A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching
Abstract
1. Introduction
2. Limitations of the Conventional SNIM Techniques
3. Proposed Simultaneous Noise- and Input-Matched Cascode Stage with Shunt-Only Input Matching Network
3.1. Two-Port Analysis of Cascode Core Cell
3.2. Effect of and on Power Gain and Stability of Cascode Core Cell
3.3. Characteristics of Cascode Core Cell with Shunt-Only Input Matching Network
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Fukui, H. Optimal noise figure of microwave GaAs MESFET’s. IEEE Trans. Electron Devices 1979, 26, 1032–1037. [Google Scholar] [CrossRef]
- Alessandrello, A.; Brofferio, C.; Camin, D.; Giuliani, A.; Pessina, G.; Previtali, E. On the use of GaAs MESFETs in the realization of low-frequency low-noise amplifiers for applications at cryogenic temperatures. In Proceedings of the 11th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, San Diego, CA, USA, 22–25 October 1989; pp. 223–226. [Google Scholar]
- Nikandish, G.; Yousefi, A.; Kalantari, M. A broadband multistage LNA with bandwidth and linearity enhancement. IEEE Microw. Wirel. Components Lett. 2016, 26, 834–836. [Google Scholar] [CrossRef]
- Yu, Y.H.; Hsu, W.H.; Chen, Y.J.E. A Ka-band low noise amplifier using forward combining technique. IEEE Microw. Wirel. Components Lett. 2010, 20, 672–674. [Google Scholar] [CrossRef]
- Yan, X.; Yu, P.; Zhang, J.; Gao, S.P.; Guo, Y. A broadband 10–43-GHz high-gain LNA MMIC using coupled-line feedback in 0.15-μm GaAs pHEMT technology. IEEE Microw. Wirel. Components Lett. 2022, 32, 1459–1462. [Google Scholar] [CrossRef]
- Cuadrado-Calle, D.; George, D.; Fuller, G. A GaAs Ka-band (26–36 GHz) LNA for radio astronomy. In Proceedings of the 2014 IEEE International Microwave and RF Conference (IMaRC), Bangalore, India, 15–17 December 2014; pp. 301–303. [Google Scholar]
- Galante-Sempere, D.; Khemchandani, S.L.; Del Pino, J. A 2-V 1.4-dB NF GaAs MMIC LNA for K-Band Applications. Sensors 2023, 23, 867. [Google Scholar] [CrossRef]
- Wang, T.P. Design and Analysis of Simultaneous Wideband Input/Output Matching Technique for Ultra-Wideband Amplifier. IEEE Access 2021, 9, 46800–46809. [Google Scholar] [CrossRef]
- Nikandish, G.; Medi, A. Transformer-feedback interstage bandwidth enhancement for MMIC multistage amplifiers. IEEE Trans. Microw. Theory Tech. 2014, 63, 441–448. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, D.; Li, Z.; Zhou, P.; Chen, Z.; Chen, J.; Hong, W. A linearity-enhanced 18.7–36.5-GHz LNA with 1.5–2.1-dB NF for radar applications. IEEE Microw. Wirel. Components Lett. 2022, 32, 972–975. [Google Scholar] [CrossRef]
- Hwang, S.; Kang, D.; Lee, Y.; Park, D.W. A 13–33 GHz Wideband Low-Noise Amplifier in 150-nm GaAs Based on Simultaneous Noise-and Input-Matched Gain-Core with RLC Shunt Feedback Network. Electronics 2025, 14, 450. [Google Scholar] [CrossRef]
- He, D.; Cui, N.; Fan, J.; Yu, Z. Design of Multiple Feedback-Based Low-Noise Amplifier With Improved Broadband Simultaneous Noise and Impedance Matching Technique. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 582–586. [Google Scholar] [CrossRef]
- Wu, P.W.; Yei, J.W.; Fu, Z.H.; Chang, Y.T.; Lin, K.Y. A Wideband GaAs pHEMT LNA Multi-band 5G mmW Communication. In Proceedings of the 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, 5–8 December 2023; pp. 348–350. [Google Scholar]
- Feng, J.H.; Ye, Y.F.; Wu, L.S.; Mao, J.F. A Ka-Band Broadband Low Noise Amplifier with Resistive and Inductive Feedback. In Proceedings of the 2022 IEEE 4th International Conference on Circuits and Systems (ICCS), Chengdu, China, 23–26 September 2022; pp. 160–163. [Google Scholar]
- Seo, M.; Jagannathan, B.; Pekarik, J.; Rodwell, M.J.W. A 150 GHz Amplifier With 8 dB Gain and +6 dBm Psat in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines. IEEE J. Solid-State Circuits 2009, 44, 3410–3421. [Google Scholar] [CrossRef]
