Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Design
2.3. Chuño Production Process
2.4. Evaluation of the Physicochemical and Bioactive Characteristics of Chuño Obtained from Different Potato Varieties and Freezing Temperatures
2.4.1. Physicochemical Characterization
2.4.2. Total Phenolic Compounds
2.4.3. Antioxidant Capacity
2.5. Nutritional and Techno-Functional Characterization of Selected Chuño Experiments
2.5.1. Proximate Composition
2.5.2. Amylose and Amylopectin Content
2.5.3. Mineral Quantification
2.5.4. Techno-Functional Characteristics
2.6. Statistical Analysis
3. Results
3.1. Physicochemical and Bioactive Characteristics of Chuño Obtained from Different Potato Varieties and Freezing Temperatures
3.2. Nutritional and Techno-Functional Characteristics of Selected Chuño Samples
3.3. Multivariate Analysis of Pearson Correlations and Principal Component Patterns (PCA)
4. Discussion
4.1. Effects of Potato Variety and Freezing Temperature on Chuño Characteristics
4.2. Nutritional and Techno-Functional Potential of Andean Peruvian Potato Chuño
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yábar-Villanueva, E.; Huicho-Espinoza, W.; Suazo-Peña, A.; Rojas-Zacarías, E.; Álvarez-Tolentino, D. Biocomponentes y Capacidad Antioxidante de Papas Nativas Como Chuño y Tunta Bajo Diferentes Condiciones de Temperatura de Congelación. Cienc. Tecnol. Agropecu. 2023, 24, 17. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Apaza, F. Unfrozen State by the Supercooling of Chuño for Traditional Agriculture in Altiplano Andes. Environ. Sustain. Indic. 2020, 8, 100063. [Google Scholar] [CrossRef]
- Werge, R.W. Potato Processing in the Central Highlands of Peru. Ecol. Food Nutr. 1979, 7, 229–234. [Google Scholar] [CrossRef]
- Galarza, M.M.; Nacional, U.; De, M.; Marcos, S. La Importancia Del Chuño Para Las Sociedades Andinas Del Pasado y La Actualidad. Ñawpa Marca 2021, 1, 9–18. [Google Scholar] [CrossRef]
- Biwer, M.E.; Melton, M.A. Starch Granule Evidence for the Presence of Chuño at the Middle Horizon (A.D. 600–1000) Site of Quilcapampa La Antigua, Peru. J. Archaeol. Sci. Rep. 2022, 45, 103604. [Google Scholar] [CrossRef]
- de Haan, S.; Burgos, G.; Arcos, J.; Ccanto, R.; Scurrah, M.; Salas, E.; Bonierbale, M. Traditional Processing of Black and White Chuño in the Peruvian Andes: Regional Variants and Effect on the Mineral Content of Native Potato Cultivars. Econ. Bot. 2010, 64, 217–234. [Google Scholar] [CrossRef]
- Valdivieso Molina, F.; Mollinedo, P. Formación de Almidón Retrogradado Relacionado a Niveles de Amilosa En El Almidón de Papa (Solanum tuberosum) y Chuño. Rev. Con-Cienc. 2021, 9, 84–102. Available online: http://www.scielo.org.bo/pdf/rcfb/v9n2/2310-0265-rcfb-9-02-84.pdf (accessed on 28 April 2025).
- Jéquier, E. Carbohydrates as a Source of Energy. Am. J. Clin. Nutr. 1994, 59, 682S–685S. [Google Scholar] [CrossRef]
- Manzanera, E.; Vega, R. Artículo Original Un Estudio Sobre La Ingesta de Energía, Perfil Calórico y Contribución de Las Fuentes Alimentarias a La Dieta de Futuras Maestras A Study on Energy Intake, Profile, and Dietary Sources in the Future Teachers. Nutr. Clín. Diet. Hosp. 2017, 37, 57–66. [Google Scholar] [CrossRef]
- Cabezas-Zábala, C.; Hernández-Torres, C.; Vargas-Zárate, M. Aceites y Grasas: Efectos En La Salud y Regulación Mundial Fat and Oils: Effects on Health and Global Regulation. Rev. Fac. Med. 2016, 64, 761–769. [Google Scholar] [CrossRef]
- Escudero, E.; González, P. La Fibra Dietética Correspondencia. Nutr. Hosp. 2006, 21, 61–72. [Google Scholar]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef]
- Cruz-Lauracio, J.; Flores-Lujano, F.; Ávila-Choque, R. Análisis de Los Beneficios Económicos de Los Productores de Papa Deshidratada—Chuño Blanco y Seguridad Alimentaria, Puno—Perú. Gest. Rev. Empresa Gob. 2024, 4, 19–35. [Google Scholar] [CrossRef]
- Mosquera, F.; Duque, S.; Producción, D. Producción del chuno (chuño) a partir de la papa cultivada en la comunidad de Pucará y su vínculo con la gastronomia. Rev. Digit. Espac. I+D. 2023, 12. Available online: https://espacioimasd.unach.mx/index.php/Inicio/article/view/349 (accessed on 20 February 2025).
