Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Chemical Characterization of Bergamot Extract
2.2.1. Materials
2.2.2. Samples and Bioactive Molecules Extraction
2.2.3. Chromatographic Instrumentation and Method
2.3. Animal Samples Collection
2.4. Byssus Analysis
2.5. Total Lipid and Fatty Acid Composition
2.6. Total Proteins
2.7. Carotenoids Content
2.8. Tocopherols Content
2.9. Cell Viability of Haemocytes and Isolated Digestive Gland Cells
2.10. Regulatory Volume Decrease Assay
2.11. RNA Extraction and cDNA Synthesis
2.12. Quantitative Gene Expression Analysis via qPCR
2.13. Statistical Analysis
3. Results
3.1. Chemical Characterization of Bioactive Molecules in Bergamot Extract
3.2. Byssus Alteration
3.3. Total Lipid and Fatty Acid
3.4. Total Protein, Carotenoids and Tocopherols Contents
3.5. Cell Viability
3.6. Regulatory Volume Decrease Assay
3.7. Antioxidant and Cytoprotective Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colitti, M.; Stefanon, B.; Gabai, G.; Gelain, M.E.; Bonsembiante, F. Oxidative stress and nutraceuticals in the modulation of the immune function: Current knowledge in animals of veterinary interest. Antioxidants 2019, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.; Meenatchi, R.; Pachillu, K.; Bansal, S.; Brindangnanam, P.; Arockiaraj, J.; Kiran, G.S.; Selvin, J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J. Basic. Microbiol. 2022, 62, 999–1029. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Kumar, S. Role of nutraceuticals in health and disease prevention: A review. South Asian J. Food Technol. Environ. 2015, 1, 116–121. [Google Scholar] [CrossRef]
- Varghese, T.; SanalEbeneeza, S.A.D.; Pal, A.K. Mitigation of stress in fish through nutraceuticals. Development 2021, 3, 1014. [Google Scholar]
- Gomes, I.B.; Maillard, J.Y.; Simões, L.C.; Simões, M. Emerging contaminants affect the microbiome of water systems—Strategies for their mitigation. NPJ Clean. Water 2020, 3, 39. [Google Scholar] [CrossRef]
- Maiuolo, J.; Carresi, C.; Gliozzi, M.; Musolino, V.; Scarano, F.; Coppoletta, A.R.; Guarnieri, L.; Nucera, S.; Scicchitano, M.; Bosco, F.; et al. Effects of bergamot polyphenols on mitochondrial dysfunction and sarcoplasmic reticulum stress in diabetic cardiomyopathy. Nutrients 2021, 13, 2476. [Google Scholar] [CrossRef]
- Costa, R.; Dugo, P.; Navarra, M.; Raymo, V.; Dugo, G.; Mondello, L. Study on the chemical composition variability of some processed bergamot (Citrus bergamia) essential oils. Flav. Frag. J. 2010, 25, 4–12. [Google Scholar] [CrossRef]
- Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). Pharma. Nutr. 2016, 4, S1–S7. [Google Scholar] [CrossRef]
- Navarra, M.; Mannucci, C.; Delbò, M.; Calapai, G. Citrus bergamia essential oil: From basic research to clinical application. Front. Pharm. 2015, 6, 36. [Google Scholar]
- Russo, M.; Bonaccorsi, I.; Inferrera, V.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fiber: Availability in orange’s by-products. J. Funct. Foods 2015, 12, 150–157. [Google Scholar] [CrossRef]
