Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science
Abstract
1. Introduction
2. Historical, Cultural, and Indigenous Significance of Ancient Grains
2.1. Historical Significance: Foundations of Early Agriculture
2.2. Cultural Significance: Rituals, Traditions, and Identity
2.3. Indigenous Significance: Knowledge, Sovereignty, and Sustainability
3. Health-Promoting Potential of Ancient Grains
3.1. Nutritional Composition, Functional Properties, and Health Mechanisms of Ancient Grains
3.1.1. Macronutrient Composition and Protein Quality
3.1.2. Dietary Fiber, Glycemic Control, and Gut Health
3.1.3. Micronutrient Density and Mineral Bioavailability
3.1.4. Beneficial Fatty Acids and Cardiometabolic Health
3.1.5. Phytochemical Richness and Antioxidant Capacity
3.1.6. Nutritional Mechanisms of Ancient Grains
3.2. Role in Specialized Diets, Disease Management, and Health Promotion
3.2.1. Specialized Diets and Nutrient-Dense Alternatives
3.2.2. Chronic Disease Management and Functional Properties
3.2.3. Integration into Functional Foods and Sustainable Diets
4. Functional Food Applications of Ancient Grains
4.1. Applications, Innovations, and Processing Strategies
4.2. Market Adoption, Consumer Appeal, and Commercial Potential
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPK | AMP-activated protein kinase |
FDA | U.S. Food and Drug Administration |
GI | glycemic index |
IL-6 | interleukin-6 |
PPAR | Peroxisome proliferator-activated receptor |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
TNF-α | tumor necrosis factor-alpha |
Zn, Fe, Ca | Zinc, iron, calcium |
References
- Wang, Y.; Chen, G.; Zeng, F.; Han, Z.; Qiu, C.W.; Zeng, M.; Yang, Z.; Xu, F.; Wu, D.; Deng, F.; et al. Molecular evidence for adaptive evolution of drought tolerance in wild cereals. New Phytol. 2023, 237, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Longin, C.F.H.; Wurschum, T. Back to the Future-Tapping into Ancient Grains for Food Diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Dragicevic, V.; Simic, M.; Kandic Raftery, V.; Vukadinovic, J.; Dodevska, M.; Durovic, S.; Brankov, M. Screening of Nutritionally Important Components in Standard and Ancient Cereals. Foods 2024, 13, 4116. [Google Scholar] [CrossRef]
- Majzoobi, M.; Jafarzadeh, S.; Teimouri, S.; Ghasemlou, M.; Hadidi, M.; Brennan, C.S. The Role of Ancient Grains in Alleviating Hunger and Malnutrition. Foods 2023, 12, 2213. [Google Scholar] [CrossRef]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef]
- Poutanen, K.S.; Karlund, A.O.; Gomez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains-a major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef]
- Bencze, S.; Makádi, M.; Aranyos, T.J.; Földi, M.; Hertelendy, P.; Mikó, P.; Bosi, S.; Negri, L.; Drexler, D. Re-Introduction of Ancient Wheat Cultivars into Organic Agriculture—Emmer and Einkorn Cultivation Experiences under Marginal Conditions. Sustainability 2020, 12, 1584. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Larsson, H. Locally Adapted and Organically Grown Landrace and Ancient Spring Cereals-A Unique Source of Minerals in the Human Diet. Foods 2021, 10, 393. [Google Scholar] [CrossRef]
- Raheem, D.; Dayoub, M.; Birech, R.; Nakiyemba, A. The Contribution of Cereal Grains to Food Security and Sustainability in Africa: Potential Application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban. Sci. 2021, 5, 8. [Google Scholar] [CrossRef]
- Mapfumo, P.; Mtambanengwe, F.; Chikowo, R. Building on indigenous knowledge to strengthen the capacity of smallholder farming communities to adapt to climate change and variability in southern Africa. Clim. Dev. 2015, 8, 72–82. [Google Scholar] [CrossRef]