- Yamdeu Galani, J.H.; Mankad, P.M.; Shah, A.K.; Patel, N.J.; Acharya, R.R.; Talati, J.G. Effect of Storage Temperature on Vitamin C, Total Phenolics, UPLC Phenolic Acid Profile and Antioxidant Capacity of Eleven Potato (Solanum tuberosum) Varieties. Hortic. Plant J. 2017, 3, 73–89. [Google Scholar] [CrossRef]
- Obadi, M.; Xu, B. Review on the Physicochemical Properties, Modifications, and Applications of Starches and Its Common Modified Forms Used in Noodle Products. Food Hydrocoll. 2021, 112, 106286. [Google Scholar] [CrossRef]
- Martínez, P.; Málaga, A.; Betalleluz, I.; Ibarz, A.; Velezmoro, C. Caracterización Funcional de Almidones Nativos Obtenidos de Papas (Solanum phureja) Nativas Peruanas Functional Characterization on Native Starch of Peruvian Native Potatoes (Solanum Phureja) Facultad de Ciencias Agropecuarias. Sci. Agropecu. 2015, 6, 291–301. [Google Scholar] [CrossRef]
- Guardia, S. Gastronomía Peruana Patrimonio Cultural de La Humanidad, 1st ed.; Guardia, S.B., Ed.; Cátedra UNESCO Patrimonio cultural y Turismo Sostenible de la Universidad de San Martin de Porres: Lima, Peru, 2020; Volume 1, ISBN 978-6124460-26-5. [Google Scholar]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2024. [Google Scholar]
- Sepúlveda Rincón, C.T.; Ciro Gómez, G.L.; Zapata Montoya, J.E. Extracción de Compuestos Fenólicos y Actividad Antioxidante de Hojas de Bixa Orellana, L. (Achiote). Rev. Cuba. Plantas Med. 2016, 21, 133–144. [Google Scholar]
- Contreras López, E.; Muñoz, A.M.; Fernández Jerí, Y.; Anaya-Meléndez, F. Actividad Antioxidante, Compuestos Fenólicos y Evaluación Sensorial de Formulaciones Para Infusión a Base de Cáscara de Snaky (Corryocactus brevistylus) y Canela (Cinnamomum verum). Rev. Soc. Química Perú 2022, 88, 13–24. [Google Scholar] [CrossRef]
- Aristizábal, J.; Sánchez Autoras, T.; Lorío, D.M. Guía Técnica Para Producción y Análisis de Almidón de Yuca; Food and Agriculture Organization: Roma, Italy, 2007. [Google Scholar]
- EPA Method 3050B: Acid Digestion of Sediments, Sludges, and Soils. Available online: https://www.epa.gov/esam/epa-method-3050b-acid-digestion-sediments-sludges-and-soils (accessed on 17 April 2025).