- Musolino, V.; Gliozzi, M.; Nucera, S.; Carresi, C.; Maiuolo, J.; Mollace, R.; Mollace, V. The effect of bergamot polyphenolic fraction on lipid transfer protein system and vascular oxidative stress in a rat model of hyperlipemia. Lip. Health Dis. 2019, 18, 115. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Talwar, S.; Krishnan, S.; Kaur, P.; Dhir, A. Purchasing natural personal care products in the era of fake news? The moderation effect of brand trust. J. Retail. Consum. Serv. 2021, 63, 102668. [Google Scholar] [CrossRef]
- Marteinson, S.C.; Lawrence, M.J.; Taranu, Z.E.; Kosziwka, K.; Taylor, J.J.; Green, A.; Winegardner, A.K.; Rytwinski, T.; Reid, J.; Dubetz, C.; et al. Increased use of sanitizers and disinfectants during the COVID-19 pandemic: Identification of antimicrobial chemicals and considerations for aquatic environmental contamination. Eniviron. Rev. 2022, 31, 76–94. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Chirani, M.R.; Kowsari, E.; Teymourian, T.; Ramakrishna, S. Environmental impact of increased soap consumption during COVID-19 pandemic: Biodegradable soap production and sustainable packaging. Sci. Total Environ. 2021, 796, 149013. [Google Scholar] [CrossRef]
- Freitas, R.; Coppola, F.; Meucci, V.; Battaglia, F.; Soares, A.M.; Pretti, C.; Faggio, C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. Environ. Toxicol. Pharm. 2021, 87, 103715. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Freitas, R.; Arrigo, F.; Coppola, F.; Meucci, V.; Battaglia, F.; Soares, A.M.; Pretti, C.; Faggio, C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. Environ. Toxicol. Pharm. 2023, 100, 104132. [Google Scholar] [CrossRef]
- Lopes, J.; Coppola, F.; Russo, T.; Maselli, V.; Di Cosmo, A.; Meucci, V.; Soares, A.M.V.M.; Pretti, C.; Polese, G.; Freitas, R. Behavioral, physiological and biochemical responses and differential gene expression in Mytilus galloprovincialis exposed to 17 alpha-ethinylestradiol and sodium lauryl sulfate. J. Hazard. Mater. 2022, 426, 128058. [Google Scholar] [CrossRef]
- Paciello, S.; Russo, T.; De Marchi, L.; Soares, A.M.; Meucci, V.; Pretti, C.; Pretti, C.; He, Y.; Della Torre, C.; Freitas, R. Sub-lethal effects induced in Mytilus galloprovincialis after short-term exposure to sodium lauryl sulfate: Comparison of the biological responses given by mussels under two temperature scenarios. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 270, 109644. [Google Scholar] [CrossRef]
- Beyer, J.; Green, N.W.; Brooks, S.; Allan, I.J.; Ruus, A.; Gomes, T.; Bråte, I.L.; Schøyen, M. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review. Mar. Environ. Res. 2017, 130, 338–365. [Google Scholar] [CrossRef] [PubMed]
- Kournoutou, G.G.; Giannopoulou, P.C.; Sazakli, E.; Leotsinidis, M.; Kalpaxis, D.L.; Dinos, G.P. Oxidative damage of mussels living in seawater enriched with trace metals, from the viewpoint of proteins expression and modification. Toxics 2020, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Miglioli, A.; Tredez, M.; Boosten, M.; Sant, C.; Carvalho, J.E.; Dru, P.; Canesi, L.; Schubert, M.; Dumollard, R. The Mediterranean mussel Mytilus galloprovincialis: A novel model for developmental studies in mollusks. Development 2024, 151, dev202256. [Google Scholar] [CrossRef] [PubMed]