- Yun, B.; Park, D.W.; Mahmood, H.U.; Kim, D.; Lee, S.G. A D-band high-gain and low-power LNA in 65-nm CMOS by adopting simultaneous noise-and input-matched G max-core. IEEE Trans. Microw. Theory Tech. 2021, 69, 2519–2530. [Google Scholar] [CrossRef]
- Voinigescu, S.P.; Maliepaard, M.C.; Showell, J.L.; Babcock, G.E.; Marchesan, D.; Schroter, M.; Schvan, P.; Harame, D.L. A scalable high-frequency noise model for bipolar transistors with application to optimal transistor sizing for low-noise amplifier design. IEEE J. Solid-State Circuits 2002, 32, 1430–1439. [Google Scholar] [CrossRef]
- Cha, C.Y.; Lee, S.G. A 5.2 GHz LNA in 0.35 μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance. In Proceedings of the 28th European Solid-State Circuits Conference, Florence, Italy, 24–26 September 2002; pp. 339–342. [Google Scholar]
- Shaeffer, D.K.; Lee, T.H. A 1.5-V, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid-State Circuits 1997, 32, 745–759. [Google Scholar] [CrossRef]
- Razavi, B.; Behzad, R. RF Microelectronics; Prentice Hall: New York, NY, USA, 2012; Volume 2. [Google Scholar]
- Pozar, D.M. Microwave Engineering: Theory and Techniques; John wiley & Sons: New York, NY, USA, 2021. [Google Scholar]
- Chiu, H.W.; Lu, S.S.; Lin, Y.S. A 2.17-dB NF 5-GHz-band monolithic CMOS LNA with 10-mW DC power consumption. IEEE Trans. Microw. Theory Tech. 2005, 53, 813–824. [Google Scholar] [CrossRef]
- Belostotski, L.; Haslett, J.W. Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans. Circuits Syst. I: Regul. Pap. 2006, 53, 1409–1422. [Google Scholar] [CrossRef]
- Sun, K.J.; Tsai, Z.M.; Lin, K.Y.; Wang, H. A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors. IEEE Trans. Microw. Theory Tech. 2006, 54, 1554–1560. [Google Scholar]
- Çaışkan, C.; Kalyoncu, I.; Yazici, M.; Gurbuz, Y. Sub-1-dB and Wideband SiGe BiCMOS Low-Noise Amplifiers for X-Band Applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 2018, 66, 1419–1430. [Google Scholar]
- Goo, J.S.; Ahn, H.T.; Ladwig, D.J.; Yu, Z.; Lee, T.H.; Dutton, R.W. A noise optimization technique for integrated low-noise amplifiers. IEEE J. Solid-State Circuits 2002, 37, 994–1002. [Google Scholar]
- Hu, J.; Ma, K.; Mou, S.; Meng, F. A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved active load. IEEE Trans. Circuits Syst. I: Regul. Pap. 2018, 65, 3150–3161. [Google Scholar] [CrossRef]
- Li, W.T.; Tsai, J.H.; Yang, H.Y.; Chou, W.H.; Gea, S.B.; Lu, H.C.; Huang, T.W. Parasitic-insensitive linearization methods for 60-GHz 90-nm CMOS LNAs. IEEE Trans. Microw. Theory Tech. 2012, 60, 2512–2523. [Google Scholar] [CrossRef]
- Samavati, H.; Rategh, H.R.; Lee, T.H. A 5-GHz CMOS wireless LAN receiver front end. IEEE J. Solid-State Circuits 2002, 35, 765–772. [Google Scholar] [CrossRef]
- Huang, B.J.; Lin, K.Y.; Wang, H. Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology. IEEE Trans. Microw. Theory Tech. 2009, 57, 3049–3059. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Luo, H.; Gao, S.P.; Guo, Y. A compact 1.0–12.5-GHz LNA MMIC with 1.5-dB NF based on multiple resistive feedback in 0.15-μm GaAs pHEMT technology. IEEE Trans. Circuits Syst. I: Regul. Pap. 2023, 70, 1450–1462. [Google Scholar] [CrossRef]
- Sabzi, M.; Medi, A. Analysis and design of multi-stage wideband LNA using simultaneously noise and impedance matching method. Microelectron. J. 2019, 86, 97–104. [Google Scholar] [CrossRef]
- Chen, H.K.; Chang, D.C.; Juang, Y.Z.; Lu, S.S. A compact wideband CMOS low-noise amplifier using shunt resistive-feedback and series inductive-peaking techniques. IEEE Microw. Wirel. Components Lett. 2007, 17, 616–618. [Google Scholar] [CrossRef]