- Manjarres, G.; Castro, A.; Gil, J.; Lopez, J.; Rodriguez, E. Vista de Efectos Del Reemplazo Parcial de Harina de Trigo Con Harina de Banano Verde Sobre Las Propiedades Reológicas de La Masa y Las Propiedades de Calidad de Pan. Investig. Innovación Ing. 2024, 12, 45–54. [Google Scholar]
- Ortiz-Cruz, R.A.; Ramírez-Wong, B.; Sánchez-Machado, D.I.; Ledesma-Osuna, A.I.; Torres-Chávez, P.I.; Montaño-Leyva, B.; López-Cervantes, J. Estabilidad Oxidativa y Contenido de Compuestos Fenólicos Durante El Almacenamiento Del Salvado de Sorgo (Sorghum bicolor (L.) Moench) Extrudido. TIP. Rev. Espec. Cienc. Químico-Biológicas 2021, 24, 1–10. [Google Scholar] [CrossRef]
- Quiñones, M.; Miguel, M.; Aleixandre, A. Revisión Los Polifenoles, Compuestos de Origen Natural Con Efectos Saludables Sobre El Sistema Cardiovascular. Nutr. Hosp. 2012, 27, 76–89. [Google Scholar] [CrossRef]
- Rengifo, L.; Rodnóñez, E. Efecto de La Temperatura En La Capacidad de Retención de Agua y PH En Carne de Res, Cerdo, Pollo, Ovino, Conejo y Pescado Paco. Rev. ECIPerú 2010, 7, 9. [Google Scholar]
- Raimann, B.E.; Cornejo, E.V. Defectos de La Oxidación de Ácidos Grasos Como Causa de Hipoglucemia No Cetósica En El Niño. Rev. Chil. Nutr. 2007, 34, 28–34. [Google Scholar] [CrossRef]
- Goldfein, K.R.; Slavin, J.L. Why Sugar Is Added to Food: Food Science 101. Compr. Rev. Food Sci. Food Saf. 2015, 14, 644–656. [Google Scholar] [CrossRef]
- Dotel, S.; Pozo, P.; José Boluda, C.; Rodríguez-Rodríguez, Y. Evaluación de La Acidez En Vinagres Comercializados En La República Dominicana. Cienc. Ambiente Clima 2019, 2, 43–52. [Google Scholar] [CrossRef]
- Vázquez-Herrera, P.; Taboada-Gaytán, O.R.; Vázquez-Herrera, P.; Taboada-Gaytán, O.R. El Almacenamiento Prolongado Afecta La Calidad Nutricional y El Tiempo de Cocción Del Frijol Ayocote. Rev. Mex. Cienc. Agric. 2023, 14. [Google Scholar] [CrossRef]
- Melquíades, Y.I.; López, C.; Rosas, M.E. Estudio de La Cinética de Rehidratación de Zanahoria (Daucus carota) Deshidratadas. Inf. Tecnológica 2009, 20, 65–72. [Google Scholar] [CrossRef]
- Torres-González, J.D.; Acevedo-Correa, D.; Montero-Castillo, P.M. Influencia Del Almacenamiento En La Textura y Viscoelasticidad de Bollos de Maíz Cariaco Blanco. Cienc. Tecnol. Agropecu. 2016, 17, 403–416. [Google Scholar] [CrossRef]
- Villarroel, P.; Gómez, C.; Vera, C.; Torres, J. Almidón Resistente: Características Tecnológicas e Intereses Fisiológicos. Rev. Chil. Nutr. 2018, 45, 271–278. [Google Scholar] [CrossRef]
- Marmolejo, D.; Ruiz, J. Tolerancia de Papas Nativas (Solanum spp.) a Heladas En El Contexto De Cambio Climático. Sci. Agropecu. 2018, 9, 393–400. [Google Scholar] [CrossRef]
- Francisco, J.; Novillo, F. Efectos Del Tiempo de Congelación En Las Características Bromatológicas de Arazá (Eugenia stipitata) Aplicando Modelos Matemáticos. Rev. Alfa 2024, 8, 331–343. [Google Scholar] [CrossRef]
- Moreno, F.; Martin, J.; Arrue, J. Relationships between Texture and Water Holding Capacity, En the Range PF 4.2 U.O. in Western Andalusia Soils. SCIC 1976, 37, 335–344. [Google Scholar]
- Peñarrieta, J.M.; Alvarado, K.J.A.; Bravo, J.A.; Bergenståhl, B. Chuño and Tunta; The Traditional Andean Sun-Dried Potatoes. In Potatoes: Production, Consumption and Health Benefits; Nova Science Publishers: New York, NY, USA, 2012; pp. 1–12. [Google Scholar]
- López-Marín, B.E.; Noguera-Córdoba, D.F.; Aragón-Rincón, J.C. Efecto de La Congelación Sobre Los Polifenoles y Capacidad Antioxidante Del Fruto de Syzygium paniculatum (Eugenio). Rev. Colomb. Investig. Agroind. 2024, 11, 32–41. [Google Scholar] [CrossRef]
- Grover, Y.; Negi, P.S. Recent Developments in Freezing of Fruits and Vegetables: Striving for Controlled Ice Nucleation and Crystallization with Enhanced Freezing Rates. J. Food Sci. 2023, 88, 4799–4826. [Google Scholar] [CrossRef] [PubMed]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Epstein, W. The Roles and Regulation of Potassium in Bacteria. Prog. Nucleic Acid Res. Mol. Biol. 2003, 75, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.; Gautam, S.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Variation and Genetic Basis of Mineral Content in Potato Tubers and Prospects for Genomic Selection. Front. Plant Sci. 2023, 14, 1301297. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Meléndes-Martínez, A.; Vicario, I.; Heredia, F. Estabilidad de Los Pigmentos Carotenoides En Los Alimentos. Arch. Latinoam. Nutr. 2004, 54, 209–215. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0004-06222004000200011&lng=es (accessed on 28 April 2025).