- De Troch, M.; Boeckx, P.; Cnudde, C.; Van Gansbeke, D.; Vanreusel, A.; Vincx, M.; Caramujo, M.J. Bioconversion of fatty acids at the basis of marine food webs: Insights from a compound-specific stable isotope analysis. Mar. Ecol. Prog. Ser. 2012, 465, 53–67. [Google Scholar] [CrossRef]
- Kelly, J.R.; Scheibling, R.E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 2012, 446, 1–22. [Google Scholar] [CrossRef]
- Chandan, N.K.; Kumari, R.; Siddaiah, G.M. Role of nutraceuticals in fish feed. In Fish Nutrition and Its Relevance to Human Health; CRC Press: Boca Raton, FL, USA, 2020; pp. 229–243. [Google Scholar]
- Naseemashahul, S.; Sahu, N.P.; Sardar, P.; Fawole, F.J. Effects of nutraceutical conglomerate on growth and antioxidant status of Labeo rohita fingerlings. AFST 2021, 280, 115045. [Google Scholar] [CrossRef]
- Naserabad, S.S.; Zarei, S.; Rahimi, J.; Ghafouri, Z.; Mouludi-Saleh, A.; Banaee, M. Protective effects of Allium jesdianum essential oil on rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal toxicity of cypermethrin. Aquat. Toxicol. 2024, 274, 107051. [Google Scholar] [CrossRef]
- Russo, M.; Bonaccorsi, I.; Torre, G.; Sarò, M.; Dugo, P.; Mondello, L. Underestimated sources of flavonoids, limonoids and dietary fiber: Availability in lemon’s by-products. J. Funct. Foods 2014, 9, 18–26. [Google Scholar] [CrossRef]
- Russo, M.; Dugo, P.; Marzocco, S.; Inferrera, V.; Mondello, L. Multidimensional preparative liquid chromatography to isolate flavonoids from bergamot juice and evaluation of their anti-inflammatory potential. J. Separat. Sci. 2016, 38, 4196–4203. [Google Scholar] [CrossRef]
- Russo, M.; Arigò, A.; Calabrò, M.L.; Farnetti, S.; Mondello, L.; Dugo, P. Bergamot (Citrus bergamia Risso) as a source of nutraceuticals: Limonoids and flavonoids. J. Funct. Foods 2016, 20, 10–19. [Google Scholar] [CrossRef]
- Bolognesi, C.; Fenech, M. Mussel micronucleus cytome assay. Nat. Protoc. 2012, 7, 1125–1137. [Google Scholar] [CrossRef] [PubMed]
- Porretti, M.; Impellitteri, F.; Caferro, A.; Albergamo, A.; Litrenta, F.; Filice, M.; Faggio, C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. Chemosphere 2023, 336, 139273. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, A.; La Torre, G.L.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Zimbaro, V.; Salvo, A. Profile of carotenoids and tocopherols for the characterization of lipophilic antioxidants in “ragusano” cheese. Appl. Sci. 2021, 11, 7711. [Google Scholar] [CrossRef]
- Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Rando, R.; Bartolomeo, G.; Potortì, A.G.; Di Bella, G. Effect of Filtration Process on Oxidative Stability and Minor Compounds of the Cold-Pressed Hempseed Oil during Storage. Antioxidants 2023, 12, 1231. [Google Scholar] [CrossRef]
- Impellitteri, F.; Riolo, K.; Zicarelli, G.; Porretti, M.; Multisanti, C.R.; Piccione, G.; Giannetto, A.; Faggio, C. Evaluation of cellular and physiological alterations of cells from Mytilus galloprovincialis exposed to benzisothiazolinone. Ecotoxicol. Environ. Saf. 2025, 290, 117631. [Google Scholar]
