Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (85)

Search Parameters:
Keywords = carotenoid retention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1134 KiB  
Article
Biological and Physico-Chemical Properties of Lobosphaera sp. Packed in Metallized Polyethylene Terephthalate/Polyethylene (PETmet/PE)
by Valter F. R. Martins, Ana J. Alves, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Phycology 2025, 5(3), 35; https://doi.org/10.3390/phycology5030035 - 6 Aug 2025
Abstract
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, [...] Read more.
This study evaluated the effects of different storage conditions, varying in light exposure, relative humidity (RH), and packaging materials, on the physicochemical stability of Lobosphaera sp. biomass, the retention of bioactive compounds, and the bioactivity of its extracts. Under light and 75% RH, the biomass absorbed moisture over time, reaching 0.779 ± 0.003 g/g dry weight (DW) after three months. This was accompanied by a decline in luminosity, chroma, and hue values. In contrast, samples stored under other conditions showed minimal changes, indicating that high humidity, combined with light exposure, compromises biomass stability. Packaging in metalized polyethylene terephthalate (PETmet/PE) effectively preserved the water content, color, and carotenoid levels during a two-month storage period. Bioactive compounds extracted via hydroethanolic ultrasound-assisted extraction yielded 15.48 ± 1.35% DW. Total phenolic content (TPC) of the extracts declined over time in both PETmet/PE and low-density polyethylene (LDPE) packaging, though the decrease was less pronounced in PETmet/PE. Antioxidant activity, assessed via the ABTS assay, remained stable, regardless of storage duration or packaging. Antimicrobial activity of the extract decreased over time but remained more effective against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes), with PETmet/PE packaging better preserving antimicrobial efficacy than LDPE. These findings underscore the importance of optimized storage conditions and packaging for maintaining the quality and bioactivity of Lobosphaera sp. biomass and its extracts. Full article
Show Figures

Figure 1

17 pages, 1035 KiB  
Review
Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
by Jude Juventus Aweya, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache and Mohammed H. Moghadasian
Foods 2025, 14(14), 2529; https://doi.org/10.3390/foods14142529 - 18 Jul 2025
Viewed by 795
Abstract
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum [...] Read more.
Ancient grains, including wild rice, millet, fonio, teff, quinoa, amaranth, and sorghum, are re-emerging as vital components of modern diets due to their dense nutritional profiles and diverse health-promoting bioactive compounds. Rich in high-quality proteins, dietary fiber, essential micronutrients, and a broad spectrum of bioactive compounds such as phenolic acids, flavonoids, carotenoids, phytosterols, and betalains, these grains exhibit antioxidant, anti-inflammatory, antidiabetic, cardioprotective, and immunomodulatory properties. Their health-promoting effects are underpinned by multiple interconnected mechanisms, including the reduction in oxidative stress, modulation of inflammatory pathways, regulation of glucose and lipid metabolism, support for mitochondrial function, and enhancement of gut microbiota composition. This review provides a comprehensive synthesis of the essential nutrients, phytochemicals, and functional properties of ancient grains, with particular emphasis on the nutritional and molecular mechanisms through which they contribute to the prevention and management of chronic diseases such as cardiovascular disease, type 2 diabetes, obesity, and metabolic syndrome. Additionally, it highlights the growing application of ancient grains in functional foods and nutrition-sensitive dietary strategies, alongside the technological, agronomic, and consumer-related challenges limiting their broader adoption. Future research priorities include well-designed human clinical trials, standardization of compositional data, innovations in processing for nutrient retention, and sustainable cultivation to fully harness the health, environmental, and cultural benefits of ancient grains within global food systems. Full article
Show Figures

