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Abstract: With the increase in renewable energy generation, microgrid has put forward higher re-
quirements on the power density and performance of the photovoltaic inverter. In this paper, the
dynamic process of inverter based on the cascode Gallium nitride (GaN) high electron mobility
transistor (HEMT) for the photovoltaic (PV) application is analyzed in detail. The parasitic inductors
and capacitors have been considered in our proposed equivalent model, which can explain the phe-
nomenon that the crossover time of the voltage and current is prolonged by the parasitic parameters.
The influence of the parasitic parameters is identified through theoretical analysis. By analyzing the
influence of parasitic parameters, the design process of high-frequency inverter can be optimized.
A 500 W inverter based on the cascode GaN HEMT is built, and the correctness of theoretical and
simulation analysis is verified by the experimental results.

Keywords: PV; GaN HEMT; cascode; inverter; microgrid

1. Introduction

The development of microgrids presents the trend of high efficiency and high power
density, especially with the increase of renewable energy power generation [1,2]. Nowa-
days, single-phase photovoltaic (PV) inverters have been widely applied, especially in
the Microgrid background. Unlike conventional PV inverters, single-phase PV inverters
will most likely reach a high level of efficiency at a low cost, for the single-stage structure
without a transformer [3,4]. However, traditional single-phase PV inverters suffer from low
power density because of large passive components. The passive components, such as the
inductors, have critical effects on the efficiency, performance, and cost of PV inverters [5,6].
Moreover, the switching loss of the power devices has been a bottleneck for further im-
provements in power density and efficiency. One key issue of high-power density must be
solved by increasing the switching frequency. Since the switching frequency of the Si-based
inverter normally is limited up to 20 kHz~30 kHz, the passive components are always large
so as to reduce the switching loss, which decreases the power density.

The traditional power devices based on Si materials have basically reached their theo-
retical limits and gradually cannot meet the stringent requirements of the microgrid [7–10].
The emergence of the wide-bandgap device has changed the existing structure of the semi-
conductor industry and opened a new situation for the semiconductor industry [11,12].
Wide bandgap semiconductors have become ideal substitutes for power converters [13–15].
GaN HEMT devices have excellent electrical and physical properties and huge market
potential [16,17]. It has been widely concerned and has been applied in many fields,
including DC/AC GaN HEMT-based inverters [18,19], AC/DC GaN HEMT-based PFC
circuits [20,21], and DC/DC GaN HEMT-based converters [22–24], etc.
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Parasitic inductance is an important parameter of the power device, which has an
important influence on the dynamic characteristics of power devices. The most critical
parasitic parameter affecting the dynamic performance of devices is the common source
inductance (CSI) [25,26]. CSI is defined as the inductance shared by the main power and drive
circuit. Recently, the research on parasitic parameters of SiC and GaN HEMT mainly focuses
on enhancement types, which are all single switch structures. Their conclusions are similar to
those of Si MOSFETs [27]. Because of the special structure of cascode GaN HEMT, its dynamic
characteristics are more complex than the enhancement device. At the same time, it is more
easily affected by the CSI. Therefore, the dynamic process analysis of cascode GaN HEMT
also needs to be analyzed, especially in the application of a high-frequency inverter.