- Rajagopalan, V.R.; Manickam, S.; Muthurajan, R. A Comparative Metabolomic Analysis Reveals the Nutritional and Therapeutic Potential of Grains of the Traditional Rice Variety Mappillai Samba. Plants 2022, 11, 543. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, R.; Zhang, Y.; Lu, Y.; Cai, S.; Xiong, Q. Metabolomics Reveals Antioxidant Metabolites in Colored Rice Grains. Metabolites 2024, 14, 120. [Google Scholar] [CrossRef]
- Mondal, D.; Kantamraju, P.; Jha, S.; Sundarrao, G.S.; Bhowmik, A.; Chakdar, H.; Mandal, S.; Sahana, N.; Roy, B.; Bhattacharya, P.M.; et al. Evaluation of indigenous aromatic rice cultivars from sub-Himalayan Terai region of India for nutritional attributes and blast resistance. Sci. Rep. 2021, 11, 4786. [Google Scholar] [CrossRef]
- Han, S.; Zhang, H.; Qin, L.; Zhai, C. Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on insulin resistance in rats fed with a high-fat/cholesterol diet. Nutrients 2013, 5, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Surendiran, G.; Goh, C.; Le, K.; Zhao, Z.; Askarian, F.; Othman, R.; Nicholson, T.; Moghadasian, P.; Wang, Y.J.; Aliani, M.; et al. Wild rice (Zizania palustris L.) prevents atherogenesis in LDL receptor knockout mice. Atherosclerosis 2013, 230, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant activity of commercial wild rice and identification of flavonoid compounds in active fractions. J. Agric. Food Chem. 2009, 57, 7543–7551. [Google Scholar] [CrossRef]
- Moghadasian, M.H.; Kaur, R.; Kostal, K.; Joshi, A.A.; Molaei, M.; Le, K.; Fischer, G.; Bonomini, F.; Favero, G.; Rezzani, R.; et al. Anti-Atherosclerotic Properties of Wild Rice in Low-Density Lipoprotein Receptor Knockout Mice: The Gut Microbiome, Cytokines, and Metabolomics Study. Nutrients 2019, 11, 2894. [Google Scholar] [CrossRef]
- Birch, J.; Benkendorff, K.; Liu, L.; Luke, H. The nutritional composition of Australian native grains used by First Nations people and their re-emergence for human health and sustainable food systems. Front. Sustain. Food Syst. 2023, 7, 1237862. [Google Scholar] [CrossRef]
- Pour, T.; Binge, H.; Cross, R.; Moore, K.; Pattison, A.; Brand-Miller, J.; Atkinson, F.; Bell-Anderson, K. Australian native grain reduces blood glucose response and Glycemic Index. Proc. Nutr. Soc. 2024, 83, E48. [Google Scholar] [CrossRef]
- Chyne, D.A.L.; Ananthan, R.; Longvah, T. Food compositional analysis of Indigenous foods consumed by the Khasi of Meghalaya, North-East India. J. Food Compos. Anal. 2019, 77, 91–100. [Google Scholar] [CrossRef]
- Bhat, F.M.; Riar, C.S. Effect of composition, granular morphology and crystalline structure on the pasting, textural, thermal and sensory characteristics of traditional rice cultivars. Food Chem. 2019, 280, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Srivastav, P.P. Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice. Rice Sci. 2017, 24, 21–31. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Karbalaii, M.T.; Jaafar, H.Z.E.; Rahmat, A. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem. Cent. J. 2018, 12, 17. [Google Scholar] [CrossRef]
- Wisetkomolmat, J.; Arjin, C.; Satsook, A.; Seel-Audom, M.; Ruksiriwanich, W.; Prom, U.T.C.; Sringarm, K. Comparative Analysis of Nutritional Components and Phytochemical Attributes of Selected Thai Rice Bran. Front. Nutr. 2022, 9, 833730. [Google Scholar] [CrossRef]
- Tyagi, A.; Lim, M.J.; Kim, N.H.; Barathikannan, K.; Vijayalakshmi, S.; Elahi, F.; Ham, H.J.; Oh, D.H. Quantification of Amino Acids, Phenolic Compounds Profiling from Nine Rice Varieties and Their Antioxidant Potential. Antioxidants 2022, 11, 839. [Google Scholar] [CrossRef]
