Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = cascode HEMT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 26718 KB  
Article
Design and Analysis of 3–12 GHz UWB Flat Gain LNA in 0.15 µm GaAs pHEMT Technology
by Tugba Haykir Ergin, Utku Tuncel, Serkan Topaloglu and Hüseyin Arda Ülkü
Electronics 2025, 14(16), 3272; https://doi.org/10.3390/electronics14163272 - 18 Aug 2025
Cited by 1 | Viewed by 736
Abstract
This paper presents the design and implementation of an ultra-wideband (UWB) and flat gain low noise amplifier (LNA) using 0.15 µm GaAs pHEMT technology, specifically tailored for applications that benefit from multi-band capability, such as satellite communication. The designed LNA consists of three [...] Read more.
This paper presents the design and implementation of an ultra-wideband (UWB) and flat gain low noise amplifier (LNA) using 0.15 µm GaAs pHEMT technology, specifically tailored for applications that benefit from multi-band capability, such as satellite communication. The designed LNA consists of three stages: Two stages are cascoded using source degeneration with a resistor for low noise and high linearity, and the third cascaded stage is utilized for high gain. The designed UWB LNA exhibits a measured gain of 17.4 ± 1 dB between 312 and GHz and a 3 dB bandwidth of 12.4 GHz (1.6–14 GHz). It achieves a noise figure (NF) of 2.5–4.3 dB and an output P1dB of 15 dBm. The chip size is 3×1mm2, and it operates without the need for any external components. When compared to LNAs in the literature, the proposed design stands out for its flat gain in the specified frequency band, making the LNA particularly attractive for volume-limited and power-constrained applications. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

14 pages, 2327 KB  
Article
A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching
by Dongwan Kang, Yeonggeon Lee and Dae-Woong Park
Electronics 2025, 14(14), 2771; https://doi.org/10.3390/electronics14142771 - 10 Jul 2025
Viewed by 1201
Abstract
This paper presents a 17–38 GHz wideband low-noise amplifier (LNA) designed in a 150-nm GaAs pHEMT process. The proposed amplifier adopts a cascode topology with an interstage inductor between the common-source (CS) and common-gate (CG) stages, and a series inductor at the source [...] Read more.
This paper presents a 17–38 GHz wideband low-noise amplifier (LNA) designed in a 150-nm GaAs pHEMT process. The proposed amplifier adopts a cascode topology with an interstage inductor between the common-source (CS) and common-gate (CG) stages, and a series inductor at the source node of the CS stage for source degeneration. By incorporating these inductors in the amplification stage, simultaneous noise and input matching is facilitated, while achieving flat gain characteristics over a broad frequency range and ensuring stability. In addition, the amplification stage with inductors achieves input matching using only a shunt component in the DC bias path, without any series matching elements. This approach allows the amplifier to achieve simultaneous noise and input matching (SNIM), ensuring low-noise performance over a wide bandwidth. The simulation results show a flat gain of 20–23 dB and a low noise figure of 1.1–2.1 dB over the 17–38 GHz band. Full article
(This article belongs to the Special Issue Radio Frequency/Microwave Integrated Circuits and Design Automation)
Show Figures

Figure 1

16 pages, 5631 KB  
Article
Comprehensive Study of Proton and Heavy Ion-Induced Damages for Cascode GaN-Based HEMTs
by Huixiang Huang, Zhipeng Wu, Chao Peng, Hanxin Shen, Xiaoqiang Wu, Jianqun Yang, Zhifeng Lei, Xiuhai Cui, Teng Ma, Zhangang Zhang, Yujuan He, Yiqiang Chen and Guoguang Lu
Electronics 2025, 14(13), 2653; https://doi.org/10.3390/electronics14132653 - 30 Jun 2025
Viewed by 1120
Abstract
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable [...] Read more.
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable increase in internal defect density, reducing channel carrier concentration and mobility, and causing electrical performance degradation. Under heavy ion irradiation, devices suffered from single-event burnout (SEB) and exhibited increased leakage current. Failure analysis of post-irradiation devices showed that those with leakage current increase had conductive channels without morphological changes, while burned out devices showed obvious damage between the gate and drain regions. SRIM simulation indicated that ionization energy loss-induced electron–hole pairs and displacement damage from nuclear energy loss were the main causes of degradation. Sentaurus TCAD simulation of heavy ion irradiated GaN HEMT devices confirmed the mechanisms of leakage current increase and SEB. Full article
Show Figures