Figure 1

18 pages, 954 KiB  
Article
Phytochemical Value and Bioactive Properties of Sweet Potato Peel Across Varieties and Drying Techniques
by Gordana Ćetković, Anja Vučetić, Teodora Cvanić, Olja Šovljanski, Aleksandra Ranitović, Biljana Lončar, Vladimir Filipović and Vanja Travičić
Processes 2025, 13(7), 2004; https://doi.org/10.3390/pr13072004 - 25 Jun 2025
Viewed by 611
Abstract
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized [...] Read more.
The aim of the present study was to investigate how different drying techniques (lyophilization, convective drying, and osmotic dehydration) affect the phytochemical profile, biological activities, color parameters, and antimicrobial potential of sweet potato peel from four varieties (white, pink, orange, and purple). Lyophilized orange peel showed the highest carotenoid content (21.31 mg β-carotene/100 g), while osmotic dehydration resulted in the highest retention of anthocyanins in purple peel (229.58 mg cyanidin-3-glucoside/100 g). Among phenolic compounds, the most abundant were caffeic and cinnamic acids, reaching up to 434.57 mg/100 g and 430.91 mg/100 g, respectively, in white peel. Antioxidant activity was strongest in purple peel, particularly in lyophilized samples. Convective drying enhanced anti-inflammatory activity in orange peel (68.25% inhibition), and all samples demonstrated significant α-glucosidase inhibition, with values up to 96.93%. Antimicrobial effects were observed only in purple peel extracts, which showed strong antifungal activity, especially against Saccharomyces cerevisiae (inhibition zone >50 mm). These results confirm that sweet potato peel holds considerable potential as a functional ingredient and that its bioactive value can be significantly influenced by the drying method applied. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

16 pages, 3548 KiB  
Article
Green Extraction Technologies for Carotenoid Recovery from Citrus Peel: Comparative Study and Encapsulation for Stability Enhancement
by Vanja Travičić, Teodora Cvanić, Anja Vučetić, Marija Kostić, Milica Perović, Lato Pezo and Gordana Ćetković
Processes 2025, 13(7), 1962; https://doi.org/10.3390/pr13071962 - 21 Jun 2025
Viewed by 488
Abstract
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, [...] Read more.
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, and tangerine peels. Whereas SUPRAS methods rely on a supramolecular solvent made of water, ethanol, and octanoic acid, CPE methods use surfactants and water, and both show a high potential to extract lipophilic components. CPE demonstrated superior efficiency in extracting total carotenoids and enhancing antioxidant activity, with orange peel extracts showing the highest concentrations. CPE and SUPRAS extracts were subsequently encapsulated using freeze-drying with chickpea protein isolate, achieving high encapsulation efficiencies (82.40–88.97%). The use of encapsulation technology is an effective strategy to protect carotenoids from environmental stressors. Color, morphological, and FTIR analyses confirmed the successful encapsulation and retention of carotenoids. Environmental impact was assessed using the EcoScale tool, revealing excellent sustainability for CPE (92 points) and satisfactory performance for SUPRAS-based extraction (70 points). The use of Generally Recognized As Safe (GRAS) solvents and plant-derived encapsulation materials makes this method highly suitable for clean-label product development across the food, cosmetic, and nutraceutical industries. In summary, the results point to a practical and sustainable approach to citrus waste valorization into valuable, health-promoting ingredients—supporting both circular economy goals and eco-friendly innovation. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Effects of Moderate Electric Field Pretreatment on the Efficiency and Nutritional Quality of Hot Air-Dried Apple Slices
by Deryanur Kalkavan and Nese Sahin Yesilcubuk
Foods 2025, 14(13), 2160; https://doi.org/10.3390/foods14132160 - 20 Jun 2025
Viewed by 352
Abstract
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene [...] Read more.
This study investigates the effects of electric field pretreatment parameters such as electric field strength (0.1–0.2 kV/cm), waveform (sinusoidal vs. square), and application mode (continuous vs. pulsed) on the quality attributes of dried Fuji apple slices, including ascorbic acid (vitamin C) retention, β-carotene content, and hydroxymethylfurfural (HMF) formation. Electric-field-treated samples were compared to untreated controls after convective drying at 75 °C. Results revealed that vitamin C was significantly influenced by waveform, with sinusoidal waves preserving about 27% more vitamin C than square waves, likely due to reduced oxidative degradation from gentler electroporation. Conversely, square waves caused the highest β-carotene losses (25% vs. control), attributed to prolonged peak voltage destabilizing carotenoids. HMF formation was reduced by 10–23% in electric-field-treated samples compared to controls, linked to accelerated drying rates limiting Maillard reaction time. Low electric field strengths (0.1–0.15 kV/cm) enhanced antioxidant activity; however, higher intensities showed a potential decline. The square waveform had a more detrimental effect on phenolic compounds than the sinusoidal waveform. These findings suggest that low electric field pretreatment, particularly with sinusoidal waveforms at 0.2 kV/cm, enhances drying efficiency while balancing nutrient retention and HMF mitigation, offering a promising strategy for producing high-quality dried fruits. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