- Riolo, K.; Franco, G.A.; Marino, Y.; Ferreri, A.; Oliva, S.; Parrino, V.; Savastano, D.; Cuzzocrea, S.; Gugliandolo, E.; Giannetto, A. Protein hydrolysates from Hermetia illucens trigger cellular responses to cope with LPS-induced inflammation and oxidative stress in L-929 cells. Anim. Cells Syst. 2025, 29, 1–12. [Google Scholar] [CrossRef]
- Bondi, C.A.; Marks, J.L.; Wroblewski, L.B.; Raatikainen, H.S.; Lenox, S.R.; Gebhardt, K.E. Human and environmental toxicity of sodium lauryl sulfate (SLS): Evidence for safe use in household cleaning products. Environ. Health Insights 2015, 9, EHI-S31765. [Google Scholar] [CrossRef]
- Asio, J.R.G.; Garcia, J.S.; Antonatos, C.; Sevilla-Nastor, J.B.; Trinidad, L.C. Sodium lauryl sulfate and its potential impacts on organisms and the environment: A thematic analysis. Emerg. Contamin 2023, 9, 100205. [Google Scholar] [CrossRef]
- Maazouzi, C.; Masson, G.; Izquierdo, M.S.; Pihan, J.C. Chronic copper exposure and fatty acid composition of the amphipod Dikerogammarus villosus: Results from a field study. Environ. Poll. 2008, 156, 221–226. [Google Scholar] [CrossRef]
- Filimonova, V.; Goncalves, F.; Marques, J.C.; De Troch, M.; Goncalves, A.M. Fatty acid profiling as bioindicator of chemical stress in marine organisms: A review. Ecol. Indic. 2016, 67, 657–672. [Google Scholar]
- Dalsgaard, J.; John, M.S.; Kattner, G.; Müller-Navarra, D.; Hagen, W. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Bio 2003, 46, 225–340. [Google Scholar]
- Fokina, N.N.; Ruokolainen, T.R.; Nemova, N.N.; Bakhmet, I.N. Changes of blue mussels Mytilus edulis L. lipid composition under cadmium and copper toxic effect. Biol. Trace Elem. Res. 2013, 154, 217–225. [Google Scholar] [CrossRef]
- Albergamo, A.; Rigano, F.; Purcaro, G.; Mauceri, A.; Fasulo, S.; Mondello, L. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects. Sci. Total Environ. 2016, 571, 955–962. [Google Scholar] [CrossRef]
- de Souza, C.O.; Valenzuela, C.A.; Baker, E.J.; Miles, E.A.; Rosa Neto, J.C.; Calder, P.C. Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mol. Nutr. Food Res. 2018, 62, 1800322. [Google Scholar] [CrossRef]
- Finicelli, M.; Di Salle, A.; Galderisi, U.; Peluso, G. The Mediterranean diet: An update of the clinical trials. Nutrients 2022, 14, 2956. [Google Scholar] [CrossRef]
- Whelan, J.; Gouffon, J.; Zhao, Y. Effects of dietary stearidonic acid on biomarkers of lipid Metabolism4. J. Nutr. 2012, 142, 630S–634S. [Google Scholar] [CrossRef]
- Vershinin, A. Carotenoids in mollusca: Approaching the functions. Comp. Biochem. Physiol. B 1996, 113, 63–71. [Google Scholar] [CrossRef]
- Nagy, I.Z. Cytosomes (yellow pigment granules) of molluscs as cell organelles of anoxic energy production. In International Review of Cytology; Academic Press: Cambridge, MA, USA, 1977; Volume 49, pp. 331–377. [Google Scholar]
- Petrunyaka, V.V. Localization and role of carotenoids in molluscan neurons. Cell. Mol. Neurobiol. 1982, 2, 11–20. [Google Scholar] [CrossRef]