On the other hand, the turn-on and turn-off speed of GaN HEMT devices is sig-
nificantly higher than that of silicon devices. And the turn-on rate of current can reach
3000 A/us, so the oscillation of voltage and current is easy to occur, especially in the bridge
structure [28–31]. In high-power applications, the bridge circuit is one of the most widely
used topologies, so the dynamic-state analysis of GaN HEMT in bridge structure needs
to be solved urgently [31–33]. The dynamic-state operation mode of the cascode GaN
HEMT and its application are important areas that need further research [34–38]. In [4,5],
a third-quadrant operation mode of the enhancement GaN HEMT was demonstrated.
However, the mechanism of the cascode GaN HEMT is different from either Si MOSFET or
enhancement GaN HEMT. The device characteristics of Cascode GaN HEMT are analyzed
in reference [34,35]. Based on the buck circuit, the switching process of cascode GaN HEMT
is analyzed and modeled, and an accurate mathematical model is obtained, which provides
theoretical support for loss analysis. At the same time, the mathematical model is used
to optimize the simulation model to make the simulation model match the experimental
results well. The results of this paper are of great significance to the application and loss
analysis of GaN HEMT. However, the performance of the freewheeling diode has a great
influence on the double pulse test results. Further, the freewheeling diode used is the GaN
Schottky diode which has been discontinued by Transphrom Corporation for some reason
and cannot be purchased from the market at present. Therefore, in practical applications,
users can only select part of the test results for reference. The switching characteristics of
cascode GaN HEMT and GaN diodes of 600 V/20 A are tested in reference [36]. On this
basis, the mathematical model of GaN HEMT switching loss and reverse recovery charge
is given. However, this paper uses a sampling resistor to measure the current, leading
to serious distortion of the measured current. The drain current oscillates seriously at
turn-on time, which is different from the real situation. The switching characteristics of the
cascode GaN HEMT were tested in reference [37,38]. In this paper, the reason for bridge
circuit oscillation is analyzed, which provides an important idea for the application of GaN
HEMT bridge circuit. However, the layout of the switches is not clear, and the parasitic
parameters of the main power layout were not given, so the accuracy of the waveform
cannot be ensured.

Cascode GaN HEMT is a typical device for high voltage application of wide-bandgap
devices. Its special structure makes the working process of the device more complex
than that of traditional Si MOSFET and the enhancement of GaN HEMT. In this paper,
a 600 V cascode GaN HEMT-based inverter for PV application is evaluated. Based on
the working process analysis of cascode GaN HEMT, the dynamic process analysis of
cascode GaN HEMT based single-phase inverter circuit is presented. In addition, the
influence of parasitic parameters is considered in the model, and the key equations of
each mode are obtained. Further, the influence of parasitic parameters on the switching
process of the switch is discussed. Finally, a 500 W cascode GaN HEMT-based single-phase
inverter is established, and experiment results verify the correctness of theoretical and
simulation analysis.
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2. Characteristic and Model of Cascode GaN HEMT

Cascode GaN HEMT comprises low voltage enhanced silicon MOSFET and high
voltage depletion GaN HEMT. The internal structure is shown in Figure 1a, and the
equivalent diagram considering parasitic inductors and capacitors is shown in Figure 1b [4],
in which the red loop represents the drive circuit of the Si MOSFET, the bule loop represents
the main power loop and the green loop represents the drive loop of GaN HEMT. Because
of the complex structure of cascode GaN HEMT, its parasitic parameters are more than that
of E-mode GaN HEMT. It includes the parasitic capacitance and inductance in the device
and the parasitic inductance in the main power circuit and drive circuit. The parasitic
capacitance in the device includes gate-source parasitic capacitance CGS_Si, gate-drain
parasitic capacitance CGD_Si, drain-source parasitic capacitance CDS_Si of the low voltage Si
MOSFET and Gate-source parasitic capacitance CGS_GaN, gate-drain parasitic capacitance
CGD_GaN and drain-source parasitic capacitance CDS_GaN of high voltage depletion GaN
HEMT. The parasitic inductors in the device include Lint1, Lint2, Lint3, and LS, LG, and LD on
the pins. It can be seen that for Si MOSFET, Lint3 and LS are shared by the Si MOSFET drive
circuit and main power circuit, so Lint3 and LS are common source inductors of Si MOSFET.
Similarly, for GaN HEMT, the blue loop is still the main power loop, while the drive loop
of GaN HEMT is the green loop. Therefore, the common source inductances of GaN HEMT
are Lint3 and Lint1. Lint3 is the common source inductor of GaN HEMT and Si MOSFET, so
Lint3 is the most critical parasitic inductor. The common source inductor of high-voltage
GaN HEMT is Lint1, which affects the main loss of the switch, and is the second key parasitic
inductance. LS is the third most critical parasitic inductance. Among them, Lint1, Lint2,
and Lint3 are parasitic parameters inside the device which cannot be tested and changed.
Therefore, this paper only considered the effect of LS in the experiment section.
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Figure 1. Configuration and equivalent circuit of cascode GaN HEMT. (a) The internal structure of
the cascode GaN HEMT; (b) The equivalent diagram of the cascode GaN HEMT considering the
parasitic inductors.