14 pages, 1667 KiB  
Article
A Study on the Enhancement of Storage Stability in Formulated Gac Fruit Oil and Its Encapsulated Form
by Po-Hua Wu, Chia-Yu Lin, Ming-Chang Wu, Shih-Lun Liu, Sz-Jie Wu and Chang-Wei Hsieh
Processes 2025, 13(6), 1913; https://doi.org/10.3390/pr13061913 - 17 Jun 2025
Viewed by 662
Abstract
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated [...] Read more.
The fruit of Momordica cochinchinensis Spreng., commonly known as Gac fruit, contains arils rich in carotenoids and unsaturated fatty acids, making it suitable for use as a natural colorant, flavor enhancer, and dietary supplement. This study examined Gac oil extracted from locally cultivated Gac fruit in Taiwan and evaluated the impact of different encapsulation methods and press through packaging (PTP) packaging on its oxidative stability during storage. The Gac oil was found to contain exceptionally high levels of β-carotene (up to 6047.52 ± 16.15 ppm) and lycopene (3192.84 ± 20.21 ppm). Among the tested formulations, soft capsules demonstrated lower peroxide value (PV) and better retention of carotenoids, including lycopene β-carotene compared to hard capsules. Furthermore, capsules stored in PTP packaging exhibited enhanced protection against oxidation. Overall, soft capsules combined with PTP packaging provided the most effective approach for maintaining the nutritional quality and oxidative stability of Gac oil during storage. Full article
(This article belongs to the Special Issue Extraction Processes, Modeling, and Optimization of Oils)
Show Figures

Figure 1

21 pages, 879 KiB  
Article
The Potential of Ancient Sicilian Tetraploid Wheat in High-Quality Pasta Production: Rheological, Technological, Biochemical, and Sensory Insights
by Rosalia Sanfilippo, Nicolina Timpanaro, Michele Canale, Salvatore Moscaritolo, Margherita Amenta, Maria Allegra, Martina Papa and Alfio Spina
Foods 2025, 14(12), 2050; https://doi.org/10.3390/foods14122050 - 11 Jun 2025
Viewed by 460
Abstract
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the [...] Read more.
This study evaluated the potential of three ancient Sicilian tetraploid wheat genotypes—‘Margherito’, ‘Perciasacchi’, and ‘Russello’—for organic pasta production, compared to the national variety ‘Cappelli’. Significant variations in particle size distribution were found, with ‘Russello’ exhibiting the highest proportion of fine particles and the greatest protein content (14.30% d.m.). ‘Perciasacchi’ displayed the highest gluten index (81.26%). ‘Margherito’ and ‘Cappelli’ had the highest antioxidant activity, with ‘Margherito’ showing elevated levels of lutein and total carotenoids. Rheological analysis revealed differences in dough properties. ‘Perciasacchi’ exhibited the highest dough stability and P/L ratio (6.57), whereas ‘Russello’ showed the lowest values for both. Additionally, ‘Russello’ had lower consistency (12 B.U.), reduced gel stability, and limited water retention in the visco-amylographic analysis. Pasta quality was evaluated based on cooking time, water absorption, and texture. Cooking time ranged from 10 to 12 min, with ‘Russello’ and ‘Margherito’ showing lower water absorption. Texture analysis indicated that ‘Margherito’ pasta was the least firm, while ‘Russello’ showed the greatest loss of consistency when overcooked. From a sensory perspective, ‘Russello’ had lower firmness, but a stronger semolina flavor and surface roughness. ‘Cappelli’ had the most intense cooked pasta odor, while ‘Perciasacchi’ was the hardest and least sticky, though less flavorful. The results support the use of ancient tetraploid wheat genotypes as valuable resources for sustainable, high-quality pasta production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