- Packer, L.; Landvik, S. Vitamin E: Introduction to biochemistry and health benefits. Ann. N. Y. Acad. Sci. 1989, 570, 1–6. [Google Scholar] [CrossRef]
- Page, H.M.; Ricard, Y.O. Food availability as a limiting factor to mussel Mytilus edulis growth in California coastal waters. Fish. Bull. 1990, 88, 677–686. [Google Scholar]
- Nelson, J.S. Pathology of Vitamin E Deficiency. 1981. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19801411774 (accessed on 26 March 2025).
- Sigurgisladottir, S.; Ackman, R.G.; O’keefe, S.F. Selective deposition of α-tocopherol in lipids of farmed blue mussels (Mytilus Edulis). J. Food Lip. 1993, 1, 97–109. [Google Scholar] [CrossRef]
- Omidkhoda, S.F.; Razavi, B.M.; Hosseinzadeh, H. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation: A comprehensive review. Phytother. Res. 2019, 33, 2821–2840. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Ranveer, R.C.; Benjakul, S.; Kim, S.K.; Pagarkar, A.U.; Patange, S.; Ozogul, F. Recent developments of natural antimicrobials and antioxidants on fish and fishery food products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4182–4210. [Google Scholar] [CrossRef]
- Smital, T.; Luckenbach, T.; Sauerborn, R.; Hamdoun, A.M.; Vega, R.L.; Epel, D. Emerging contaminants—Pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat. Res. Fundam. Mol. Mech. Mutagen 2004, 552, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yuan, Z.; Wu, H.; Liu, F.; Zhao, J. Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis. Fish. Shell. Imm 2013, 34, 1345–1351. [Google Scholar] [CrossRef]
- Freeman, B.C.; Morimoto, R.I. The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding. EMBO J. 1996, 15, 2969–2979. [Google Scholar] [CrossRef]
- D’Agata, A.; Cappello, T.; Maisano, M.; Parrino, V.; Giannetto, A.; Brundo, M.V.; Mauceri, A. Cellular biomarkers in the mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) from Lake Faro (Sicily, Italy). Ital. J. Zool. 2014, 81, 43–54. [Google Scholar] [CrossRef]
- Impellitteri, F.; Riolo, K.; Multisanti, C.R.; Zicarelli, G.; Piccione, G.; Faggio, C.; Giannetto, A. Evaluating quaternium-15 effects on Mytilus galloprovincialis: New insights on physiological and cellular responses. Sci. Total Environ. 2024, 918, 170568. [Google Scholar] [CrossRef]
N° | Compound | Class | Concentration |
---|---|---|---|
1 | Ferulic acid 4-O-glucoside a | PA | 13.36 ± 0.24 |
2 | Sinapoyl glucoside b | PA | 169.28 ± 3.20 |
3 | Apigenin 6,8-di-C-β-D-glucoside | F | 81.41 ± 1.15 |
4 | Diosmetin-6,8-di-C-glucoside | F | 93.05 ± 0.80 |
5 | Eriocitrin | F | 409.82 ± 2.72 |
6 | Limonin glucoside | L | 24.91 ± 0.34 |
7 | Neoeriocitrin | F | 817.89 ± 6.30 |
8 | 5-Sinapoyquinic acid b | PA | 42.82 ± 0.57 |
9 | Poncirin c | F | 1803.86 ± 1.26 |
10 | Diosmetin 8-C-glucoside d | F | 166.83 ± 2.39 |
11 | Narirutin | F | 1673.57 ± 2.43 |
12 | Naringin | F | 658.50 ± 1.40 |
13 | Apigenin 7-O-neohesperidoside c | F | 31.52 ± 0.92 |
14 | Deacetyl nomilin glucoside e | L | 806.94 ± 0.44 |
15 | Neodiosmin c | F | 1187.27 ± 2.26 |