3. Dynamic Analysis of Inverter Based on Cascode GAN HEMT

The cascode GaN HEMT is applied in a single-phase full bridge inverter, and the
unipolar SPWM control strategy is adopted, as shown in Figure 2a,b, respectively. The
dynamic-state analysis of the cascode GaN HEMT can be distinguished as follows:
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Figure 2. The topology of the cascode GaN HEMT-based inverter and its control strategy. (a) The
topology of the cascode GaN HEMT-based inverter; (b) The control strategy of the cascode GaN
HEMT-based inverter.

3.1. Positive Turn-On Process of the Bridge Leg Switches

Before S1 turns on, The vgs_S2 = 0 and vgs_S4 = VG, and the current is positive, as shown
in Figure 2b. The inductance IL current conducts through S2 and S4. The positive turn-on
process of cascode GaN HEMT is analyzed as follows.

Stage I: CGS1_Si charged state.
When the gate voltage VG is applied on S1, the gate-source equivalent capacitance

CGS_Si is charged. As S1 is turned off, current IL keeps flowing through S2 and S4. This
stage ends when vgs1_Si = VTH_Si. From Figure 3a, the following equations can be obtained:{

ig_S1 = CGS1_Si
dvgs1_Si

dt

VG= (LG_S1 + Lint3_S1 + LS_S1)
dig_S1

dt + RG_S1ig_S1 + vgs1_Si
(1)

Stage II: Si MOSFET drain-source voltage vds1_Si of S1 falling stage.
When vgs_S1 is equal to VTH_Si, Si MOSFET of S1 begins conducting. At this point,

CGD_Si, CDS_Si, and CGS_GaN begin to discharge through the channel of Si MOSFET. This
stage continues until vgs_GaN = VTH_GaN. The equivalent circuit of this stage is shown in
Figure 3b. The formula for this stage is shown in Equation (2).

VG= (LG_S1 + Lint3_S1 + LS_S1)
dig_S1

dt + RG_S1ig_S1 + vgs1_Si

ig_S1 = CGS1_Si
dvgs1_Si

dt + CGD1_Si
d(vgs1_Si−vds1_Si)

dt

gm1_si(vgs1_Si − VTH_Si) = CGD1_Si
d(vgs1_Si−vds1_Si)

dt − (CDS1_Si + CGS1_GaN)
dvds1_Si

dt

(2)

Stage III: ich1_GaN of S1 rising stage.
When vgs1_GaN reaches VTH_GaN, the channel of S1 starts to turn on and equivalent

capacitors CDS1_GaN and CGD1_GaN start discharging through the channel of GaN HEMT.
It causes vds1_GaN to fall. As S2 still conducts, the voltage difference between Vdc and
vds1_GaN forces the load current iL to increase. The equivalent circuit of this stage is shown
in Figure 3c. Then, Equation (3) could be derived.
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Figure 3. The equivalent circuit of positive turn-on stage and positive turn-off stage. (a) Positive 

turn-on I; (b) Positive turn-on II; (c) Positive turn-on III and IV; (d) Positive turn-on V; (e) Positive 

turn-on VI; (f) Positive turn-off I; (g) Positive turn-off II. 

3.2. Positive Turn-off Process of the Bridge Leg Switches 

Before S4 turns off, vgs_S1 = vgs_S4 = VG, and the current is positive. The positive turn-off 

process of S4 is analyzed as follows. 