19 pages, 2124 KiB  
Article
Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties
by Elmer Robert Torres-Gutiérrez, Grimaldo Wilfredo Quispe-Santivañez, Jimmy Pablo Echevarría-Victorio, David Elí Salazar-Espinoza, Joselin Paucarchuco-Soto, Henry Juan Javier-Ninahuaman, Williams Esteward Castillo-Martinez and Rebeca Salvador-Reyes
Resources 2025, 14(5), 78; https://doi.org/10.3390/resources14050078 - 3 May 2025
Viewed by 2013
Abstract
Chuño is a traditional Andean product obtained by freezing, thawing, and drying potatoes. This study aimed to assess how different Andean potato varieties (Chihuanki Negro [C], Puka Huayro Machu [P], and Yana Huayro Machu [Y]) and freezing temperatures (−10 °C, −20 °C, and [...] Read more.
Chuño is a traditional Andean product obtained by freezing, thawing, and drying potatoes. This study aimed to assess how different Andean potato varieties (Chihuanki Negro [C], Puka Huayro Machu [P], and Yana Huayro Machu [Y]) and freezing temperatures (−10 °C, −20 °C, and −30 °C) modulate the physicochemical (pH, acidity, and moisture), bioactive (phenolics and antioxidant activity), nutritional (proximate composition and minerals), and techno-functional (water absorption and swelling power) attributes of chuño. The results revealed that variety C retained higher macronutrient levels at 10 °C, featuring higher carbohydrates, proteins, and minerals (e.g., magnesium and zinc), while P showed enhanced fiber and mineral retention, alongside a faster rehydration and antioxidant capacity, particularly at −20 °C and −30 °C. Color differences were also noted, with P presenting reddish tones and a higher luminosity, whereas C had a more intense yellow hue linked to carotenoids. In general, −10 °C and −20 °C better preserved antioxidant compounds than −30 °C. These findings underscore how the proper selection of potato variety and freezing temperature can optimize the nutritional, functional, and sensory characteristics of chuño. However, these outcomes stem from selected samples, suggesting that further research is needed to confirm the broader applicability of the proposed method across additional varieties and process conditions. Full article
Show Figures

Figure 1

22 pages, 1385 KiB  
Article
Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms
by Federica Impellitteri, Cristiana Roberta Multisanti, Kristian Riolo, Giorgia Zicarelli, Miriam Porretti, Giovanna Cafeo, Marina Russo, Paola Dugo, Giuseppa Di Bella, Giuseppe Piccione, Alessia Giannetto and Caterina Faggio
Antioxidants 2025, 14(5), 539; https://doi.org/10.3390/antiox14050539 - 30 Apr 2025
Cited by 2 | Viewed by 607
Abstract
Nutraceuticals are gaining research interest due to their beneficial potential and their use to counter the impact of emerging contaminants on natural ecosystems. Particularly, during the COVID-19 pandemic, the use of personal hygiene/care products and disinfectants increased significantly. These products contain several substances [...] Read more.
Nutraceuticals are gaining research interest due to their beneficial potential and their use to counter the impact of emerging contaminants on natural ecosystems. Particularly, during the COVID-19 pandemic, the use of personal hygiene/care products and disinfectants increased significantly. These products contain several substances in their formulations, including surfactants, which have proven to be hazardous to the entire aquatic ecosystem. In the present study, bergamot (Citrus bergamia) peel extract was used as a nutraceutical to counteract the toxicity of sodium lauryl sulphate (SLS), a common anionic detergent with antimicrobial activity. Specimens of Mytilus galloprovincialis, were exposed to SLS (0.01 mg/L), bergamot peels’ extract (BRG: 5 mg/L), and their mixture for 14 days. The cellular and physiological alterations in haemocytes, digestive gland (DG) and gill cells were analysed. The analyses included cell viability of haemocytes and DG cells (trypan blue exclusion assay and the neutral red retention test); the ability of DG cells to regulate their volume (RVD); haemocyte phagocytic activity; expression of genes involved in antioxidant response (Cu/ZnSOD, MnSOD, Hsp70, and CYP4Y) on gills and DG; the energy efficiency of the organism through byssus production; and the measurement of key macromolecules, including total lipid and fatty acid content, total protein, tocopherols and carotenoids, which play a key role in maintaining physiological and metabolic functions in the organism. Overall, significant differences emerged between the control (CTR) and treated groups, with the CTR and BRG groups resembling each other, while the SLS-treated groups showed significant alterations. Meanwhile, the groups exposed to the combination showed a recovery, suggesting the potential beneficial effect of the BRG. Full article
Show Figures