Figure 1

13 pages, 2287 KB  
Article
Damage Mechanism Analysis of High Field Stress on Cascode GaN HEMT Power Devices
by Shuo Su, Yanrong Cao, Weiwei Zhang, Xinxiang Zhang, Chuan Chen, Linshan Wu, Zhixian Zhang, Miaofen Li, Ling Lv, Xuefeng Zheng, Wenchao Tian, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(7), 729; https://doi.org/10.3390/mi16070729 - 22 Jun 2025
Viewed by 3024
Abstract
A series of problems, such as material damage and charge trap, can be caused when GaN HEMT power devices are subjected to high field stress in the off-state. The reliability of GaN HEMT power devices affects the safe operation of the entire power [...] Read more.
A series of problems, such as material damage and charge trap, can be caused when GaN HEMT power devices are subjected to high field stress in the off-state. The reliability of GaN HEMT power devices affects the safe operation of the entire power electronic system and seriously threatens the stability of the equipment. Therefore, it is particularly important to study the damage mechanism of GaN HEMT power devices under high field conditions. This work studies the degradation of Cascode GaN HEMT power devices under off-state high-field stress and analyzes the related damage mechanism. It is found that the high field stress in the off-state will generate a positive charge trap in the oxide layer of the MOS device in the cascade structure. Moreover, defects occur in the barrier layer and buffer layer of GaN HEMT devices, and the threshold voltage of Cascode GaN HEMT power devices is negatively shifted, and the transconductance is reduced. This study provides an important theoretical basis for the reliability of GaN HEMT power devices in complex and harsh environments. Full article
Show Figures

Figure 1

12 pages, 3928 KB  
Article
Evaluation of a 1200 V Polarization Super Junction GaN Field-Effect Transistor in Cascode Configuration
by Alireza Sheikhan, E. M. Sankara Narayanan, Hiroji Kawai, Shuichi Yagi and Hironobu Narui
Electronics 2025, 14(3), 624; https://doi.org/10.3390/electronics14030624 - 5 Feb 2025
Cited by 1 | Viewed by 1738
Abstract
GaN HEMTs based on polarization super junction (PSJ) technology offer significant improvements in efficiency and power density over conventional silicon (Si) devices due to their excellent material characteristics, which enable fast switching edges and lower specific on-resistance. However, due to the presence of [...] Read more.
GaN HEMTs based on polarization super junction (PSJ) technology offer significant improvements in efficiency and power density over conventional silicon (Si) devices due to their excellent material characteristics, which enable fast switching edges and lower specific on-resistance. However, due to the presence of an uninterrupted channel between drain and source at zero gate bias, these devices have normally-on characteristics. In this paper, the performance of a 1200 V GaN FET utilizing PSJ technology in cascode configuration is reported. The device working principle, characteristics, and switching behavior are experimentally demonstrated. The results show that cascoded GaN FETs utilizing the PSJ concept are highly promising for power device applications. Full article
(This article belongs to the Special Issue GaN-Based Electronic Materials and Devices)
Show Figures

Figure 1

17 pages, 1771 KB  
Article
Modelling and Evalaution of the Bidirectional Surge Current Robustness of Si(-IGBT and -Diode), SiC(-MOSFETs and -JFET) and GaN(-HEMTs) Devices
by Dominik Nehmer, Tim Ringelmann and Mark-M. Bakran
Energies 2024, 17(17), 4362; https://doi.org/10.3390/en17174362 - 31 Aug 2024
Cited by 3 | Viewed by 1845
Abstract
This paper will evaluate the surge current robustness of different devices in relation to the active short circuit (ASC). For the purposes of this study, a Si IGBT and its diode, two SiC MOSFETs with different voltage ratings, a SiC JFET, and three [...] Read more.
This paper will evaluate the surge current robustness of different devices in relation to the active short circuit (ASC). For the purposes of this study, a Si IGBT and its diode, two SiC MOSFETs with different voltage ratings, a SiC JFET, and three GaN HEMTs will be compared. For the GaN devices, a eMode, a dMode, and a cascode device are employed. With the exception of the Si diode, all devices exhibited a current saturation effect. This saturation will result in significant losses and, ultimately, a thermal defect. For all devices, a safe operating area (SOA) criterion is established. For the SiC and GaN devices, the saturation voltage can be employed to define the safe operating area (SOA) criterion. In this context, two on-state resistance models will be defined for these devices. One is solely temperature-dependent, while the other also considers current saturation. Consequently, the saturation voltage and the on-resistance model represent a straightforward methodology for evaluating the ASC robustness of the devices. For all devices, a recommendation for a loss model and SOA criterion will be provided. Finally, the surge current robustness of all devices is compared. The Si, SiC and GaN devices exhibit comparable high surge current robustness in the application, with the exception of the GaN eMode, which is susceptible to strong current saturation. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