Stage I: CGS4_Si discharged stage. 

As the gate voltage VG of S4 falls to zero, the equivalent capacitor CGS4_Si of S4 is dis-

charged. The equivalent circuit of this stage is shown in Figure 3f. When the Si MOSFET 

enters the amplification region and satisfies the requirements of GSi (vgs_Si − VTH_Si) = IL, this 

stage ends. The key formula for this stage is shown in Equation (6).  

_ 4 4 _

_S4 _S4 _ 4 _ 4 _ 4 4 _

= /

( ) / 0

g S GS4_Si GD4_Si gs Si

G S g S G S g S gs Si

i C C dv dt

L L di dt R i v

+


+ + =

（ ）

+
 (6) 

Stage II: vds4_Si of S4 rising stage. 

As vgs4_Si continues to decrease, the channel current of Si MOSFET is controlled by 

transfer characteristics, which is less than IL. The excess current charges the drain-source 

equivalent capacitors, and vds4_Si increases. Because CDS4_Si is in parallel with CGS4_GaN, vgs4_GaN 

decreases. The equivalent circuit of this stage is shown in Figure 3g, and the key formula 

for this stage is shown in Equation (7). This stage ends when the GaN HEMT of S4 enters 

the saturation region. 

Stage III: Channel current of S4 decreasing stage. 

Figure 3. The equivalent circuit of positive turn-on stage and positive turn-off stage. (a) Positive
turn-on I; (b) Positive turn-on II; (c) Positive turn-on III and IV; (d) Positive turn-on V; (e) Positive
turn-on VI; (f) Positive turn-off I; (g) Positive turn-off II.
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Stage IV: S2 MOSFET reverse recovery stage.
When the iLd_S1 reaches IL, the reverse recovery of S2 begins. The equivalent circuit

and equations are the same as stage III.
Stage V: S2 GaN HEMT turns off stage.
When the reverse recovery is complete, the voltage vds_S1 rises since the

vds_S1 < −VTH_GaN, the GaN HEMT channel of S2 turns on. When vds_S2 = VTH_GaN, this
stage ends. The equivalent circuit of this stage is shown in Figure 3d. Then, Equation (4)
could be derived.

Stage VI: drain-source voltage of S2 rising stage.
When vds_S2 = VTH_GaN, the GaN HEMT channel of S2 turns off, the equivalent capaci-

tance is charged, and the voltage vds_S2 rises until the voltage vds_S1 decreases to zero, as
shown in Figure 3e. Then, Equation (5) could be derived.


vgs1_GaN+(Lint1_S1 + Lint2_S1 + Lint3_S1)

dig1_GaN
dt +(Lint1_S1 + Lint3_S1)

diLd_S1
dt + Rch1_Si(ig1_GaN + iLd_S1) = 0

ig1_GaN = CGS1_GaN
dvgs1_GaN

dt + CGD1_GaN
d(vgs1_GaN−vds1_GaN)

dt

gm1_GaN(vgs1_GaN − VTH_GaN) = CGD1_GaN
d(vgs1_GaN−vds1_GaN)

dt + CDS1_GaN
dvds1_GaN

dt + iLd_S1

Vdc= (LD_S1 + LS_S1 + Lint1_S1 + Lint3_S1)
diLd_S1

dt +(Lint1_S1 + Lint3_S1)
dig1_GaN

dt + vds1_GaN + Rch1_Si(ig1_GaN + iLd_S1)

(3)


Vdc = (LD_S1 + LS_S1 + Lint1_S1 + Lint3_S1)

diLd_S1
dt +(Lint1_S1 + Lint3_S1)

dig1_GaN
dt

+Cds2_SiRch2_GaN
dvds2_Si

dt + vds1_GaN + Rch1_Si(ig1_GaN + iLd_S1) + vds2_Si

iLd1 = IL + Cds2_Si
dvds2_Si

dt

(4)

{
iLd_S1 = IL + (CDS2_Si + CDS2_GaN)

dvds2
dt

Vdc = (LD_S1 + LS_S1 + Lint1_S1 + Lint3_S1)
diLd_S1

dt +(Lint1_S1 + Lint3_S1)
dig1_GaN

dt + vds1_GaN + Rch1_Si(ig_GaN + iLd) + vds2
(5)

3.2. Positive Turn-off Process of the Bridge Leg Switches

Before S4 turns off, vgs_S1 = vgs_S4 = VG, and the current is positive. The positive
turn-off process of S4 is analyzed as follows.