Figure 1

12 pages, 254 KiB  
Article
Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets
by Michaela Englmaierová, Jan Szmek, Miloš Skřivan, Pavel Horčička, Tomáš Taubner and Věra Skřivanová
Animals 2025, 15(9), 1195; https://doi.org/10.3390/ani15091195 - 23 Apr 2025
Viewed by 543
Abstract
In this study, we evaluated the effects of two wheat varieties with different carotenoid concentrations (Pexeso and Tercie) and two fat sources with contrasting fatty acid profiles (rapeseed oil and lard) on hen performance, egg quality, and egg yolk retention of carotenoids. The [...] Read more.
In this study, we evaluated the effects of two wheat varieties with different carotenoid concentrations (Pexeso and Tercie) and two fat sources with contrasting fatty acid profiles (rapeseed oil and lard) on hen performance, egg quality, and egg yolk retention of carotenoids. The feed conversion ratio of hens that received Tercie wheat and lard in their diet were greater than those of hens that received other diets (p = 0.002). Greater (p ˂ 0.001) eggshell thickness and strength occurred when hens were fed a Pexeso wheat diet. Moreover, Pexeso wheat and lard increased lutein (p ˂ 0.001 and p = 0.001) and zeaxanthin (p ˂ 0.001 and p = 0.001) contents in egg yolks. The highest lutein retention (p = 0.010) occurred in the groups that received Pexeso wheat (46.4 and 47.4%), and the highest zeaxanthin retention (p = 0.011) occurred with a Pexeso wheat and lard diet (59.5%). The lowest lutein and zeaxanthin retention occurred in hens fed a Tercie wheat and rapeseed oil diet (23.6% for lutein retention and 24.1% for zeaxanthin retention). The Pexeso wheat and rapeseed oil diet increased the concentrations of α- and γ-tocopherol (p ˂ 0.001 and p ˂ 0.001) in egg yolks, which influenced the oxidative stability of the eggs. Compared with other diets, a Tercie wheat and rapeseed oil diet led to the lowest oxidative stability in fresh eggs (p = 0.041). In conclusion, Pexeso wheat had greater retention of biologically active substances and higher mineral contents than Tercie wheat, which was reflected in the performance of hens and the quality of eggs. The combination of Pexeso wheat with rapeseed oil, which is rich in tocopherols and polyunsaturated fatty acids and has a favorable n-6/n-3 ratio, increased the tocopherol content and the oxidative stability of egg yolk fats. Full article
(This article belongs to the Section Poultry)
16 pages, 8814 KiB  
Article
Effect of Plant Hormones and Preservative Solutions on Post-Harvest Quality and Physiological Senescence Parameters of Cut Leaves of Hosta Tratt. ‘Krossa Regal’ and Polygonatum multiflorum (L.) All. ‘Variegatum’
by Katarzyna Rubinowska, Paweł Szot, Elżbieta Pogroszewska, Irma Podolak and Dagmara Wróbel-Biedrawa
Agriculture 2025, 15(8), 842; https://doi.org/10.3390/agriculture15080842 - 14 Apr 2025
Viewed by 460
Abstract
In recent years, there has been growing interest in the use of native ground-grown perennials in floral compositions as cut greenery. The easily available plant materials that can replace some exotic species include Hosta leaves and the leafy shoots of Polygonatum multiflorum. [...] Read more.
In recent years, there has been growing interest in the use of native ground-grown perennials in floral compositions as cut greenery. The easily available plant materials that can replace some exotic species include Hosta leaves and the leafy shoots of Polygonatum multiflorum. Their vase life should be at least as long as that of the flowers, with which they are combined. In order to prolong the vase life of cut greenery, the conditioning of cut plant material in solutions of plant hormones (GA3 and BA) and commercial conditioning substances (8HQC and Chrysal Clear 2) is most commonly performed. The aim of this study was to evaluate the effect of different conditioning solutions on vase life and parameters indicating the progression of the senescence of plant materials. Cut Hosta leaves and leafy shoots of Polygonatum multiflorum were conditioned immediately after cutting for 24 h in aqueous solutions of benzyladenine (BA) and gibberellic acid (GA3), 8HQC standard medium with the addition of 