16 | Apigenin 7-O-neohesperidoside-4-glucoside c | F | 6.80 ± 0.11 |
17 | Neohesperidin | F | 12,907.64 ± 5.52 |
18 | Nomilin glucoside | F | 905.32 ± 2.16 |
19 | Nomilinic acid glucoside | F | 466.10 ± 0.64 |
20 | Apigenin 7-O-diglucuronide c | F | 19.87 ± 0.27 |
21 | Melitidin | F | 298.54 ± 0.27 |
22 | Brutieridin | F | 1029.44 ± 5.25 |
23 | Ichangin f | L | 34.70 ± 0.05 |
24 | Obacunoic acid f | L | 32.02 ± 0.01 |
25 | Limonin | L | 79.04 ± 0.17 |
26 | Nomilin | L | 124.49 ± 0.20 |
All | 23,884.84 ± 6.84 |
Control | SLS (0.010 mg/L) | BRG (5 mg/L) | MIX (0.010 mg/L SLS + 5 mg/L BRG) | |
---|---|---|---|---|
Number of byssal plaque | 102.75 ± 14.931 a | 60.75 ± 19.312 a | 101.75 ± 30.184 a,b | 38.00 ± 29.472 a,c |
Length of plaque (mm) | 0.76 ± 0.142 a | 0.61 ± 0.125 b | 0.61 ± 0.111 b,c | 0.65 ± 0.141 b,c,d |
Analyte (%) | Tested Groups | |||
---|---|---|---|---|
Control | SLS (0.010 mg/L) | BRG (5 mg/L) | MIX (0.010 mg/L SLS + 5 mg/L BRG) | |
Total lipid | 2.21 ± 0.59 a | 1.43 ± 0.22 a | 2.06 ± 0.17 a | 1.93 ± 0.18 a |
C14:0 | 3.33 ± 0.44 a | 1.03 ±0.03 b | 3.60 ± 0.15 a | 3.96 ± 0.14 a |
C15:0 | 0.63 ± 0.06 a | 0.46 ± 0.10 a | 0.62 ± 0.10 a | 0.82 ± 0.11 a |
C16:0 | 19.01 ± 0.13 a | 15.97 ± 0.27 b | 18.92 ± 0.37 a | 20.02 ± 0.65 a |
C17:0 | 1.25 ± 0.06 a | 1.61 ± 0.11 b | 1.25 ± 0.08 a | 1.11 ± 0.60 a |
C18:0 | 6.63 ± 0.73 a | 8.77 ±0.27 b | 6.20 ± 0.14 a | 5.15 ± 0.13 a |
C20:0 | 1.67 ± 0.11 a | 1.52 ± 0.15 a,b | 1.03 ± 0.06 b | 1.41 ± 0.14 a,b |
Σ SFA | 32.80 ± 0.44 a | 29.67 ±0.24 b | 31.88 ± 0.49 a | 32.68 ± 0.30 a |
C 14:1 | 0.64 ± 0.1 a | 0.52 ± 0.15 a | 0.55 ± 0.17 a | 0.76 ± 0.06 a |
C 15:1 | 0.07 ± 0.01 a | 0.08 ± 0.02 a | 0.11 ± 0.01 a | 0.05 ± 0.01 a |
C16:1 ω-9 | 0.10 ± 0.03 a | 0.04 ± 0.01 a | 11.07 ± 0.23 b | 0.13 ± 0.02 a |
C16:1 ω-7 | 6.17 ± 0.21 a | 2.88 ± 0.08 b | 0.16 ± 0.07 c | 8.64 ± 0.31 d |
C17:1 | 0.30 ± 0.03 a | 0.30 ± 0.04 a | 0.30 ± 0.03 a | 0.35 ± 0.07 a |
C18:1 ω-9 | 3.50 ± 0.15 a | 4.1 ± 0.18 b | 2.74 ± 0.13 b | 1.84 ± 0.08 b |
C18:1 ω-7 | 2.64 ±0.13 a | 2.52 ± 0.07 a | 3.54 ± 0.27 b | 3.04 ± 0.10 a,b |
C20:1 ω-11 | 2.49 ± 0.14 a | 3.06 ± 0.07 b | 1.57 ± 0.08 a,c | 2.20 ± 0.13 b |
C20:1 ω-7 | 1.96 ± 0.12 a | 2.08 ± 0.10 a | 2.06 ± 0.04 a | 2.01 ± 0.03 a |
C20:1 ω-9 | 0.61 ± 0.11 a | 3.29 ± 0.15 b | 2.54 ± 0.38 b | 2.74 ± 0.34 b |
C22:1 ω-11 | 0.20 ± 0.03 a | 0.43 ± 0.13 b | 0.19 ± 0.03 a | 0.08 ± 0.01 b |
C22:1 ω-9 | 0.61 ± 0.07 a | 0.91 ± 0.17 a,c | 0.33 ± 0.03 a,b | 0.13 ± 0.04 b |
Σ MUFA | 19.33 ± 0.34 a | 20.29 ± 0.35 a | 23.14 ± 0.15 b | 22.07 ± 0.65 b |
C18:2 ω-6 | 0.96 ± 0.07 a | 0.64 ± 0.13 a,b | 1.01 ± 0.02 a,c | 1.19 ± 0.05 a,c |
C18:3 ω-6 | 0.04 ± 0.01 a | 0.05 ± 0.01 a | 0.02 ± 0.01 a | 0.04 ± 0.01 a |
C18:3 ω-3 | 1.50 ± 0.40 a | 0.99 ± 0.04 a,b | 1.95 ± 0.11 a,c | 1.99 ± 0.06 a,c |
C18:4 ω-3 | 2.76 ± 0.27 a | 1.04 ± 0.04 b | 3.11 ± 0.04 a,c | 3.39 ± 0.09 c |
C18:4 ω-1 | 0.10 ± 0.01 a | 0.14 ± 0.03 a | 0.09 ± 0.03 a | 0.11 ± 0.01 a |
C20:2 ω-6 | 0.25 ± 0.10 a | 0.30 ± 0.05 a | 0.18 ± 0.04 a | 0.21 ± 0.03 a |
C20:3 ω-6 | 0.09 ± 0.01 a | 0.15 ± 0.06 a | 0.08 ± 0.01 a | 0.09 ± 0.03 a |
C20:3 ω-3 | 0.14 ± 0.03 a | 0.11 ± 0.06 a | 0.08 ± 0.01 a | 0.09 ± 0.04 a |