Stage I: CGS4_Si discharged stage.
As the gate voltage VG of S4 falls to zero, the equivalent capacitor CGS4_Si of S4 is

discharged. The equivalent circuit of this stage is shown in Figure 3f. When the Si MOSFET
enters the amplification region and satisfies the requirements of GSi (vgs_Si − VTH_Si) = IL,
this stage ends. The key formula for this stage is shown in Equation (6).{

ig_S4 = (CGS4_Si + CGD4_Si)dvgs4_Si/dt
(LG_S4 + LS_S4)dig_S4/dt + RG_S4ig_S4 + vgs4_Si = 0

(6)

Stage II: vds4_Si of S4 rising stage.
As vgs4_Si continues to decrease, the channel current of Si MOSFET is controlled by

transfer characteristics, which is less than IL. The excess current charges the drain-source
equivalent capacitors, and vds4_Si increases. Because CDS4_Si is in parallel with CGS4_GaN,
vgs4_GaN decreases. The equivalent circuit of this stage is shown in Figure 3g, and the key
formula for this stage is shown in Equation (7). This stage ends when the GaN HEMT of S4
enters the saturation region.

Stage III: Channel current of S4 decreasing stage.
As the GaN HEMT gate-source voltage of S4 continues to decrease, the GaN HEMT

channel saturation current of S4 is less than IL. The excess current charges drain-source
equivalent capacitors and vds4_GaN increases. This stage ends when the channel of depletion
GaN HEMT is completely closed, as shown in Figure 4a. The key formula for this stage is
shown in Equation (8).
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Figure 4. The equivalent circuit of positive tun-off, reverse turn-on, and reverse turn-off stage. (a) 

Positive turn-off III; (b) Positive turn-off IV; (c) Reverse turn-on state I; (d) Reverse turn-on 

state II; (e) Positive turn-on VI; (f) Reverse turn-off state I; (g) Reverse turn-off state II; (h) 

Reverse turn-off state III. 

3.3. Reverse Turn-on Process of the Bridge Leg Switches 

Before vgs_S3 = VG, the vgs_S1 = VG. The current is positive, flowing through S1 and S3. The 

reverse turn-on process is analyzed as follows. 

Stage I: CGS3_Si charged stage. 

This stage is the same as the CGS1_Si charged period, as shown in Figure 4d. Then, the 

equations could be derived as follow.  

_ 3 3_ 3 _ 3 _ 3 _ 3 _ 3 3_
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Stage II: the MOSFET channel of S3 conducting stage.  

Since S3 is in the freewheeling state, the GaN HEMT of S3 is totally turned on. When 

the vgs_S3 > VTH_Si, the channel of S3 is totally turned on. IL transfers from MOSFET’s body 

diode to the MOSFET’s channel, as shown in Figure 4e. 
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S3. The channel turning off transition of S3 can be divided into three stages as follow: 

Figure 4. The equivalent circuit of positive tun-off, reverse turn-on, and reverse turn-off stage.
(a) Positive turn-off III; (b) Positive turn-off IV; (c) Reverse turn-on state I; (d) Reverse turn-on state II;
(e) Positive turn-on VI; (f) Reverse turn-off state I; (g) Reverse turn-off state II; (h) Reverse turn-off
state III.