2% sucrose and 1% Chrysal Clear 2 solution. The post-harvest storage and physiological senescence parameters of the plant materials were analyzed using the following indicators: the vase life, the relative water content (RWC), electrolyte leakage (EL), and thiobarbituric acid reactive substance (TBARS) and pigment contents (chlorophyll a, chlorophyll b, carotenoids, and anthocyanins). Conditioning Hosta leaves in a BA solution at 100 mg L−1 immediately after cutting more than doubles their post-harvest vase life. The longevity of P. multiflorum shoots can be effectively extended by storage in a BA solution of 400 mg L−1, for 24 h. Both the plant materials responded to the progressive aging process with the disruption of water management, a reduction in cytoplasmic membrane integrity, and a decrease in the plant pigment content. Tissue water retention in the Hosta leaves was most favorably affected by conditioning in the GA3 solution at a concentration of 400 mg L−1. The P. multiflorum shoots responded with tissue water retention to conditioning in 1% Chrysal Clear 2 solution. The conditioning of Hosta leaves in BA solution at 400 mg L−1 stabilized the cytoplasmic membranes and inhibited EL most effectively. In P. multiflorum, the lowest EL level was found as an effect of conditioning the shoots in GA3 solution at 200 mg L−1. The degradation of assimilation pigments was prevented by conditioning the Hosta leaves in GA3 solution at 200 mg L−1 and the P. multiflorum leafy shoots in GA3 solution, regardless of the concentration used. Although the prolongation of the vase life of the cut leaves and the shoots by up to 30 days was achieved, along with an improvement in the appearance of the plant materials, it was not possible to identify a single conditioner that had a positive effect on all the parameters studied. Full article
(This article belongs to the Section Crop Production)
Show Figures

Graphical abstract

21 pages, 1454 KiB  
Article
Amino Acid and Carotenoid Profiles of Chlorella vulgaris During Two-Stage Cultivation at Different Salinities
by Ana S. Pinto, Carolina Maia, Sara A. Sousa, Tânia Tavares and José C. M. Pires
Bioengineering 2025, 12(3), 284; https://doi.org/10.3390/bioengineering12030284 - 13 Mar 2025
Cited by 1 | Viewed by 1168
Abstract
Microalgae are valuable sources of bioactive compounds. However, their production requires strategies to enhance metabolic responses. This study explores how Chlorella vulgaris responds to different salinity conditions using a two-stage cultivation strategy, assessing the change in amino acid and carotenoid content on microalgae [...] Read more.
Microalgae are valuable sources of bioactive compounds. However, their production requires strategies to enhance metabolic responses. This study explores how Chlorella vulgaris responds to different salinity conditions using a two-stage cultivation strategy, assessing the change in amino acid and carotenoid content on microalgae over time. First, microalgae were cultivated under optimal conditions, followed by exposure to different salinity levels (150 mM and 300 mM NaCl). Growth kinetics, nutrient uptake, and biochemical composition were analysed, revealing distinct salinity-induced responses. Similar specific growth rates were achieved across all assays, while nitrate removal improved under salinity and phosphate uptake decreased. Amino acid profiling showed significant declines in the content of several compounds and carotenoid content also presented declining trends, although moderate salinity mitigated degradation in key pigments. Principal component analysis identified high correlations between amino acids and carotenoids contents, forming groups of compounds with similar variations. These findings contribute to a better understanding of the salinity-induced response of C. vulgaris, offering insights for biotechnology applications. By optimising cultivation conditions, salinity could enhance bioactive compound retention, supporting the development of sustainable microalgae-based products. Full article
(This article belongs to the Special Issue Advanced Effluents Bioprocessing for Nutrients and Energy Recovery)
Show Figures