- Lara-Arevalo, J.; Laar, A.; Chaparro, M.P.; Drewnowski, A. Nutrient-Dense African Indigenous Vegetables and Grains in the FAO Food Composition Table for Western Africa (WAFCT) Identified Using Nutrient-Rich Food (NRF) Scores. Nutrients 2024, 16, 2985. [Google Scholar] [CrossRef]
- Kesa, H.; Tchuenchieu Kamgain, A.D.; Kwazi Zuma, M.; Mbhenyane, X. Knowledge, Perception and Consumption of Indigenous Foods in Gauteng Region, South Africa. Int. J. Environ. Res. Public Health 2023, 20, 6961. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Acevedo de La Cruz, A.; Icochea Alvarez, J.C.; Kallio, H. Chemical and functional characterization of Kaniwa (Chenopodium pallidicaule) grain, extrudate and bran. Plant Foods Hum. Nutr. 2009, 64, 94–101. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.M.; Mattila, P.H. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Mougiou, N.; Didos, S.; Bouzouka, I.; Theodorakopoulou, A.; Kornaros, M.; Mylonas, I.; Argiriou, A. Valorizing Traditional Greek Wheat Varieties: Phylogenetic Profile and Biochemical Analysis of Their Nutritional Value. Agronomy 2023, 13, 2703. [Google Scholar] [CrossRef]
- Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res. Int. 2018, 107, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Van Boxstael, F.; Aerts, H.; Linssen, S.; Latre, J.; Christiaens, A.; Haesaert, G.; Dierickx, I.; Brusselle, J.; De Keyzer, W. A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: Whole grains, processed in bread, and population-level intake implications. J. Sci. Food Agric. 2020, 100, 4108–4118. [Google Scholar] [CrossRef] [PubMed]
- Angioloni, A.; Collar, C. Nutritional and functional added value of oat, Kamut, spelt, rye and buckwheat versus common wheat in breadmaking. J. Sci. Food Agric. 2011, 91, 1283–1292. [Google Scholar] [CrossRef]
- Melaku, T.A. Evaluation of Proximate Composition and Sensory Quality Acceptability of Ethiopian Flat Bread (Injera) Prepared from Composite Flour, Blend of Maize, Teff and Sorghum. Int. J. Food Eng. Technol. 2020, 4, 18. [Google Scholar] [CrossRef]
- Neela, S.; Fanta, S.W. Injera (An Ethnic, Traditional Staple Food of Ethiopia): A review on Traditional Practice to Scientific Developments. J. Ethn. Foods 2020, 7, 32. [Google Scholar] [CrossRef]
- Meena, K.; Visarada, K.; Meena, D.K. Sorghum bicolor (L.) Moench a multifarious crop-fodder to therapeutic potential and biotechnological applications: A future food for the millennium. Future Foods 2022, 6, 100188. [Google Scholar] [CrossRef]
- Zeng, Y.; Pu, X.; Du, J.; Yang, X.; Li, X.; Mandal, M.S.N.; Yang, T.; Yang, J. Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 3836172. [Google Scholar] [CrossRef]
- Yadav, O.P.; Singh, D.V.; Kumari, V.; Prasad, M.; Seni, S.; Singh, R.K.; Sood, S.; Kant, L.; Rao, B.D.; Madhusudhana, R.; et al. Production and cultivation dynamics of millets in India. Crop Sci. 2024, 64, 2459–2484. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-Lopez, O. Bioactive peptides from selected latin american food crops—A nutraceutical and molecular approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef]
- Chavan, S.M.; Khadatkar, A.; Hasan, M.; Ahmad, D.; Kumar, V.; Jain, N.K. Quinoa (Chenopodium quinoa Willd.): Paving the way towards nutraceuticals and value-added products for sustainable development and nutritional security. Appl. Food Res. 2025, 5, 100673. [Google Scholar] [CrossRef]