C20:4 ω-6 | 3.50 ± 0.41 a | 4.85 ± 0.24 b | 3.01 ± 0.06 a | 3.08 ± 0.11 a |
C20:4 ω-3 | 0.23 ± 0.13 a | 0.28 ± 0.08 a | 0.13 ± 0.03 a,b | 0.53 ± 0.08 a,c |
C20:5 ω-3 | 20.25 ± 0.86 a | 20.96 ± 0.23 a | 20.30 ± 0.31 a | 20.82 ± 1.03 a |
C21:5 ω-3 | 0.85 ± 0.10 a | 0.83 ± 0.11 a | 0.55 ± 0.07 a | 0.59 ± 0.07 a |
C22:2 | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
C22:4 ω-6 | 0.37 ± 0.04 a | 0.57 ± 0.06 a,b | 0.32 ± 0.07 a | 0.30 ± 0.07 a |
C22:5 ω-6 | 0.47 ± 0.03 a | 0.66 ± 0.04 a,b | 0.35 ± 0.06 a | 0.35 ± 0.08 a |
C22:5 ω-3 | 0.67 ± 0.06 a | 0.78 ± 0.10 a | 0.30 ± 0.03 b | 0.71 ± 0.10 a |
C22:6 ω-3 | 13.70 ± 0.88 a | 17.35 ± 0.75 b | 11.51 ± 0.41 a | 11.73 ± 0.30 a |
Σ PUFA | 45.06 ± 0.31 a | 49.76 ± 0.42 b | 42.96 ± 0.44 a | 45.25 ± 0.35 a |
Σ ω3 | 39.25 ± 0.39 a | 42.34 ± 0.56 b | 37.87 ± 0.68 a | 39.85 ± 0.57 a,b |
Σ ω6 | 5.31 ± 0.35 a | 6.65 ± 0.04 b | 4.65 ± 0.11 a | 4.96 ± 0.10 a |
ω6/ω3 | 0.14 ± 0.09 a | 0.16 ± 0.02 a | 0.12 ± 0.01 a | 0.12 ± 0.02 a |
Test Groups | ||||
---|---|---|---|---|
Control | SLS (0.010 mg/L) | BRG (5 mg/L) | MIX (0.010 mg/L SLS + 5 mg/L BRG) | |
Total protein (%) | 20.212 ± 0.603 a | 18.164 ± 0.312 a | 18.415 ± 0.494 a | 18.567 ± 0.624 a |
Carotenoids (β-carotene, mg/Kg) | 5.991 ± 0.963 a | 3.698 ± 0.163 ab | 4.754 ± 0.832 a | 7.444 ± 0.452 ac |
Tocopherols (Vitamin E, mg/Kg) | 0.459 ± 0.101 a | 0.402 ± 0.061 a | 0.353 ± 0.080 a | 0.481± 0.103 a |
Test Groups | ||||
---|---|---|---|---|
Control | SLS (0.010 mg/L) | BRG (5 mg/L) | MIX (0.010 mg/L SLS + 5 mg/L BRG) | |
Haemolymph cells (TB, %) | 98.41 ± 1.65 a | 93.54 ± 2.46 b | 97.22 ± 2.62 a,b,c | 96.00 ± 2.98 a,b,d |
Digestive glands cells (TB, %) | 98.53 ± 0.85 a | 97.83 ± 1.55 a | 98.81 ± 0.79 a | 98.72 ± 0.82 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Impellitteri, F.; Multisanti, C.R.; Riolo, K.; Zicarelli, G.; Porretti, M.; Cafeo, G.; Russo, M.; Dugo, P.; Di Bella, G.; Piccione, G.; et al. Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms. Antioxidants 2025, 14, 539. https://doi.org/10.3390/antiox14050539
Impellitteri F, Multisanti CR, Riolo K, Zicarelli G, Porretti M, Cafeo G, Russo M, Dugo P, Di Bella G, Piccione G, et al. Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms. Antioxidants. 2025; 14(5):539. https://doi.org/10.3390/antiox14050539
Chicago/Turabian StyleImpellitteri, Federica, Cristiana Roberta Multisanti, Kristian Riolo, Giorgia Zicarelli, Miriam Porretti, Giovanna Cafeo, Marina Russo, Paola Dugo, Giuseppa Di Bella, Giuseppe Piccione, and et al. 2025. "Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms" Antioxidants 14, no. 5: 539. https://doi.org/10.3390/antiox14050539
APA StyleImpellitteri, F., Multisanti, C. R., Riolo, K., Zicarelli, G., Porretti, M., Cafeo, G., Russo, M., Dugo, P., Di Bella, G., Piccione, G., Giannetto, A., & Faggio, C. (2025). Bergamot (Citrus bergamia): A Potential New Nutraceutical Against Cellular and Physiological Alterations Induced by Emerging Contaminants in Sentinel Organisms. Antioxidants, 14(5), 539. https://doi.org/10.3390/antiox14050539