Stage IV: The drain-source voltage of the S4 rising stage.
After the vgs4_GaN dropping below the threshold value of GaN HEMT, S4 totally turns

off. The junction capacitors of S4 are charged by iLD_S4, then the drain-source voltage of S4
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increases, as shown in Figure 4b. This stage ends when the drain-source voltage of S3 falls
to a threshold value of GaN HEMT. The formula for this stage is shown in Equation (9).

Stage V: The GaN HEMT channel of the S3 conducting stage.
After the drain-source voltage of S3 is smaller than the threshold value of GaN HEMT,

the GaN HEMT channel of S3 turns on. The drain-source voltage of S3 continues to reduce.
This stage ends when the MOSFET body diode of S3 is forward-biased. Thus, inductor
current flows through S3, as shown in Figure 4c, and the formula is the same as stage IV.

(LG_S4 + LS_S4)dig_S4/dt + RG_S4ig_S4 + vgs4_Si = 0
ig_S4 = CGS4_Sidvgs4_Si/dt + CGD4_Sid(vgs4_Si + vds4_Si)/dt

gm4_Si(vgs4_Si − VTH_Si) =CGD4_Si
d(vgs4_Si−vds4_Si)

dt − (CDS4_Si + CGS4_GaN)
dvds4_Si

dt + IL

(7)


iLd_S4 = IL + (CDS3_GaN + CDS3_Si)dvds_S3/dt
(LD_S4 + LS_S4 + Lint1_S4 + Lint3_S4)diLd_S4/dt + vds4_GaN − vgs4_GaN + vds_S3 = Vdc
iLd_S4= −(CGS4_GaN + CDS4_Si + CGD4_Si)dvgs4_GaN/dt − CGD4_GaNd(vgs4_GaN − vds4_GaN)/dt
gm4_GaN(vgs4_GaN − VTH_GaN) =CGD4_GaNd(vgs4_GaN − vds4_GaN)/dt − CDS4_GaNdvds4_GaN/dt + iLd_S4

(8)

{
(CGS4_GaN + CDS4_Si + CGD4_Si//CGS4_Si)dvds4_Si/dt = CDS4_GaNdvds4_GaN/dt
iLd_S4 = CGD4_GaNd(vds4_GaN + vds4_Si)/dt + CDS4_GaNdvds4_GaN/dt

(9)

3.3. Reverse Turn-on Process of the Bridge Leg Switches

Before vgs_S3 = VG, the vgs_S1 = VG. The current is positive, flowing through S1 and S3.
The reverse turn-on process is analyzed as follows.

Stage I: CGS3_Si charged stage.
This stage is the same as the CGS1_Si charged period, as shown in Figure 4d. Then, the

equations could be derived as follow.{
VG= (LG_S3 + Lint3_S3 + LS_S3)dig_S3/dt + RG_S3ig_S3 + vgs3_Si
ig_S3 = CGS3_Sidvgs3_Si/dt

(10)

Stage II: the MOSFET channel of S3 conducting stage.
Since S3 is in the freewheeling state, the GaN HEMT of S3 is totally turned on. When

the vgs_S3 > VTH_Si, the channel of S3 is totally turned on. IL transfers from MOSFET’s body
diode to the MOSFET’s channel, as shown in Figure 4e.

3.4. Reverse Turn-Off Process of the Bridge Leg Switches

Before vgs_S3 = 0, the vgs_S1 = vgs_S3 = VG. The current is positive, flowing through S1
and S3. The channel turning off transition of S3 can be divided into three stages as follow:

Stage I: CGS3_Si discharged stage.
This stage is the same as the CGS4_Si discharged state, as shown in Figure 4f. Then,

Equation (11) could be derived.{
(LG_S3 + LS_S3)dig_S3/dt + RG_S3ig_S3 + vgs3_Si = 0
ig_S3 = (CGS3_Si + CGD3_Si)dvgs3_Si/dt

(11)