- Jan, N.; Hussain, S.Z.; Naseer, B.; Bhat, T.A. Amaranth and quinoa as potential nutraceuticals: A review of anti-nutritional factors, health benefits and their applications in food, medicinal and cosmetic sectors. Food Chem. X 2023, 18, 100687. [Google Scholar] [CrossRef]
- Nyingi, J.W.; Mburu, M. Chia (Salvia hispanica L.) Seeds Phytochemicals, Bioactive Compounds, and Applications: A Review. Eur. J. Agric. Food Sci. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Zare, T.; Fournier-Level, A.; Ebert, B.; Roessner, U. Chia (Salvia hispanica L.), a functional ‘superfood’: New insights into its botanical, genetic and nutraceutical characteristics. Ann. Bot. 2024, 134, 725–746. [Google Scholar] [CrossRef]
- Filipović, D.; Jones, G.; Kirleis, W.; Bogaard, A.; Ballantyne, R.; Charles, M.; de Vareilles, A.; Ergun, M.; Gkatzogia, E.; Holguin, A.; et al. Triticum timopheevii s.l. (‘new glume wheat’) finds in regions of southern and eastern Europe across space and time. Veg. Hist. Archaeobot. 2023, 33, 195–208. [Google Scholar] [CrossRef]
- Valamoti, S.M.; Marinova, E.; Heiss, A.G.; Hristova, I.; Petridou, C.; Popova, T.; Michou, S.; Papadopoulou, L.; Chrysostomou, P.; Darcque, P.; et al. Prehistoric cereal foods of southeastern Europe: An archaeobotanical exploration. J. Archaeol. Sci. 2019, 104, 97–113. [Google Scholar] [CrossRef]
- Pattison, A.; McGee, K.; Birch, J.; Saunders, K.; Ashby, R.; Quinnell, R.; Bell-Anderson, K.; Way, A. What Do We Know About Threshing Traditional Grains in Australia? J. Ethnobiol. 2023, 43, 339–350. [Google Scholar] [CrossRef]
- Yu, X.; Chu, M.; Chu, C.; Du, Y.; Shi, J.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Wild rice (Zizania spp.): A review of its nutritional constituents, phytochemicals, antioxidant activities, and health-promoting effects. Food Chem. 2020, 331, 127293. [Google Scholar] [CrossRef]
- Lorenz, K. Wild rice: The Indian’s staple and the white man’s delicacy. Crit. Rev. Food Sci. Nutr. 1981, 15, 281–319. [Google Scholar] [CrossRef]
- McGilp, L.; Castell-Miller, C.; Haas, M.; Millas, R.; Kimball, J. Northern Wild Rice (Zizania palustris L.) breeding, genetics, and conservation. Crop Sci. 2023, 63, 1904–1933. [Google Scholar] [CrossRef]
- Fernandez-Tome, S.; Ashaolu, T.J.; Hernandez-Ledesma, B. Exploration of the Nutritional and Functional Properties of Underutilized Grains as an Alternative Source for the Research of Food-Derived Bioactive Peptides. Nutrients 2023, 15, 351. [Google Scholar] [CrossRef]
- Bouakkaz, S.; Zerizer, H.; Rachedi, K.; Accettulli, A.; Racioppo, A.; Bevilacqua, A. African cereal-based fermented foods: Microbiota, functional microorganisms, starter cultures and nutritional properties. Food Biosci. 2024, 62, 105212. [Google Scholar] [CrossRef]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Chia Seed (Salvia hispanica L.) as a Source of Proteins and Bioactive Peptides with Health Benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 480–499. [Google Scholar] [CrossRef] [PubMed]
- Motyka, S.; Skała, E.; Ekiert, H.; Szopa, A. Health-promoting approaches of the use of chia seeds. J. Funct. Foods 2023, 103, 105480. [Google Scholar] [CrossRef]
- Rabail, R.; Khan, M.R.; Mehwish, H.M.; Rajoka, M.S.R.; Lorenzo, J.M.; Kieliszek, M.; Khalid, A.R.; Shabbir, M.A.; Aadil, R.M. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Front Biosci 2021, 26, 643–654. [Google Scholar] [CrossRef]
- Mensah, E.O.; Nadtochii, L.; Adadi, P.; Agyei, D. Chia derived bioactive peptides: Extraction, characterization, pharmacological activities and potential food applications. Food Biosci. 2024, 59, 103975. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3051–3071. [Google Scholar] [CrossRef]