- Solarte-Montúfar, J.G.; Díaz-Murangal, A.E.; Osorio-Mora, O.; Mejía-España, D.F. Propiedades Reológicas y Funcionales Del Almidón. Procedente de Tres Variedades de Papa Criolla. Inf. Tecnológica 2019, 30, 35–44. [Google Scholar] [CrossRef]
- Chakraborty, I.; Govindaraju, I.; Kunnel, S.; Managuli, V.; Mazumder, N. Effect of Storage Time and Temperature on Digestibility, Thermal, and Rheological Properties of Retrograded Rice. Gels 2023, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Karakelle, B.; Kian-Pour, N.; Toker, O.S.; Palabiyik, I. Effect of Process Conditions and Amylose/Amylopectin Ratio on the Pasting Behavior of Maize Starch: A Modeling Approach. J. Cereal Sci. 2020, 94, 102998. [Google Scholar] [CrossRef]
- Natividad, Á.; Muñoz, S.; Villanueva, J.; Rojas, R.; Chamorro, R.; Cueto, C.; Bravo, J.; Beraun, J.; Mendoza, A. Caracterización Fisicoquímica de Cuatro Variedades de Papas Nativas (Solanum tuberosum) Con Aptitud Para Fritura, Cuñtivadas En Dos Zonas En Huanuco. Rev. Soc. Química Perú 2013, 88, 237–250. [Google Scholar] [CrossRef]
- Katunzi-Kilewela, A.; Mongi, R.J.; Kaale, L.D.; Kibazohi, O.; Fortunatus, R.M.; Rweyemamu, L.M. Sensory Profile, Consumer Acceptability and Preference Mapping of Cassava-Chia Seeds Composite Porridges. Appl. Food Res. 2022, 2, 100038. [Google Scholar] [CrossRef]
Potato Variety | Freezing Temperature (°C) | ||
---|---|---|---|
−10 | −20 | −30 | |
Puka Huayro Machu | P(−10) | P(−20) | P(−30) |
Yana Chihuanki | C(−10) | C(−20) | C(−30) |
Yana Huayro Machu | Y(−10) | Y(−20) | Y(−30) |
Characteristic | sum_sq | df | F | PR (>F) | Interpretation 1 | |
---|---|---|---|---|---|---|
pH | Block | 0.01098 | 1 | 3.367793 | 0.072683 | NS |
Variety | 1.235915 | 2 | 189.5467 | 1.65 × 10−23 | S | |
Temperature | 0.102959 | 2 | 15.7904 | 5.38 × 10−6 | S | |
Residual | 0.156489 | 48 | ||||
Acidity | Block | 0.011374 | 1 | 0.674253 | 0.415632 | NS |
Variety | 0.708038 | 2 | 20.98633 | 2.83 × 10−7 | S | |
Temperature | 0.483072 | 2 | 14.31833 | 1.33 × 10−5 | S | |
Residual | 0.809713 | 48 | ||||
Moisture | Block | 2.925304 | 1 | 0.563877 | 0.456368 | NS |
Variety | 8.24633 | 2 | 0.794775 | 0.457537 | NS | |
Temperature | 465.6147 | 2 | 44.87557 | 1.03 × 10−11 | S | |
Residual | 249.0164 | 48 | ||||
Total Phenolics Compounds | Block | 1.97 × 10−6 | 1 | 0.254889 | 0.615964 | NS |
Variety | 0.000543 | 2 | 35.16157 | 3.95 × 10−10 | S | |