12 pages, 4547 KB  
Article
Study on Single Event Effects of Enhanced GaN HEMT Devices under Various Conditions
by Xinxiang Zhang, Yanrong Cao, Chuan Chen, Linshan Wu, Zhiheng Wang, Shuo Su, Weiwei Zhang, Ling Lv, Xuefeng Zheng, Wenchao Tian, Xiaohua Ma and Yue Hao
Micromachines 2024, 15(8), 950; https://doi.org/10.3390/mi15080950 - 24 Jul 2024
Cited by 9 | Viewed by 3351
Abstract
GaN HEMT devices are sensitive to the single event effect (SEE) caused by heavy ions, and their reliability affects the safe use of space equipment. In this work, a Ge ion (LET = 37 MeV·cm2/mg) and Bi ion (LET = 98 [...] Read more.
GaN HEMT devices are sensitive to the single event effect (SEE) caused by heavy ions, and their reliability affects the safe use of space equipment. In this work, a Ge ion (LET = 37 MeV·cm2/mg) and Bi ion (LET = 98 MeV·cm2/mg) were used to irradiate Cascode GaN power devices by heavy ion accelerator experimental device. The differences of SEE under three conditions: pre-applied electrical stress, different LET values, and gate voltages are studied, and the related damage mechanism is discussed. The experimental results show that the pre-application of electrical stress before radiation leads to an electron de-trapping effect, generating defects within the GaN device. These defects will assist in charge collection so that the drain leakage current of the device will be enhanced. The higher the LET value, the more electron–hole pairs are ionized. Therefore, the charge collected by the drain increases, and the burn-out voltage advances. In the off state, the more negative the gate voltage, the higher the drain voltage of the GaN HEMT device, and the more serious the back-channel effect. This study provides an important theoretical basis for the reliability of GaN power devices in radiation environments. Full article
Show Figures

Figure 1

9 pages, 1940 KB  
Article
Total Ionizing Dose Effects on the Threshold Voltage of GaN Cascode Devices
by Hao Wu, Xiaojun Fu, Jun Luo, Manlin Yang, Xiaoyu Yang, Wei Huang, Huan Zhang, Fan Xiang, Yang Pu and Ziwei Wang
Micromachines 2023, 14(10), 1832; https://doi.org/10.3390/mi14101832 - 26 Sep 2023
Cited by 5 | Viewed by 2051
Abstract
GaN devices are nowadays attracting global attention due to their outstanding performance in high voltage, high frequency, and anti-radiation ability. Research on total ionizing dose and annealing effects on E-mode GaN Cascode devices has been carried out. The Cascode device consists of a [...] Read more.
GaN devices are nowadays attracting global attention due to their outstanding performance in high voltage, high frequency, and anti-radiation ability. Research on total ionizing dose and annealing effects on E-mode GaN Cascode devices has been carried out. The Cascode device consists of a low-voltage MOSFET and a high-voltage depletion-mode GaN MISHEMT. Cascode devices of both conventional processed MOSFET and radiation-hardened MOSFET devices are fabricated to observe the TID effects. Experiment results indicate that, for the Cascode device with conventional processed MOSFET, the VTH shifts to negative values at 100 krad(Si). For the Cascode device with radiation-hardened MOSFET, the VTH shifts by −0.5 V at 100 krad(Si), while shifts to negative values are 500 krad(Si). The annealing process, after the TID experiment, shows that it can release trapped charges and help VTH recover. On one hand, the VTH shift and recover trends are similar to those of a single MOSFET device, suggesting that the MOSFET is the vulnerable part in the Cascode which determines the anti-TID ability of the device. On the other hand, the VTH shift amount of the Cascode device is much larger than that of a previously reported p-GaN HEMT device, indicating that GaN material shows a better anti-TID ability than Si. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