- Basile, G.; De Maio, A.C.; Catalano, A.; Ceramella, J.; Iacopetta, D.; Bonofiglio, D.; Saturnino, C.; Sinicropi, M.S. Ancient Wheat as Promising Nutraceuticals for the Prevention of Chronic and Degenerative Diseases. Curr. Med. Chem. 2023, 30, 3384–3403. [Google Scholar] [CrossRef]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current Trends in Ancient Grains-Based Foodstuffs: Insights into Nutritional Aspects and Technological Applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef]
- Deyalage, S.T.; House, J.D.; Thandapilly, S.J.; Malalgoda, M. Nutritional characteristics and physicochemical properties of ancient wheat species for food applications. Food Biosci. 2024, 62, 105397. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Roumia, H.; Kokai, Z.; Mihaly-Lango, B.; Csobod, E.C.; Benedek, C. Ancient Wheats—A Nutritional and Sensory Analysis Review. Foods 2023, 12, 2411. [Google Scholar] [CrossRef] [PubMed]
- Repo-Carrasco-Valencia, R. Nutritional Value and Bioactive Compounds in Andean Ancient Grains. Proceedings 2020, 53, 1. [Google Scholar] [CrossRef]
- Mathew, E.; Singh, M. Ancient grains and pseudocereals: Chemical compositions, nutritional benefits, and roles in 21st century diets. Cereal Foods World 2016, 61, 198–203. [Google Scholar] [CrossRef]
- Cho, S.S.; Qi, L.; Fahey, G.C., Jr.; Klurfeld, D.M. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am. J. Clin. Nutr. 2013, 98, 594–619. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition and food uses of teff (Eragrostis tef). Food Chem. 2018, 239, 402–415. [Google Scholar] [CrossRef]
- Anitha, S.; Givens, D.; Botha, R.; Kane-Potaka, J.; Sulaiman, N.; Tsusaka, T.; Subramaniam, K.; Rajendran, A.; Parasannanavar, D.; Bhandari, R. Calcium from Finger Millet—A Systematic Review and Meta-Analysis on Calcium Retention, Bone Resorption, and In Vitro Bioavailability. Sustainability 2021, 13, 8677. [Google Scholar] [CrossRef]
- Goyat, J.; Suri, S.; Jain Passi, S. Chia Seed (Salvia Hispanica L.)—A New Age Functional Food. Int. J. Adv. Technol. Eng. Sci. 2016, 4, 286–299. [Google Scholar]
- Khalid, W.; Arshad, M.S.; Aziz, A.; Rahim, M.A.; Qaisrani, T.B.; Afzal, F.; Ali, A.; Ranjha, M.; Khalid, M.Z.; Anjum, F.M. Chia seeds (Salvia hispanica L.): A therapeutic weapon in metabolic disorders. Food Sci. Nutr. 2023, 11, 3–16. [Google Scholar] [CrossRef]
- Li, M.; Xu, T.; Zheng, W.; Gao, B.; Zhu, H.; Xu, R.; Deng, H.; Wang, B.; Wu, Y.; Sun, X.; et al. Triacylglycerols compositions, soluble and bound phenolics of red sorghums, and their radical scavenging and anti-inflammatory activities. Food Chem. 2021, 340, 128123. [Google Scholar] [CrossRef]
- Udhaya Nandhini, D.; Venkatesan, S.; Senthilraja, K.; Janaki, P.; Prabha, B.; Sangamithra, S.; Vaishnavi, S.J.; Meena, S.; Balakrishnan, N.; Raveendran, M.; et al. Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Front. Nutr. 2023, 10, 1254624. [Google Scholar] [CrossRef]
- Berger, A.; Rein, D.; Schafer, A.; Monnard, I.; Gremaud, G.; Lambelet, P.; Bertoli, C. Similar cholesterol-lowering properties of rice bran oil, with varied gamma-oryzanol, in mildly hypercholesterolemic men. Eur. J. Nutr. 2005, 44, 163–173. [Google Scholar] [CrossRef]
- Sunthonkun, P.; Palajai, R.; Somboon, P.; Suan, C.L.; Ungsurangsri, M.; Soontorngun, N. Life-span extension by pigmented rice bran in the model yeast Saccharomyces cerevisiae. Sci. Rep. 2019, 9, 18061. [Google Scholar] [CrossRef] [PubMed]
