Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Raw Materials and Drying Processes
2.2. Proximate Composition Analysis and Water Activity Measurement
2.3. Extraction and Characterization of Pectin from Carrot Waste
2.4. Sugar Content
2.5. Total Carotenoids Contents and Antioxidant Potential of Carrot Waste
2.5.1. Total Carotenoid Content (TCC)
2.5.2. Preparation of Extracts for Antioxidant Potential Measurement
2.5.3. 2,2′-Diphenyl-2-Picrylhydrazyl (DPPH) Assay
2.5.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.6. Surface Color
2.7. Statistical Analyses
3. Results and Discussion
3.1. Exploring Drying Curves of Carrot Waste
3.2. Proximate Composition and Water Activity of Carrot Waste
3.3. Pectin Yield and Pectin Characterization of Carrot Waste
3.4. Soluble Sugar Content of Carrot Waste
3.5. Total Carotenoid Contents and Antioxidant Potential of Carrot Waste
3.6. Surface Color of Carrot Waste
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvi, T.; Asif, Z.; Khan, M.K.I. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique—A review. Food Biosci. 2022, 46, 101580. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Oshiro, A.; Farias, F.O.; Haddad, F.F.; dos Santos, J.L.; Scarim, C.B.; Herculano, R.D.; Pessoa, A., Jr.; Santos-Ebinuma, V.C. Emerging role of bio-based solvents mixtures to increase the solubility and recovery of carotenoids from processed carrot wastes for potential skin care application. Ind. Crops Prod. 2023, 205, 117436. [Google Scholar] [CrossRef]
- Ramasamy, R.; Subramanian, P. Bioconversion of food waste to wealth-circular bioeconomy approach. In Biotechnology for Zero Waste: Emerging Waste Management Techniques; Hussain, C.M., Kadeppagari, R.K., Eds.; Wiley-VCH: Weinheim, Germany, 2022; pp. 421–438. [Google Scholar]
- Pietrangeli, R.; Cicatiello, C. Lost vegetables, lost value: Assessment of carrot downgrading and losses at a large producer organization. J. Clean. Prod. 2024, 478, 143873. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, B.K.; Han, J.A. Physical and functional properties of carrots differently cooked within the same hardness-range. LWT-Food Sci. Technol. 2018, 93, 346–353. [Google Scholar] [CrossRef]
- Keser, D.; Guclu, G.; Kelebek, H.; Keskin, M.; Soysal, Y.; Sekerli, Y.E.; Arslan, A.; Selli, S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC MS and LC–MS/MS. Food Bioprod. Process. 2020, 119, 350–359. [Google Scholar] [CrossRef]
- Jafari, F.; Khodaiyan, F.; Kiani, H.; Hosseini, S.S. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydr. Polym. 2017, 157, 1315–1322. [Google Scholar] [CrossRef] [PubMed]
- Clementz, A.; Torresi, P.A.; Molli, J.S.; Cardell, D.; Mammarella, E.; Yori, J.C. Novel method for valorization of by-products from carrot discards. LWT-Food Sci. Technol. 2019, 100, 374–380. [Google Scholar] [CrossRef]
- Rifna, E.J.; Misra, N.N.; Dwivedi, M. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 719–752. [Google Scholar] [CrossRef] [PubMed]
- Motegaonkar, S.; Shankar, A.; Tazeen, H.; Gunjal, M.; Payyanad, S. A comprehensive review on carrot (Daucus carota L.): The effect of different drying methods on nutritional properties and its processing as value-added foods. Sustain. Food Technol. 2024, 2, 667–688. [Google Scholar] [CrossRef]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Method of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 1. [Google Scholar]