Stage II: The vds3_Si of S3 rising stage.
This stage is the same as the vds4_Si of the S4 rising stage. This stage ends when vds4_Si rises

to diode forward voltage VF, as shown in Figure 4g. Then, Equation (12) could be derived.
Stage III: MOSFET body diode of S3 conducting stage.
When vds4_Si rises to diode forward voltage VF, the MOSFET body diode of S3 is

forward-biased, and the inductor current IL transfers from the MOSFET channel to the
MOSFET body diode. This stage ends when the Si MOSFET channel of S3 totally shuts
down, as shown in Figure 4h. Thus, Equation (13) could be calculated.
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As we can see from the theoretical analysis, the parasitic parameters influence the
dynamics to the state of the switching state. The main switching waveforms of the cascode
GaN HEMT-based single-phase inverter is shown in Figure 5.

ig_S3 = CGS3_Sidvgs3_Si/dt + CGD3_Sid(vgs3_Si + vds3_Si)/dt
(LG_S3 + LS_S3)dig_S3/dt + RG_S3ig_S3 + vgs3_Si = 0
gm3_Si(vgs3_Si − VTH_Si) =CGD3_Sid(vgs3_Si − vds3_Si)/dt − (CDS3_Si + CGS3_GaN)dvds3_Si/dt + IL

(12)


vds3_Si = VF
(LG_S3 + LS_S3)dig_S3/dt + RG_S3ig_S3 + vgs3_Si = 0
ig_S3 = CGS3_Sidvgs3_Si/dt + CGD3_Sid(vgs3_Si + vds3_Si)/dt
gm3_Si(vgs3_Si − VTH_Si) =CGD3_Sid(vgs3_Si + vds3_Si)/dt − (CDS3_Si + CGS3_GaN)dvds3_Si/dt − iD3_Si + IL

(13)

Energies 2022, 15, x FOR PEER REVIEW 9 of 13 
 

 

Stage I: CGS3_Si discharged stage. 

This stage is the same as the CGS4_Si discharged state, as shown in Figure 4f. Then, 

Equation (11) could be derived.  

_ 3 _ 3 _ 3 _ 3 _ 3 3_

_ 3 3 3 3_

( ) / 0

= /

G S S S g S G S g S gs Si

g S GS _Si GD _Si gs Si

L L di dt R i v

i C C dv dt

+ + =


+

+

（ ）
 (11) 

Stage II: The vds3_Si of S3 rising stage. 

This stage is the same as the vds4_Si of the S4 rising stage. This stage ends when vds4_Si rises 

to diode forward voltage VF, as shown in Figure 4g. Then, Equation (12) could be derived.  

Stage III: MOSFET body diode of S3 conducting stage. 

When vds4_Si rises to diode forward voltage VF, the MOSFET body diode of S3 is for-

ward-biased, and the inductor current IL transfers from the MOSFET channel to the 

MOSFET body diode. This stage ends when the Si MOSFET channel of S3 totally shuts 

down, as shown in Figure 4h. Thus, Equation (13) could be calculated.  

As we can see from the theoretical analysis, the parasitic parameters influence the 

dynamics to the state of the switching state. The main switching waveforms of the cascode 

GaN HEMT-based single-phase inverter is shown in Figure 5. 

_ 3 3 3_ 3 3_ 3_

_ 3 _ 3 _ 3 _ 3 _ 3 3_

3_ 3_ _ 3 3_ 3_ 3 3 3_

= / ( ) /

( ) / 0

( - )= ( ) / ( ) /

g S GS _Si gs Si GD _Si gs Si ds Si

G S S S g S G S g S gs Si

m Si gs Si TH Si GD _Si gs Si ds Si DS _Si GS _GaN ds Si L

i C dv dt C d v v dt

L L di dt R i v

g v V C d v v dt C C dv dt I

 + +


+ + =


− − + +

+  (12) 