28 pages, 10156 KB  
Article
A Turn-Ratio-Changing Half-Bridge CLLC DC–DC Bidirectional Battery Charger Using a GaN HEMT
by Yueh-Tsung Shieh, Chih-Chiang Wu, Shyr-Long Jeng, Ching-Yao Liu, Shiang-Yu Hsieh, Chi-Chun Haung, Wen-Yuh Shieh, Wei-Hua Chieng and Edward-Yi Chang
Energies 2023, 16(16), 5928; https://doi.org/10.3390/en16165928 - 10 Aug 2023
Cited by 3 | Viewed by 2111
Abstract
This paper presents a 250 kHz bidirectional battery charger circuit using a GaN HEMT. The charger is subjected to a high-/low-side constant voltage at 200 V/20 V. The charger circuit is a hybrid of the LLC and flyback circuit topologies. Both the power [...] Read more.
This paper presents a 250 kHz bidirectional battery charger circuit using a GaN HEMT. The charger is subjected to a high-/low-side constant voltage at 200 V/20 V. The charger circuit is a hybrid of the LLC and flyback circuit topologies. Both the power output analysis and efficiency control of this circuit are simplified when the magnetization current is minimized using the low-resistance GaN HEMT. The switching frequency is controlled to match the series resonance in a way that is analogous to conventional LLC circuit controls, while the duty ratio that determines the power output and the dead time, which determines the zero voltage switching, is controlled in an analogous manner to the flyback circuit control. The charging and discharging modes were altered by applying a double-throw relay that changes the transformer turn ratio, which is different from conventional LLC designs using the switching frequency adjustment. A nominal turn ratio with Np = 35 and Ns = 3.5 for a 200 V/20 V converter can only produce an internal series resonance with no current flowing in any charging direction. The proposed circuit using a transformer with multiple windings (Np = 35, Ns,F = 4, and Ns,R = 3) was fabricated to deliver 125 W output power from the power grid battery to the vehicle battery in the forward (charging) mode and 90 W in the reverse (discharging) mode. The conversion efficiency was calculated to be as high as 97% in the forward mode and 95% in the reverse mode. The high conversion efficiency is due to the characteristics of the GaN HEMT, including low resistive and switching losses. The equations derived in this paper associate these losses with the series resonant frequency and power conversion rate, which highlight the advantages of using a GaN HEMT in this CLLC design. Full article
(This article belongs to the Special Issue Optimal Design of Power Converters II)
Show Figures

Figure 1

11 pages, 1059 KB  
Article
Threshold Voltage Measurement Protocol “Triple Sense” Applied to GaN HEMTs
by Tamiris Grossl Bade, Hassan Hamad, Adrien Lambert, Hervé Morel and Dominique Planson
Electronics 2023, 12(11), 2529; https://doi.org/10.3390/electronics12112529 - 3 Jun 2023
Cited by 3 | Viewed by 2725
Abstract
The threshold voltage instability in p-GaN gate high electron mobility transistors (HEMTs) has been brought into evidence in recent years. It can lead to reliability issues in switching applications, and it can be followed by other degradation mechanisms. In this paper, a [...] Read more.
The threshold voltage instability in p-GaN gate high electron mobility transistors (HEMTs) has been brought into evidence in recent years. It can lead to reliability issues in switching applications, and it can be followed by other degradation mechanisms. In this paper, a Vth measurement protocol established for SiC MOSFETs is applied to GaN HEMTs: the triple sense protocol, which uses voltage bias to precondition the transistor gate. It has been experimentally verified that the proposed protocol increased the stability of the Vth measurement, even for measurements following degrading voltage bias stress on both drain and gate. Full article
(This article belongs to the Special Issue GaN Power Devices and Applications)
Show Figures