- Cortijo-Alfonso, M.E.; Romero, M.P.; Macia, A.; Yuste, S.; Moralejo, M.; Rubio-Pique, L.; Pinol-Felis, C. Effect of Barley and Oat Consumption on Immune System, Inflammation and Gut Microbiota: A Systematic Review of Randomized Controlled Trials. Curr. Nutr. Rep. 2024, 13, 582–597. [Google Scholar] [CrossRef] [PubMed]
- Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev. 2020, 78, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Z.; Liu, J.; Hao, Y.; Sun, B.; Wang, J. Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism. J. Agric. Food Chem. 2021, 69, 14065–14074. [Google Scholar] [CrossRef]
- Guo, H.; Wu, H.; Sajid, A.; Li, Z. Whole grain cereals: The potential roles of functional components in human health. Crit. Rev. Food Sci. Nutr. 2022, 62, 8388–8402. [Google Scholar] [CrossRef]
- Gong, L.; Cao, W.; Chi, H.; Wang, J.; Zhang, H.; Liu, J.; Sun, B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res. Int. 2018, 103, 84–102. [Google Scholar] [CrossRef]
- Melini, V.; Acquistucci, R. Health-Promoting Compounds in Pigmented Thai and Wild Rice. Foods 2017, 6, 9. [Google Scholar] [CrossRef]
- Spisni, E.; Imbesi, V.; Giovanardi, E.; Petrocelli, G.; Alvisi, P.; Valerii, M.C. Differential Physiological Responses Elicited by Ancient and Heritage Wheat Cultivars Compared to Modern Ones. Nutrients 2019, 11, 2879. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R. Re-discovering ancient wheat varieties as functional foods. J. Tradit. Complement. Med. 2015, 5, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, X. Chia seed protein as a promising source for plant-based foods: Functional properties, processing methods and potential food applications. Appl. Food Res. 2024, 4, 100459. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Basilio-Atencio, J.; Luna-Mercado, G.I.; Pilco-Quesada, S.; Vidaurre-Ruiz, J. Andean Ancient Grains: Nutritional Value and Novel Uses. Biol. Life Sci. Forum 2021, 8, 15. [Google Scholar]
- Niklewicz, A.; Smith, A.D.; Smith, A.; Holzer, A.; Klein, A.; McCaddon, A.; Molloy, A.M.; Wolffenbuttel, B.H.R.; Nexo, E.; McNulty, H.; et al. The importance of vitamin B(12) for individuals choosing plant-based diets. Eur. J. Nutr. 2023, 62, 1551–1559. [Google Scholar] [CrossRef]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef]
- Zhao, M.; Zhai, L.; Tang, Q.; Ren, J.; Zhou, S.; Wang, H.; Yun, Y.; Yang, Q.; Yan, X.; Xing, F.; et al. Comparative Metabolic Profiling of Different Colored Rice Grains Reveals the Distribution of Major Active Compounds and Key Secondary Metabolites in Green Rice. Foods 2024, 13, 1899. [Google Scholar] [CrossRef]
- Moghadasian, M.H.; Alsaif, M.; Le, K.; Gangadaran, S.; Masisi, K.; Beta, T.; Shen, G.X. Combination effects of wild rice and phytosterols on prevention of atherosclerosis in LDL receptor knockout mice. J. Nutr. Biochem. 2016, 33, 128–135. [Google Scholar] [CrossRef]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef]
- Luo, B.; Wen, Y.; Ye, F.; Wu, Y.; Li, N.; Farid, M.S.; Chen, Z.; El-Seedi, H.R.; Zhao, C. Bioactive phytochemicals and their potential roles in modulating gut microbiota. J. Agric. Food Res. 2023, 12, 100583. [Google Scholar] [CrossRef]
- Espin, J.C.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Sik, B.; Lakatos, E.; Márkus, A.; Székelyhidi, R. Determination of the health-protective effect of ancient cereals and one possibility of increasing their functionality. Cereal Res. Commun. 2023, 52, 247–253. [Google Scholar] [CrossRef]
- Lopes, C.V.A.; Mihrshahi, S.; Ronto, R.; Hunter, J. Aboriginal Food Practices and Australian Native Plant-Based Foods: A Step toward Sustainable Food Systems. Sustainability 2023, 15, 11569. [Google Scholar] [CrossRef]
- Cao, Y.; