 to 83.64 µm. XRD analysis confirmed the presence of Al, α-Al2O3, Ƴ-Al2O3, and mullite. The 400 V-coated sample showed superior corrosion resistance ( Ecorr= 0.77 V; icorr=0.28 μA/cm2) and improved hardness (up to 233 HV), compared to 89 HV for the bare AA6061. Full article
Show Figures

Figure 1

11 pages, 2008 KB  
Article
Corrosion-Resistant Plasma Electrolytic Oxidation Composite Coatings on Ti6Al4V for Harsh Acidic Environments
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
J. Compos. Sci. 2025, 9(10), 515; https://doi.org/10.3390/jcs9100515 - 23 Sep 2025
Viewed by 420
Abstract
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite [...] Read more.
Titanium alloys are widely employed in structural and electrochemical applications owing to their excellent mechanical properties and inherent corrosion resistance. However, their stability in harsh acidic environments, such as those encountered in energy storage systems, remains a critical issue. In this study, composite ceramic coatings were synthesized on a Ti6Al4V alloy using plasma electrolytic oxidation (PEO) in silicate-, phosphate-, and sulfate-based electrolytes, with and without the addition of α-alumina nanoparticles. The resulting coatings were comprehensively characterized to assess their surface morphology, chemical and phase compositions, and corrosion performance. Thus, the corrosion current density decreased from 9.7 × 104 for bare Ti6Al4V to 143 nA/cm2 for the coating fabricated in phosphate electrolyte with alumina nanoparticles, while the corrosion potential shifted anodically from –0.68 to +0.49 V vs. silver chloride electrode in 5 M H2SO4. Among the tested electrolytes, coatings produced in the phosphate-based electrolyte with Al2O3 showed the highest polarization resistance (113 kΩ·cm2), outperforming those fabricated in silicate- (71.6 kΩ·cm2) and sulfate-based (89.0 kΩ·cm2) systems. The composite coatings exhibited a multiphase structure with reduced surface porosity and the incorporation of crystalline oxide phases. Notably, titania–alumina nanoparticle composites demonstrated significantly enhanced corrosion resistance. These findings confirm that PEO-derived composite coatings provide an effective surface engineering strategy for enhancing the stability of the Ti6Al4V alloy in aggressive acidic environments relevant to advanced electrochemical systems. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

13 pages, 3502 KB  
Article
Improvements to Unsteady Pressure-Sensitive Paint Formulations
by Sarah M. Peak, Daniel T. Reese, Kyle Z. Goodman and A. Neal Watkins
Sensors 2025, 25(18), 5892; https://doi.org/10.3390/s25185892 - 20 Sep 2025
Viewed by 343
Abstract
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and [...] Read more.
Improvements to unsteady pressure-sensitive paint (uPSP) formulations have been realized by judicious selection of titanium dioxide (TiO2) particles and dispersant. Traditionally, uPSP formulations based on polymer/ceramic coating have been used in many wind tunnel test campaigns but suffer from photodegradation and changes in pressure sensitivity during the testing window. As such, this paper details the investigation of employing different grades of TiO2 particles and dispersants to achieve desirable characteristics such as coating properties, pressure sensitivity, frequency response and overall degradation. Employing hydrophobic TiO2 particles along with a high-molecular-weight acrylic co-polymer generated uPSP coatings with many desirable features, including smoothness, thickness, and pressure sensitivity. In addition, the pressure sensitivity of the coatings exhibited linear behavior, having very little dependence on temperature. Finally, the frequency response was characterized qualitatively, and all uPSP formulations tested exhibited response to pressure fluctuations up to 12 kHz. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Graphical abstract

56 pages, 17494 KB  
Review
Sustainable Materials for Energy
by Filippo Agresti, Giuliano Angella, Humaira Arshad, Simona Barison, Davide Barreca, Paola Bassani, Simone Battiston, Carlo Alberto Biffi, Maria Teresa Buscaglia, Giovanna Canu, Francesca Cirisano, Silvia Maria Deambrosis, Angelica Fasan, Stefano Fasolin, Monica Favaro, Michele Ferrari, Stefania Fiameni, Jacopo Fiocchi, Marco Fortunato, Donatella Giuranno, Parnian Govahi, Jacopo Isopi, Francesco Montagner, Cecilia Mortalò, Enrico Miorin, Rada Novakovic, Luca Pezzato, Daniela Treska, Ausonio Tuissi, Barbara Vercelli, Francesca Villa, Francesca Visentin, Valentina Zin and Maria Losurdoadd Show full author list remove Hide full author list
Nanomaterials 2025, 15(18), 1388; https://doi.org/10.3390/nano15181388 - 10 Sep 2025
Viewed by 984
Abstract
The sustainable production of energy without environmental footprints is a challenge of paramount importance to satisfy the ever-increasing global demand and to promote economic and social growth through a greener perspective. Such awareness has significantly stimulated worldwide efforts aimed at exploring various energy [...] Read more.
The sustainable production of energy without environmental footprints is a challenge of paramount importance to satisfy the ever-increasing global demand and to promote economic and social growth through a greener perspective. Such awareness has significantly stimulated worldwide efforts aimed at exploring various energy paths and sources, in compliance with the ever more stringent environmental regulations. Research advancements in these fields are directly dependent on the design, fabrication, and implementation of tailored multi-materials for efficient energy production and harvesting and storage devices. Herein, we aim at providing a survey on the ongoing research activities related to various aspects of functional materials for energy production, conversion, and storage. In particular, we present the opportunities and the main open challenges related to multifunctional materials spanning from carbon-based nanostructures for chemical energy conversion, ferroelectric ceramics for energy harvesting, and phase change materials for thermal energy storage to metallic materials for hydrogen technologies, heat exchangers for wind energy, and amphiphobic coatings for the protection of solar panels. The relevance of designing tailored materials for power generation is also presented. Finally, the importance of applying life cycle assessment to materials is emphasized through the case study of AlTiN thin films. Full article
Show Figures

Graphical abstract

10 pages, 417 KB  
Article
Mid-Term Results of a Cemented Titanium–Niobium Nitride-Coated Mobile Knee in Primary Total Knee Arthroplasty
by Serdar Jure, Mislav Čimić and Domagoj Delimar
J. Clin. Med. 2025, 14(18), 6357; https://doi.org/10.3390/jcm14186357 - 9 Sep 2025
Viewed by 577
Abstract
Objectives: Materials with ceramic surface treatments have been adopted in total knee arthroplasty (TKA) to limit polyethylene wear and thus extend implant longevity. This study evaluated, at a single center, mid-term survivorship and clinical outcomes for a mobile-bearing knee prosthesis with a titanium–niobium [...] Read more.
Objectives: Materials with ceramic surface treatments have been adopted in total knee arthroplasty (TKA) to limit polyethylene wear and thus extend implant longevity. This study evaluated, at a single center, mid-term survivorship and clinical outcomes for a mobile-bearing knee prosthesis with a titanium–niobium nitride (TiNbN) coating. Methods: A total of 150 patients who underwent primary cemented TKA using the same TiNbN-coated mobile-bearing prosthesis were identified through the institutional database. Of these, 102 patients (102 knees) attended the follow-up examination and provided informed consent to participate in this study. All patients underwent comprehensive clinical and radiological assessment. Primary outcomes were the Forgotten Joint Score (FJS) and the Knee Injury and Osteoarthritis Outcome Score (KOOS). Results: After a mean follow-up period of 7.9 years, two revision surgeries were recorded. One revision was performed due to late periprosthetic joint infection, while the other involved synovectomy and liner exchange due to persistent stiffness and pain. At 9 years follow-up, overall survivorship of the TiNbN-coated TKA was 97.1% (95% CI, 88.4–99.3%). Mean FJS and KOOS were 70.0 (range 29–100) and 70.6 (range 24–98), respectively. No sex-based differences were detected in clinical outcomes or implant survivorship. Conclusions: The TiNbN-coated mobile-bearing knee prosthesis demonstrated favorable mid-term survivorship and patient-reported outcomes. These findings support its use as a treatment option for knee osteoarthritis, with performance comparable to contemporary TKA designs. Full article
Show Figures

Figure 1

22 pages, 2813 KB  
Article
Development and Validation of a Low-Cost Arduino-Based Lee Disc System for Thermal Conductivity Analysis of Sustainable Roofing Materials
by Waldemiro José Assis Gomes Negreiros, Jean da Silva Rodrigues, Maurício Maia Ribeiro, Douglas Santos Silva, Raí Felipe Pereira Junio, Marcos Cesar da Rocha Seruffo, Sergio Neves Monteiro and Alessandro de Castro Corrêa
Sensors 2025, 25(17), 5447; https://doi.org/10.3390/s25175447 - 2 Sep 2025
Viewed by 740
Abstract
The optimization of thermal performance in buildings is essential for sustainable urban development, yet the high cost and complexity of traditional thermal conductivity measurement methods limit broader research and educational applications. This study developed and validated a low-cost, replicable prototype that determines the [...] Read more.
The optimization of thermal performance in buildings is essential for sustainable urban development, yet the high cost and complexity of traditional thermal conductivity measurement methods limit broader research and educational applications. This study developed and validated a low-cost, replicable prototype that determines the thermal conductivity of roof tiles and composites using the Lee Disc method automated with Arduino-based acquisition. Standardized samples of ceramic, fiber–cement, galvanized steel, and steel coated with a castor oil-based polyurethane composite reinforced with miriti fiber (Mauritia flexuosa) were analyzed. The experimental setup incorporated integrated digital thermocouples and strict thermal insulation procedures to ensure measurement precision and reproducibility. Results showed that applying the biocompatible composite layer to metal tiles reduced thermal conductivity by up to 53%, reaching values as low as 0.2004 W·m−1·K−1—well below those of ceramic (0.4290 W·m−1·K−1) and fiber–cement (0.3095 W·m−1·K−1) tiles. The system demonstrated high accuracy (coefficient of variation < 5%) and operational stability across all replicates. These findings confirm the feasibility of open-source, low-cost instrumentation for advanced thermal characterization of building materials. The approach expands access to experimental research, promotes sustainable insulation technologies, and offers practical applications for both scientific studies and engineering education in resource-limited environments. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

12 pages, 1618 KB  
Article
Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy
by Simona Raneri, Vincenzo Palleschi, Francesco Poggialini, Beatrice Campanella, Giulia Lorenzetti, Pilario Costagliola, Valentina Rimondi, Guia Morelli and Stefano Legnaioli
Appl. Sci. 2025, 15(17), 9583; https://doi.org/10.3390/app15179583 - 30 Aug 2025
Viewed by 548
Abstract
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance [...] Read more.
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance of fast and accurate analytical tools for determining lithium concentrations in non-compliant and waste materials generated by industrial processes. In this paper, we present a machine learning-based procedure utilizing Laser-Induced Breakdown Spectroscopy (LIBS) to accurately quantify lithium concentrations in lithium-rich non-compliant materials derived from the industrial production of enamels used for coating metallic surfaces. This procedure addresses challenges such as strong self-absorption and matrix effects, which limit the effectiveness of conventional univariate calibration methods. By employing a multivariate approach, we developed a single model capable of quantifying lithium content across a wide concentration range. A comparison of the LIBS results with those obtained using conventional laboratory analysis (Inductively Coupled Plasma–Optical Emission Spectrometry, ICP-OES) confirms that LIBS can deliver the speed, precision, and reliability required for potential routine applications in the lithium recovery and recycling industry. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

13 pages, 2674 KB  
Review
An Insight into Compositionally Complex Carbide Ceramic Coatings
by J. G. Lopes and J. P. Oliveira
Materials 2025, 18(17), 3953; https://doi.org/10.3390/ma18173953 - 23 Aug 2025
Cited by 1 | Viewed by 673
Abstract
Ceramic carbide coatings function as protecting components when subjected to extreme mechanical and/or high-temperature conditions. In this regard, the literature emphasizes that the compositionally complex design concept can be employed to improve the ceramic coating properties via compositional tuning, similarly to high-entropy alloys. [...] Read more.
Ceramic carbide coatings function as protecting components when subjected to extreme mechanical and/or high-temperature conditions. In this regard, the literature emphasizes that the compositionally complex design concept can be employed to improve the ceramic coating properties via compositional tuning, similarly to high-entropy alloys. At this moment, such studies are mainly based on the development of tribological coatings to obtain durable and low-friction surface barriers and to produce ablation-resistant barriers by forming stable oxide scales with self-healing mechanisms. Moreover, it can also be observed that the integration of computational design methods to predict and accelerate the discovery of optimized compositionally complex carbide ceramic coating systems is a viable possibility. Full article
Show Figures

Figure 1

18 pages, 3320 KB  
Article
Numerical and Experimental Investigation of Slot-Die Coating Regimes of Alumina Slurries on Glass and Dried Alumina Layer for Ceramic Additive Manufacturing
by Jeonghong Ha
Coatings 2025, 15(8), 977; https://doi.org/10.3390/coatings15080977 - 21 Aug 2025
Viewed by 879
Abstract
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the [...] Read more.
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the slot-die coating window for alumina slurry (50 wt%, viscosity = 34 Pa·s) was systematically investigated using volume-of-fluid simulations and experiments, with coating speed (0.7–2.8 mm/s), flow rate (0.6–0.8 mL/min), and coating gap (200–400 μm) as key variables. The coating process exhibited three distinct regimes, namely overflow, stable, and unstable, depending on process conditions. For a coating gap of 200 μm on a glass substrate, stable bead formation was observed over the widest coating speed range without overflow or air entrainment. At higher speeds, dynamic wetting failure induced air entrainment and bead breakage, while lower speeds led to overflow defects. When coating on a dried alumina layer (contact angle, CA = 137°), the stable window narrowed significantly compared to the glass substrate (CA = 66.7°), highlighting the substantial influence of substrate wettability on coating stability and defect formation. The results derived in this work offer practical guidance for optimizing process parameters to achieve uniform, defect-free films in multilayer ceramic AM. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 3rd Edition)
Show Figures

Figure 1

Back to TopTop