Graphical abstract

20 pages, 1518 KiB  
Article
Comparative Evaluation of Qualitative and Nutraceutical Parameters in Fresh Fruit and Processed Products of ‘Lady Cot’ and Vesuvian ‘Pellecchiella’ Apricot Cultivars
by Aniello Falciano, Aurora Cirillo, Mariachiara Ramondini, Prospero Di Pierro and Claudio Di Vaio
Foods 2025, 14(6), 945; https://doi.org/10.3390/foods14060945 - 10 Mar 2025
Viewed by 1360
Abstract
Apricot cultivation plays a significant role in Italy’s agricultural landscape, with the country hosting a wide variety of traditional and international cultivars, and their cultivation, processing and transformation offer a wide margin for market expansion. Jam preparation is an ideal method to preserve [...] Read more.
Apricot cultivation plays a significant role in Italy’s agricultural landscape, with the country hosting a wide variety of traditional and international cultivars, and their cultivation, processing and transformation offer a wide margin for market expansion. Jam preparation is an ideal method to preserve apricots, and understanding their functional properties is crucial for achieving high-quality products. Vesuvian autochthonous cultivars, in particular, stand out for their unique organoleptic and nutraceutical traits, which are closely linked to the region’s pedo-climatic conditions. This study investigated two apricot cultivars, the Vesuvian ‘Pellecchiella’ and the international ‘Lady Cot’, to assess their physicochemical properties and evaluate the variation in bioactive components during the transformation process from fresh fruit to puree and jam. The two cultivars exhibited distinct phenotypic differences. The ‘Lady Cot’ produced larger fruits (61.04 g vs. 45.68 g for the ‘Pellecchiella’) with a redder epicarp coloration, making it more visually appealing for commercial purposes. Conversely, the ‘Pellecchiella’ showed higher total soluble solids (TSS) and lower titratable acidity (TA), resulting in a sweeter flavor profile that may be preferred by consumers. Specifically, the ‘Pellecchiella’ exhibited a significantly higher polyphenol content, with catechin and epicatechin levels higher by 338% and 167%, respectively. The study further analyzed the variation in nutraceutical components in the puree and jam (carotenoids, total polyphenols, and antioxidant activity by ABTS, DPPH and FRAP), throughout the processing stages. Both cultivars showed a reduction in these parameters during the transformation process. For instance, the total polyphenol content exhibited a similar reduction of approximately 61% in both cultivars. However, the ‘Pellecchiella’ retained higher values in the jam, reflecting its naturally higher initial levels in the fresh fruit, and showed higher Redness Index. Overall, the results highlight ‘Pellecchiella’ as a cultivar having superior nutraceutical properties and good bioactive compound retention during processing, making it a valuable choice for both fresh consumption and processed products. These findings have significant implications for the functional food sector, as they underscore the importance of cultivar selection and processing strategies to preserve valuable bioactive compounds. By leveraging the natural advantages of local cultivars like ‘Pellecchiella’, producers could develop premium jams or puree-based functional products aimed at health-conscious consumers. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