- Qiu, L.P.; Zhao, G.L.; Wu, H.; Jiang, L.; Li, X.F.; Liu, J.J. Investigation of combined effects of independent variables on extraction of pectin from banana peel using response surface methodology. Carbohydr. Polym. 2010, 80, 326–331. [Google Scholar] [CrossRef]
- Biltekin, S.İ.; Demir, A.E.; Yanik, D.K.; Göğüş, F. A Novel and environmentally friendly technique for extracting pectin from black carrot pomace: Optimization of microwave-assisted high-pressure CO2/H2O and characterization of pectin. Food Bioprocess Technol. 2024, 1–14. [Google Scholar] [CrossRef]
- Djendoubi, N.; Bonazzi, C.; Boudhrioua, N.; Kechaou, N.; Courtois, F. Influence of sugar composition on water sorption isotherms and on glass transition in apricots. J. Food Eng. 2012, 111, 403–411. [Google Scholar] [CrossRef]
- Saleh, R.M.; Kulig, B.; Emiliozzi, A.; Hensel, O.; Sturm, B. Impact of critical control-point based intermittent drying on drying kinetics and quality of carrot (Daucus carota var. laguna). Therm. Sci. Eng. Prog. 2020, 20, 100682. [Google Scholar] [CrossRef]
- Bochnak, J.; Świeca, M. Potentially bioaccessible phenolics, antioxidant capacities and the colour of carrot, pumpkin and apple powders–effect of drying temperature and sample structure. Int. J. Food Sci. Technol. 2020, 55, 136–145. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Hogan, S.; Chung, H.; Welbaum, G.E.; Zhou, K. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 2010, 119, 592–599. [Google Scholar] [CrossRef]
- Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Dry. Technol. 2016, 34, 1286–1296. [Google Scholar] [CrossRef]
- Wang, C.; Kou, X.; Zhou, X.; Li, R.; Wang, S. Effects of layer arrangement on heating uniformity and product quality after hot air assisted radio frequency drying of carrot. Innov. Food Sci. Emerg. Technol. 2021, 69, 102667. [Google Scholar] [CrossRef]
- Elik, A. Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. Innov. Food Sci. Emerg. Technol. 2021, 73, 102800. [Google Scholar] [CrossRef]
- Özbek, H.N. Radio frequency-assisted hot air drying of carrots for the production of carrot powder: Kinetics and product quality. LWT-Food Sci. Technol. 2021, 152, 112332. [Google Scholar] [CrossRef]
- Santos, N.C.; Almeida, R.L.J.; Monteiro, S.S.; Andrade, E.W.V.; Saraiva, M.M.T.; Lima, T.L.B.; Nascimento, A.P.S.; Sousa, F.M.; Carvalho, R.O.; Gregório, M.G.; et al. Potential of drying carrot using ozone pre-treatment: Mass transfer modelling and techno-functional properties. Food Bioprod. Process. 2024, 146, 124–134. [Google Scholar] [CrossRef]
- Bao, X.; Min, R.; Zhou, K.; Traffano-Schiffo, M.V.; Dong, Q.; Luo, W. Effects of vacuum drying assisted with condensation on drying characteristics and quality of apple slices. J. Food Eng. 2023, 340, 111286. [Google Scholar] [CrossRef]
- Deng, L.Z.; Yang, X.H.; Mujumdar, A.S.; Zhao, J.H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.J.; Xiao, H.W. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Dry. Technol. 2018, 36, 893–907. [Google Scholar] [CrossRef]
- Zhao, C.C.; Ameer, K.; Eun, J.B. Effects of various drying conditions and methods on drying kinetics and retention of bioactive compounds in sliced persimmon. LWT-Food Sci. Technol. 2021, 143, 111149. [Google Scholar] [CrossRef]
- Liu, C.; Grimi, N.; Lebovka, N.; Vorobiev, E. Impacts of preliminary vacuum drying and pulsed electric field treatment on characteristics of fried potatoes. J. Food Eng. 2020, 276, 109898. [Google Scholar] [CrossRef]