3_

_ 3 _ 3 _ 3 _ 3 _ 3 3_

_ 3 3 3_ 3 3_ 3_

3_ 3_ _ 3 3_ 3_ 3 3 3_ 3_

( ) / 0

= / ( ) /

( - )= ( ) / ( ) /

ds Si F

G S S S g S G S g S gs Si

g S GS _Si gs Si GD _Si gs Si ds Si

m Si gs Si TH Si GD _Si gs Si ds Si DS _Si GS _GaN ds Si D Si L

v V

L L di dt R i v

i C dv dt C d v v dt

g v V C d v v dt C C dv dt i I

=


+ + =


+ +

+ − + − +

+





 (13) 

Vgs4

VTH_Si

Vds1

I

Vds2

Ids4

V

Vgs1Vgs2

Vds3 Vds4

Ids3

Ids1Ids2

Vgs3VTH_Si

-VF

VDC+VF

VDC+VF

VTH_GaN

Vgs4

Vds3

Ids2

Ids4

Vds1

Vgs2

IIII VI I III I VI I II I IIII VI

-VF

 

Figure 5. Main switching waveforms of cascode GaN HEMT-based inverter. 

4. Simulation and Experimental Verifications 

The single-phase inverter circuit base on cascode GaN HEMTs is simulated and ver-

ified using LTSpice. The simulation conditions are Vin = 380 V, Vo = 220 V, Po = 500 W. The 

working waveforms of cascode GaN HEMT are shown in Figure 6a. In addition, the sim-

ulation results of drain-source voltage waveforms are shown in Figure 6b,c with parasitic 

parameters LS = 5 nH and LS = 20 nH, respectively. As we can see, the voltage spike of GaN 

HEMT is larger with the increase of LS. 

Figure 5. Main switching waveforms of cascode GaN HEMT-based inverter.

4. Simulation and Experimental Verifications

The single-phase inverter circuit base on cascode GaN HEMTs is simulated and
verified using LTSpice. The simulation conditions are Vin = 380 V, Vo = 220 V, Po = 500 W.
The working waveforms of cascode GaN HEMT are shown in Figure 6a. In addition,
the simulation results of drain-source voltage waveforms are shown in Figure 6b,c with
parasitic parameters LS = 5 nH and LS = 20 nH, respectively. As we can see, the voltage
spike of GaN HEMT is larger with the increase of LS.

A 500 W prototype was built to verify the performance of a cascode GaN HEMT-based
single-phase inverter. The experimental waveforms are obtained. The voltage spike of
GaN HEMT is larger with the increase of LS, as shown in Figure 7a,b. Finally, waveform of
500 W single-phase inverter is given under the condition that Vin = 380V, and Vo = 220V,
as shown in Figure 7c. The inverter inductance current IL, and drain-source voltage vds
of S1 and S4 are shown, respectively. The parasitic parameters LS should be controlled
within 5nH, so as to reduce the drain-source voltage spike of the cascode GaN HEMT. The
efficiency curves of the single-phase inverter base on TP65H150G4PS at different switching
frequencies (20 kHz, 50 KHz, 100 kHz) are shown in Figure 7d. The switching loss increases
as the switching frequency increases, and the overall efficiency of the inverter decreases. It
can be seen that the maximum efficiency point is around 300 W in Figure 7d, which is a
balance of the switching loss and the filter loss. When the power is low, the switching loss
is dominant. With the increase of the power, the loss of the filter inductance increases and
becomes dominant.
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5. Conclusions

Dynamic-state process of the 600 V cascode GaN HEMT is analyzed in this paper.
We apply cascode GaN HEMT in a single-phase DC/AC inverter. Lint2, Lint3, and LS
are the most critical parasitic, which will significantly affect the dynamic performance of
the cascode GaN HEMT. The influence of the parasitic inductance is identified through
theoretical analysis and verified by simulation and experiment results. With the increase in
frequency, the parasitic parameter Ls should be reduced as much as possible to reduce the
influence on the drain-source voltage of the cascode GaN HEMT. Finally, a 500 W cascode
GaN HEMT-based single-phase inverter is established, and the experiment results verified
the correctness of theoretical and simulation analysis.
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