14 pages, 806 KiB  
Article
Stability of Fatty Acids, Tocopherols, and Carotenoids of Sea Buckthorn Oil Encapsulated by Spray Drying Using Different Carrier Materials
by Patricija Čulina, Sandra Balbino, Dubravka Vitali Čepo, Nikolina Golub, Ivona Elez Garofulić, Verica Dragović-Uzelac, Lijun You and Sandra Pedisić
Appl. Sci. 2025, 15(3), 1194; https://doi.org/10.3390/app15031194 - 24 Jan 2025
Cited by 2 | Viewed by 1232
Abstract
The aim of this study was to determine the retention of fatty acids, α-tocopherol, and carotenoids in sea buckthorn oil (SBO) encapsulated with gum arabic (GA), β-cyclodextrin (β-CD), and their mixture (1:1) under pre-optimized spray drying conditions in comparison to the bioactive molecule [...] Read more.
The aim of this study was to determine the retention of fatty acids, α-tocopherol, and carotenoids in sea buckthorn oil (SBO) encapsulated with gum arabic (GA), β-cyclodextrin (β-CD), and their mixture (1:1) under pre-optimized spray drying conditions in comparison to the bioactive molecule (BAM) content of the non-encapsulated oil. In addition, the color parameters in the spray-dried powders and the bioaccessibility of β-carotene, which has the highest provitamin A activity, were evaluated. The fatty acid content remained almost unchanged, while statistically significant differences in α-tocopherol and carotenoid content were found between the SBO encapsulated with different carriers and the non-encapsulated oil. The retention of tocopherols and carotenoids compared to the non-encapsulated SBO ranged from 62.13 to 87.23% and from 21.17 to 97.61%, respectively. SBO encapsulated with β-CD showed significantly higher retention of α-tocopherol (87.23%) and individual carotenoids (40.71–97.61%). In addition, the powders showed no significant differences in color parameters, and the powders encapsulated with GA and β-CD showed high bioaccessibility of β-carotene (92.50 and 90.45%, respectively). β-CD proved to be the most suitable carrier for the encapsulation of the carotenoids and α-tocopherol of SBO, resulting in powders with high bioaccessibility of β-carotene. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

15 pages, 1186 KiB  
Article
Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters
by Antonio Vega-Galvez, Patricio Orellana-Palma, Alexis Pasten, Elsa Uribe, Daniela Cortes and Manuel Carvajal
Processes 2025, 13(1), 90; https://doi.org/10.3390/pr13010090 - 2 Jan 2025
Viewed by 1274
Abstract
The effects of different mild drying conditions using various drying methods [freeze drying (FD), vacuum drying at 15 kPa pressure (VD15), vacuum drying at 1 kPa pressure (VD1), convective drying (CD), and infrared drying (IRD)] on drying kinetics, proximate composition, yield of extracted [...] Read more.
The effects of different mild drying conditions using various drying methods [freeze drying (FD), vacuum drying at 15 kPa pressure (VD15), vacuum drying at 1 kPa pressure (VD1), convective drying (CD), and infrared drying (IRD)] on drying kinetics, proximate composition, yield of extracted pectin, methoxyl content, sugar content, total carotenoids content, antioxidant potential, and color parameters of carrot wastes were examined experimentally. CD was the shortest drying treatment compared to the other drying processes, at 270 min, followed by IRD, VD1, FD, and VD15. The results showed a higher retention of pectin and carotenoids in CD-dried samples. Moreover, along with VD1, CD was able to maintain sucrose and antioxidant potential to a greater extent than other methods. Based on color parameters, FD and IRD had the most significant changes in relation to CIELab values, with ∆E* values close to 33 and 34 units, whereas VD15, VD1, and CD had values (without significant differences) close to 16, 18, and 21 units, respectively. Therefore, the current findings suggest that a short period of exposure of the waste to mild drying temperature conditions is essential for obtaining high-quality waste with potential for use in the food industry. Full article
(This article belongs to the Special Issue Advanced Drying Technologies in Food Processing)
Show Figures

Figure 1

Back to TopTop