- Kocabiyik, H.; Tezer, D. Drying of carrot slices using infrared radiation. Int. J. Food Sci. Technol. 2009, 44, 953–959. [Google Scholar] [CrossRef]
- Sujinda, N.; Varith, J.; Shamsudin, R.; Jaturonglumlert, S.; Chamnan, S. Development of a closed-loop control system for microwave freeze-drying of carrot slices using a dynamic microwave logic control. J. Food Eng. 2021, 302, 110559. [Google Scholar] [CrossRef]
- Silva, A.C.C.; Schmidt, F.C. Intensification of freeze-drying rate of coffee extract by vacuum freezing. Innov. Food Sci. Emerg. Technol. 2022, 78, 103022. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Al-Amin, M.; Hossain, M.S.; Iqbal, A. Effect of pre-treatments and drying methods on dehydration and rehydration characteristics of carrot. Univers. J. Food Nutr. Sci. 2015, 3, 23–28. [Google Scholar] [CrossRef]
- de Souza, A.U.; Corrêa, J.L.G.; Tanikawa, D.H.; Abrahão, F.R.; Junqueira, J.R.; Jiménez, E.C. Hybrid microwave-hot air drying of the osmotically treated carrots. LWT-Food Sci. Technol. 2022, 156, 113046. [Google Scholar] [CrossRef]
- Thakur, P.; Saini, R.; Suthar, P.; Dhiman, A.; Kumar, S. Comparative evaluation of tray and microwave drying of black carrot (Daucus carota L.): Effects on physicochemical, phytochemical and techno-functional properties. J. Indian Chem. Soc. 2024, 101, 101327. [Google Scholar] [CrossRef]
- Darfour, B.; Ofori, H.; Asare, I.K. Gamma irradiation and drying method: The effects on kola nut powder. Radiat. Phys. Chem. 2021, 185, 109489. [Google Scholar] [CrossRef]
- Mongi, R.J.; Ngoma, S.J. Effect of solar drying methods on proximate composition, sugar profile and organic acids of mango varieties in Tanzania. Appl. Food Res. 2022, 2, 100140. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, L.; Sharanagat, V.S.; Mani, S.; Kumar, S.; Kumar, A. Quality attributes of convective hot air-dried spine gourd (Momordica dioica Roxb. Ex Willd) slices. Food Chem. 2021, 347, 129041. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Liu, B.; Wu, B.; Guo, Y.; Song, C.; Nan, S.; Dai, J.; Shen, Y.; Ma, H. A Study on the effect mechanism of pectin modification on the carrot cell wall’s texture formation under ultrasonic and infrared drying. Agriculture 2024, 14, 803. [Google Scholar] [CrossRef]
- Dranca, F.; Mironeasa, S. Hot-air drying vs. lyophilization of sugar beet flakes for efficient pectin recovery and influence of extraction conditions on pectin physicochemical properties. Int. J. Biol. Macromol. 2024, 265, 131063. [Google Scholar] [CrossRef]
- Roman-Benn, A.; Contador, C.A.; Li, M.W.; Lam, H.M.; Ah-Hen, K.; Ulloa, P.E.; Ravanal, M.C. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chem. Adv. 2023, 2, 100192. [Google Scholar] [CrossRef]
- De Laet, E.; Bernaerts, T.; Ares, J.N.; De Cock, K.; Goos, P.; Van Loey, A.M. Influence of ultrasound-assisted extraction on the pectin extraction yield and structural characteristics: A case study on carrot pomace (Daucus carota). Food Bioprod. Process. 2024, 148, 309–320. [Google Scholar] [CrossRef]
- Lemmens, L.; Tibäck, E.; Svelander, C.; Smout, C.; Ahrné, L.; Langton, M.; Alminger, M.; Van Loey, A.; Hendrickx, M. Thermal pretreatments of carrot pieces using different heating techniques: Effect on quality related aspects. Innov. Food Sci. Emerg. Technol. 2009, 10, 522–529. [Google Scholar] [CrossRef]