- Hu, J.; Ma, K. A 1–40-GHz LNA MMIC using multiple bandwidth extension techniques. IEEE Microw. Wirel. Components Lett. 2019, 29, 336–338. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.J. A 2–20-GHz Ultrawideband High-Gain Low-Noise Amplifier With Enhanced Stability. IEEE Microw. Wirel. Technol. Lett. 2024, 34, 415–418. [Google Scholar] [CrossRef]
- Kobayashi, K.W.; Denninghoff, D.; Miller, D. A Novel 100 MHz–45 GHz Input-Termination-Less Distributed Amplifier Design With Low-Frequency Low-Noise and High Linearity Implemented With A 6 Inch 0.15 μm GaN-SiC Wafer Process Technology. IEEE J. Solid-State Circuits 2016, 51, 2017–2026. [Google Scholar] [CrossRef]
- Nikandish, G.; Medi, A. Unilateralization of MMIC distributed amplifiers. IEEE Trans. Microw. Theory Tech. 2014, 62, 3041–3052. [Google Scholar] [CrossRef]
- Cui, B.; Long, J.R. A 1.7-dB minimum NF, 22–32-GHz low-noise feedback amplifier with multistage noise matching in 22-nm FD-SOI CMOS. IEEE J. Solid-State Circuits 2020, 55, 1239–1248. [Google Scholar] [CrossRef]
- Deal, W.R.; Biedenbender, M.; Liu, P.h.; Uyeda, J.; Siddiqui, M.; Lai, R. Design and analysis of broadband dual-gate balanced low-noise amplifiers. IEEE J. Solid-State Circuits 2007, 42, 2107–2115. [Google Scholar] [CrossRef]
Set | (nH) | (nH) | (dB) @18 GHz | (dB) @28 GHz | (dB) @38 GHz |
---|---|---|---|---|---|
Set 1 | 0 | 0.26 | 15.4 | 11.2 | 13.8 |
Set 2 | 0.05 | 0 | 11.8 | 10.3 | 9.2 |
Set 3 | 0.1 | 0.1 | 10.7 | 9.3 | 10.8 |
Process | Topology | Frequency (GHz) | 3-dB Bandwidth (GHz) | (dB) | Noise Figure (dB) | (mW) | Area (mm2) | (dBm) | FoM | |
---|---|---|---|---|---|---|---|---|---|---|
[4] (measured) | GaAs 100 nm | 3-stage cs with coupled line and feedback network | 18–43 | 25 | 21.6 (avg) | 1.8–2.7 | 140 | 2 | 11.5 (@30 GHz) | 59 * |
[5] (measured) | GaAs 150 nm | 2-stage cs with forward combining | 29–44 | 15 | 14 (avg) | 2–3.3 | 38 | 0.47 | - | - |
[6] (measured) | GaAs 150 nm | 3-stage cs with coupled line and feedback network | 10–43 | 33 | 21.6–24.6 | 2.4–3 | 110 | 1.05 | 1.95–12.3 | 117.2 |
[10] (measured) | GaAs 100 nm | 3-stage cs with transformer feedback network | 11–39 | 28 | 23 (avg) | 2.1–3 | 80 | 1.7 | 8.6 (max) | 57.5 * |
[11] (measured) | GaAs 100 nm | 2-stage cs with feedback network | 18.7–36.5 | 17.8 | 15.9 (max) | 1.5–2.1 | 66 | 0.96 | - | - |
[14] (measured) | GaAs 150 nm | 3-stage cs | 25–43 | 18 | 23.8 (max) | 2.1–3.4 | 79 | 2 | 7 * (max) | 28.44 * |
[15] (measured) | GaAs 150 nm | 3-stage cs with feedback network | 24.25-33 | 8.75 | 19.8 (max) | 2.45* (min) | - | 1.24 | −6 (max) | - |
[40] (measured) | GaAs 100 nm | Cascode with balanced dual-gate network | 20–40 | 20 | 20 (max) | 2.5 (max) | - | 8.6 | - | - |
[7] (simulated) | GaAs 100 nm | 4-stage cs | 26–36 | 10 | 33 | 1.5–1.8 | - | 3.64 | - | - |
[8] (simulated) | GaAs 100 nm | 4-stage cs | 23–29 | 6 | 33 | 1.4–2 | 118.2 | 5.94 | 10 * | 59.6 * |
[12] (simulated) | GaAs 150 nm | 3-stage cs with R-L-C shunt feedback network | 13–33 | 20 | 15.6–18.6 | 1–2.8 | 99 | 3.3 | 6 *–12.8 * | 126.5 * |
This Work (simulated) | GaAs 150 nm | 3-stage enhanced cascode | 17–38 | 21 | 20–23 | 1.1–2.1 | 323 | 3.3 | 9.7–16.4 | 139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Lee, Y.; Park, D.-W. A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching. Electronics 2025, 14, 2771. https://doi.org/10.3390/electronics14142771
Kang D, Lee Y, Park D-W. A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching. Electronics. 2025; 14(14):2771. https://doi.org/10.3390/electronics14142771
Chicago/Turabian StyleKang, Dongwan, Yeonggeon Lee, and Dae-Woong Park. 2025. "A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching" Electronics 14, no. 14: 2771. https://doi.org/10.3390/electronics14142771
APA StyleKang, D., Lee, Y., & Park, D.-W. (2025). A 17–38 GHz Cascode Low-Noise Amplifier in 150-nm GaAs Adopting Simultaneous Noise- and Input-Matched Gain Stage with Shunt-Only Input Matching. Electronics, 14(14), 2771. https://doi.org/10.3390/electronics14142771