Temperature | 0.000283 | 2 | 18.28835 | 1.25 × 10−6 | S | |
Residual | 0.000371 | 48 | ||||
Antioxidant Capacity (% inhib.) | Block | 12.91063 | 1 | 1.688428 | 0.200015 | NS |
Variety | 33.89291 | 2 | 2.216226 | 0.120057 | NS | |
Temperature | 71.44007 | 2 | 4.6714 | 0.014005 | S | |
Residual | 367.0338 | 48 | ||||
Antioxidant Capacity (mmET) | Block | 0.068892 | 1 | 3.837632 | 0.055937 | NS |
Variety | 0.03043 | 2 | 0.847557 | 0.434772 | NS | |
Temperature | 0.152907 | 2 | 4.258812 | 0.019832 | S | |
Residual | 0.861687 | 48 |
Characteristics | P(−20) | P(−30) | C(−10) | C(−20) |
---|---|---|---|---|
Proximate composition | ||||
Carbohydrates | 83.10 ± 0.28 b | 81.37 ± 0.10 c | 89.19 ± 0.04 a | 84.97 ± 0.06 b |
Fiber | 0.98 ± 0.04 | 1.04 ± 0.06 | 0.90 ± 0.01 | 1.00 ± 0.06 |
Protein | 3.14 ± 0.08 b | 3.00 ± 0.11 b | 3.26 ± 0.05 b | 4.06 ± 0.00 a |
Fat | 0.18 ± 0.00 c | 0.25 ± 0.01 b | 0.31 ± 0.01 a | 0.12 ± 0.01 d |
Ash | 2.13 ± 0.08 b | 2.33 ± 0.07 a | 1.66 ± 0.11 c | 1.96 ± 0.08 b |
Moisture | 4.45 ± 0.23 b | 12.00 ± 0.02 a | 4.67 ± 0.11 c | 7.89 ± 0.09 b |
Amylose | 13.87 ± 0.06 b | 13.16 ± 0.07 c | 14.24 ± 0.03 b | 15.63 ± 0.03 a |
Amylopectin | 86.12 ± 0.06 a | 86.83 ± 0.07 a | 85.75 ± 0.03 b | 84.36 ± 0.03 c |
Minerals | ||||
Ca | 752.00 ± 0.01 b | 723.80 ± 0.01 c | 793.30 ± 0.01 a | 688.90 ± 0.01 d |
Fe | 24.26 ± 0.07 b | 25.35 ± 0.07 b | 22.99 ± 0.07 c | 25.83 ± 0.07 a |
K | 6698.00 ± 0.06 b | 6785.00 ± 0.06 a | 5887.00 ± 0.06 c | 5919.00 ± 0.06 c |
Mg | 532.50 ± 0.03 c | 536.40 ± 0.03 b | 572.70 ± 0.03 a | 574.00 ± 0.03 a |
Mn | 6.81 ± 0.01 b | 6.82 ± 0.01 b | 7.66 ± 0.01 a | 7.68 ± 0.01 a |
Na | 81.24 ± 0.01 b | 84.66 ± 0.01 a | 76.61 ± 0.01 c | 80.27 ± 0.01 b |
Zn | 14.02 ± 0.07 c | 15.95 ± 0.07 b | 17.50 ± 0.07 a | 18.98 ± 0.07 a |
Instrumental color | ||||
a* | 14.42 ± 0.12 a | 14.30 ± 0.12 a | 7.53 ± 0.02 b | 7.65 ± 0.03 b |
b* | 20.40 ± 0.15 b | 21.50 ± 0.15 b | 29.60 ± 0.02 a | 30.08 ± 0.01 a |
L* | 98.01 ± 0.10 a | 99.11 ± 0.10 a | 88.72 ± 0.05 b | 87.38 ± 0.02 b |
WAI | 3.55 ± 0.10 a | 3.34 ± 0.10 ab | 3.29 ± 0.03 ab | 2.88 ± 0.08 b |
WSI | 1.65 ± 0.25 b | 1.44 ± 0.25 b | 2.85 ± 0.08 a | 3.07 ± 0.45 a |
SP | 3.59 ± 0.10 a | 3.38 ± 0.10 ab | 3.39 ± 0.02 ab | 2.97 ± 0.10 b |
Characteristic | sum_sq | F | PR (>F) | Interpretation 1 |
---|---|---|---|---|
Proximate composition | ||||
Moisture | 114.6167 | 1957.124 | 8.43 × 10−12 | S |
Ash | 0.710347 | 27.61945 | 0.000143 | S |
Fiber | 0.033052 | 3.867249 | 0.055968 | NS |