- Imaizumi, T.; Szymanska-Chargot, M.; Pieczywek, P.M.; Chylinska, M.; Kozioł, A.; Ganczarenko, D.; Tanaka, F.; Uchino, T.; Zdunek, A. Evaluation of pectin nanostructure by atomic force microscopy in blanched carrot. LWT-Food Sci. Technol. 2017, 84, 658–667. [Google Scholar] [CrossRef]
- Aubert, C.; Bruaut, M.; Chalot, G. Spatial distribution of sugars, organic acids, vitamin C, carotenoids, tocopherols, 6-methoxymellein, polyacetylenic compounds, polyphenols and terpenes in two orange Nantes type carrots (Daucus carota L.). J. Food Compost. Anal. 2022, 108, 104421. [Google Scholar] [CrossRef]
- Tian, Z.; Dong, T.; Wang, S.; Sun, J.; Chen, H.; Zhang, N.; Wang, S. A comprehensive review on botany, chemical composition and the impacts of heat processing and dehydration on the aroma formation of fresh carrot. Food Chem. X 2024, 22, 101201. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Q.; Liu, W.; Xiao, H.; Hu, J.; Duan, X.; Sun, X.; Liu, C.; Wang, H. Changes and correlation analysis of volatile flavor compounds, amino acids, and soluble sugars in durian during different drying processes. Food Chem. X 2024, 21, 101238. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.T.; Ruan, K.H.; Xu, H.B.; Liu, H.B.; Tang, Z.S.; Yang, Y.G.; Duan, J.A.; Sun, X.X.; Wang, M.; Song, Z.X. Effect of different drying methods on the drying characteristics, chemical properties and antioxidant capacity of Ziziphus jujuba var. Spinosa fruit. LWT-Food Sci. Technol. 2024, 196, 115873. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, Q.; Gou, M.; Wu, X.; Bi, J. Influence of different pre-treatments on flavor quality of freeze-dried carrots mediated by carotenoids and metabolites during 120-day storage. Food Res. Int. 2023, 170, 113050. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.H.; Wojdyło, A.; Lech, K.; Masztalerz, K.; Nowicka, P. The effect of combined drying process (OD-CD-VMD) on nutritional, phytochemical, and sensory profiles, and biological activities of colored dried carrot. LWT-Food Sci. Technol. 2023, 173, 114231. [Google Scholar] [CrossRef]
- Yusuf, E.; Tkacz, K.; Turkiewicz, I.P.; Wojdyło, A.; Nowicka, P. Analysis of chemical compounds’ content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. Eur. Food Res. Technol. 2021, 247, 3053–3062. [Google Scholar] [CrossRef]
- Singh, D.P.; Beloy, J.; McInerney, J.K.; Day, L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 2012, 132, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.K.; Van Chuyen, H.; Vuong, Q.V. Physical properties, carotenoids and antioxidant capacity of carrot (Daucus carota L.) peel as influenced by different drying treatments. Int. J. Food Eng. 2018, 14, 20170042. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Y.; Guo, X.; Guo, Y.; Qiu, C.; Gao, K.; Ma, H.; Pan, Z. Catalytic infrared blanching and drying of carrot slices with different thicknesses: Effects on surface dynamic crusting and quality characterization. Innov. Food Sci. Emerg. Technol. 2023, 88, 103444. [Google Scholar] [CrossRef]
- Nowacka, M.; Wedzik, M. Effect of ultrasound treatment on microstructure, colour and carotenoid content in fresh and dried carrot tissue. Appl. Acoust. 2016, 103, 163–171. [Google Scholar] [CrossRef]
- Akter, J.; Hassan, J.; Rahman, M.M.; Biswas, M.S.; Khan, H.I.; Rajib, M.M.R.; Ahmed, M.R.; Khan, N.-E.-A.; Hasan, F.A. Colour, nutritional composition and antioxidant properties of dehydrated carrot (Daucus carota var. sativus) using solar drying techniques and pretreatments. Heliyon 2024, 10, e24165. [Google Scholar] [CrossRef]