Figure 1

25 pages, 12066 KB  
Review
A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability
by Olayiwola Alatise, Arkadeep Deb, Erfan Bashar, Jose Ortiz Gonzalez, Saeed Jahdi and Walid Issa
Energies 2023, 16(11), 4380; https://doi.org/10.3390/en16114380 - 28 May 2023
Cited by 16 | Viewed by 4864
Abstract
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead [...] Read more.
This review explores the performance and reliability of power semiconductor devices required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above); (ii) road electrification with overhead catenaries supplying power through a pantograph to the HGV powertrain; (iii) hydrogen supplying power to the powertrain through a fuel cell; (iv) any combination of the first three technologies. At the heart of the HGV powertrain is the power converter implemented through power semiconductor devices. Given that the HGV powertrain is rated typically between 500 kW and 1 MW, power devices with voltage ratings between 650 V and 1200 V are required for the off-board/on-board charger’s rectifier and DC-DC converter as well as the powertrain DC-AC traction inverter. The power devices available for HGV electrification at 650 V and 1.2 kV levels are SiC planar MOSFETs, SiC Trench MOSFETs, silicon super-junction MOSFETs, SiC Cascode JFETs, GaN HEMTs, GaN Cascode HEMTs and silicon IGBTs. The MOSFETs can be implemented with anti-parallel SiC Schottky diodes or can rely on their body diodes for third quadrant operation. This review examines the various power semiconductor technologies in terms of losses, electrothermal ruggedness under short circuits, avalanche ruggedness, body diode and conduction performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

18 pages, 3693 KB  
Perspective
Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives
by Salvatore Musumeci and Vincenzo Barba
Energies 2023, 16(9), 3894; https://doi.org/10.3390/en16093894 - 4 May 2023
Cited by 60 | Viewed by 19047
Abstract
High-electron-mobility transistors based on gallium nitride technology are the most recently developed power electronics devices involved in power electronics applications. This article critically overviews the advantages and drawbacks of these enhanced, wide-bandgap devices compared with the silicon and silicon carbide MOSFETs used in [...] Read more.
High-electron-mobility transistors based on gallium nitride technology are the most recently developed power electronics devices involved in power electronics applications. This article critically overviews the advantages and drawbacks of these enhanced, wide-bandgap devices compared with the silicon and silicon carbide MOSFETs used in power converters. High-voltage and low-voltage device applications are discussed to indicate the most suitable area of use for these innovative power switches and to provide perspective for the future. A general survey on the applications of gallium nitride technology in DC-DC and DC-AC converters is carried out, considering the improvements and the issues expected for the higher switching transient speed achievable. Full article
(This article belongs to the Special Issue Advanced DC-DC Power Converters and Switching Converters II)
Show Figures

Figure 1

12 pages, 3804 KB  
Article
Dynamic-State Analysis of Inverter Based on Cascode GaN HEMTs for PV Application
by Yajing Zhang, Jianguo Li, Jiuhe Wang, Trillion Q. Zheng and Pengyu Jia
Energies 2022, 15(20), 7791; https://doi.org/10.3390/en15207791 - 21 Oct 2022
Cited by 7 | Viewed by 2326
Abstract
With the increase in renewable energy generation, microgrid has put forward higher requirements on the power density and performance of the photovoltaic inverter. In this paper, the dynamic process of inverter based on the cascode Gallium nitride (GaN) high electron mobility transistor (HEMT) [...] Read more.
With the increase in renewable energy generation, microgrid has put forward higher requirements on the power density and performance of the photovoltaic inverter. In this paper, the dynamic process of inverter based on the cascode Gallium nitride (GaN) high electron mobility transistor (HEMT) for the photovoltaic (PV) application is analyzed in detail. The parasitic inductors and capacitors have been considered in our proposed equivalent model, which can explain the phenomenon that the crossover time of the voltage and current is prolonged by the parasitic parameters. The influence of the parasitic parameters is identified through theoretical analysis. By analyzing the influence of parasitic parameters, the design process of high-frequency inverter can be optimized. A 500 W inverter based on the cascode GaN HEMT is built, and the correctness of theoretical and simulation analysis is verified by the experimental results. Full article
Show Figures