Fat | 0.063882 | 80.49628 | 2.57 × 10−6 | S |
Protein | 2.031822 | 109.175 | 7.88 × 10−7 | S |
Carbohydrates | 133.7584 | 1817.388 | 1.13 × 10−11 | S |
Amylose | 9.676322 | 913.55 | 1.76 × 10−10 | S |
Amylopectin | 9.676322 | 913.55 | 1.76 × 10−10 | S |
Minerals | ||||
Ca | 17,547.35 | 39,744,838 | 4.99 × 10−29 | S |
Fe | 14.35513 | 757.6866 | 3.72 × 10−10 | S |
K | 2,121,232 | 1.53 × 108 | 2.26 × 10−31 | S |
Mg | 4574.59 | 1,212,856 | 5.75 × 10−23 | S |
Mn | 2.19927 | 3875.365 | 5.5 × 10−13 | S |
Na | 98.78711 | 140,522.2 | 3.19 × 10−19 | S |
Zn | 40.61586 | 2465.265 | 3.35 × 10−12 | S |
Instrumental color | ||||
L* | 335.6518 | 16,554.96 | 1.66 × 10−15 | S |
a* | 137.9484 | 5468.718 | 1.39 × 10−13 | S |
b* | 238.9951 | 6794.459 | 5.83 × 10−14 | S |
WAI | 0.707921 | 30.16247 | 0.000104 | S |
WSI | 6.178886 | 23.66564 | 0.000248 | S |
SP | 0.621524 | 25.40515 | 0.000193 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Gutiérrez, E.R.; Quispe-Santivañez, G.W.; Echevarría-Victorio, J.P.; Salazar-Espinoza, D.E.; Paucarchuco-Soto, J.; Javier-Ninahuaman, H.J.; Castillo-Martinez, W.E.; Salvador-Reyes, R. Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties. Resources 2025, 14, 78. https://doi.org/10.3390/resources14050078
Torres-Gutiérrez ER, Quispe-Santivañez GW, Echevarría-Victorio JP, Salazar-Espinoza DE, Paucarchuco-Soto J, Javier-Ninahuaman HJ, Castillo-Martinez WE, Salvador-Reyes R. Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties. Resources. 2025; 14(5):78. https://doi.org/10.3390/resources14050078
Chicago/Turabian StyleTorres-Gutiérrez, Elmer Robert, Grimaldo Wilfredo Quispe-Santivañez, Jimmy Pablo Echevarría-Victorio, David Elí Salazar-Espinoza, Joselin Paucarchuco-Soto, Henry Juan Javier-Ninahuaman, Williams Esteward Castillo-Martinez, and Rebeca Salvador-Reyes. 2025. "Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties" Resources 14, no. 5: 78. https://doi.org/10.3390/resources14050078
APA StyleTorres-Gutiérrez, E. R., Quispe-Santivañez, G. W., Echevarría-Victorio, J. P., Salazar-Espinoza, D. E., Paucarchuco-Soto, J., Javier-Ninahuaman, H. J., Castillo-Martinez, W. E., & Salvador-Reyes, R. (2025). Valorization of Andean Native Potatoes Through Chuño Processing: Effects of Potato Variety and Freezing Temperature on Physicochemical, Bioactive, Nutritional, and Technological Properties. Resources, 14(5), 78. https://doi.org/10.3390/resources14050078