Drying Method | Dryer and Drying Conditions | Drying Time |
---|---|---|
| The samples were pre-frozen at −80 °C prior to FD. Freeze-dryer (Friologic, Given one 5K, Santiago, Chile); condenser temperature: −55 °C; Vacuum pressure: 0.027; Secondary drying: 25 °C | 840 min |
| Vacuum dryer (Memmert VO 400, Schwabach, Germany); Vacuum pressure: 15 kPa; Drying temperature: 40 °C | 870 min |
| Vacuum dryer (Memmert VOcool 400, Schwabach, Germany); Vacuum pressure: 1 kPa; Drying temperature: 40 °C | 660 min |
| Convective dryer oven (custom-made equipment); Air speed: 1.5 m/s; Drying temperature: 40 °C | 270 min |
| Infrared dryer oven (custom-made equipment); Radiant source: 175-Watt IR lamps; Distance from radiant source: 18 cm | 420 min |
Parameters (g/100 g d.m.) | Drying Methods | |||||
---|---|---|---|---|---|---|
Fresh | FD | VD15 | VD1 | CD | IRD | |
Moisture ‡ | 89.15 ± 0.28 a | 4.15 ± 0.06 f | 8.63 ± 0.26 b | 8.02 ± 0.08 c | 6.85 ± 0.09 d | 6.50 ± 0.07 e |
Lipid | 2.14 ± 0.08 b | 2.14 ± 0.10 b | 1.77 ± 0.18 c | 1.87 ± 0.14 c | 2.75 ± 0.13 a | 1.74 ± 0.10 c |
Ash | 7.15 ± 0.77 ab | 6.84 ± 0.34 bc | 6.52 ± 0.20 bc | 6.13 ± 0.53 bc | 6.47 ± 0.38 bc | 7.80 ± 0.34 a |
Protein | 7.60 ± 0.30 d | 9.75 ± 0.23 c | 10.00 ± 0.18 bc | 12.62 ± 1.23 a | 11.21 ± 0.81 b | 13.25 ± 0.91 a |
Crude fiber | 13.96 ± 0.13 a | 6.24 ± 0.03 c | 3.77 ± 0.25 e | 3.53 ± 0.17 e | 6.79 ± 0.48 b | 4.71 ± 0.31 d |
aw * | 0.989 ± 0.001 a | 0.310 ± 0.004 d | 0.426 ± 0.004 b | 0.420 ± 0.009 b | 0.419 ± 0.006 b | 0.394 ± 0.002 c |
CIELab Parameter | Drying Methods | |||||
---|---|---|---|---|---|---|
Fresh | FD | VD15 | VD1 | CD | IRD | |
L* | 49.10 ± 0.94 f | 73.57 ± 0.17 a | 61.62 ± 0.16 e | 62.96 ± 0.20 d | 65.98 ± 0.11 c | 70.40 ± 0.36 b |
a* | 37.68 ± 1.31 a | 25.24 ± 0.28 e | 33.79 ± 0.17 b | 31.78 ± 0.24 c | 30.82 ± 0.11 d | 19.57 ± 0.35 f |
b* | 48.63 ± 1.45 a | 30.87 ± 0.48 e | 40.51 ± 0.27 b | 38.36 ± 0.28 c | 37.78 ± 0.25 d | 28.69 ± 0.31 f |
∆E* | - | 32.75 ± 0.77 b | 15.55 ± 0.59 e | 18.36 ± 0.78 d | 21.31 ± 0.66 c | 34.39 ± 1.35 a |
h°ab | 52.23 ± 0.25 b | 50.73 ± 0.14 c | 50.17 ± 0.09 d | 50.36 ± 0.06 d | 50.80 ± 0.12 c | 55.70 ± 0.21 a |
C* ab | 61.52 ± 1.94 a | 39.88 ± 0.55 e | 52.75 ± 0.30 b | 49.82 ± 0.37 c | 48.76 ± 0.25 d | 34.73 ± 0.45 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Galvez, A.; Orellana-Palma, P.; Pasten, A.; Uribe, E.; Cortes, D.; Carvajal, M. Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters. Processes 2025, 13, 90. https://doi.org/10.3390/pr13010090
Vega-Galvez A, Orellana-Palma P, Pasten A, Uribe E, Cortes D, Carvajal M. Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters. Processes. 2025; 13(1):90. https://doi.org/10.3390/pr13010090
Chicago/Turabian StyleVega-Galvez, Antonio, Patricio Orellana-Palma, Alexis Pasten, Elsa Uribe, Daniela Cortes, and Manuel Carvajal. 2025. "Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters" Processes 13, no. 1: 90. https://doi.org/10.3390/pr13010090
APA StyleVega-Galvez, A., Orellana-Palma, P., Pasten, A., Uribe, E., Cortes, D., & Carvajal, M. (2025). Mild Temperature Conditions Applied to Carrot (Daucus carota L.) Waste Using Different Drying Methods: Effect on the Kinetics and Some Chemical Parameters. Processes, 13(1), 90. https://doi.org/10.3390/pr13010090