Figure 1

10 pages, 11200 KB  
Article
Research on the Synergistic Effect of Total Ionization and Displacement Dose in GaN HEMT Using Neutron and Gamma-Ray Irradiation
by Rui Chen, Yanan Liang, Jianwei Han, Qihong Lu, Qian Chen, Ziyu Wang, Hao Wang, Xuan Wang and Runjie Yuan
Nanomaterials 2022, 12(13), 2126; https://doi.org/10.3390/nano12132126 - 21 Jun 2022
Cited by 17 | Viewed by 3113
Abstract
This paper studies the synergistic effect of total ionizing dose (TID) and displacement damage dose (DDD) in enhancement-mode GaN high electron mobility transistor (HEMT) based on the p-GaN gate and cascode structure using neutron and 60Co gamma-ray irradiation. The results show that [...] Read more.
This paper studies the synergistic effect of total ionizing dose (TID) and displacement damage dose (DDD) in enhancement-mode GaN high electron mobility transistor (HEMT) based on the p-GaN gate and cascode structure using neutron and 60Co gamma-ray irradiation. The results show that when the accumulated gamma-ray doses are up to 800k rad(Si), the leakage-current degradations of the two types of GaN HEMTs with 14 MeV neutron irradiation of 1.3 × 1012 n/cm2 and 3 × 1012 n/cm2 exhibit a lower degradation than the sum of the two separated effects. However, the threshold voltage shifts of the cascode structure GaN HEMT show a higher degradation when exposed to both TID and DDD effects. Moreover, the failure mechanisms of the synergistic effect in GaN HEMT are investigated using the scanning electron microscopy technique. It is shown that for the p-GaNHEMT, the increase in channel resistance and the degradation of two-dimensional electron gas mobility caused by neutron irradiation suppresses the increase in the TID leakage current. For the cascode structure HEMT, the neutron radiation-generated defects in the oxide layer of the metal–oxide–semiconductor field-effect transistor might capture holes induced by gamma-ray irradiation, resulting in a further increase in the number of trapped charges in the oxide layer. Full article
Show Figures

Figure 1

20 pages, 11862 KB  
Article
Broadband Millimeter-Wave 5G Power Amplifier Design in 22 nm CMOS FD-SOI and 40 nm GaN HEMT
by Jill Mayeda, Donald Y. C. Lie and Jerry Lopez
Electronics 2022, 11(5), 683; https://doi.org/10.3390/electronics11050683 - 23 Feb 2022
Cited by 11 | Viewed by 5660
Abstract
Three millimeter-wave (mm-Wave) power amplifiers (PAs) that cover the key 5G FR2 band of 24.25 to 43.5 GHz are designed in two different state-of-the-art device technologies and are presented in this work. First, a single-ended broadband PA that employs a third-order input matching [...] Read more.
Three millimeter-wave (mm-Wave) power amplifiers (PAs) that cover the key 5G FR2 band of 24.25 to 43.5 GHz are designed in two different state-of-the-art device technologies and are presented in this work. First, a single-ended broadband PA that employs a third-order input matching network is designed in a 40 nm GaN/SiC HEMT (High Electron Mobility Transistor) technology. Good agreement between the measurement and post-layout parasitic extracted (PEX) electromagnetic (EM) simulation data is observed, and it achieves a measured 3-dB BW (bandwidth) of 18.0–40.3 GHz and >20% maximum PAE (power-added-efficiency) across the entire 20–44 GHz band. Expanding upon this measured design, a differential broadband GaN PA that utilizes neutralization capacitors is designed, laid out, and EM simulated. Simulation results indicate that this PA achieves 3-dB BW 20.1–44.3 GHz and maximum PAE > 23% across this range. Finally, a broadband mm-Wave differential CMOS PA using a cascode topology with RC feedback and neutralization capacitors is designed in a 22 nm FD-SOI (fully depleted silicon-on-insulator) CMOS technology. This PA achieves an outstanding measured 3-dB BW of 19.1–46.5 GHz and >12.5% maximum PAE across the entire frequency band. This CMOS PA as well as the single-ended GaN PA are tested with 256-QAM-modulated 5G NR signals with an instantaneous signal BW of 50/100/400/9 × 100 MHz at a PAPR (peak-to-average-power ratio) of 8 dB. The data exhibit impressive linearity vs. POUT trade-off and useful insights on CMOS vs. GaN PA linearity degradation against an increasing BW for potential mm-Wave 5G applications. Full article
(This article belongs to the Special Issue Power Amplifier for Wireless Communication)
Show Figures

Figure 1

Back to TopTop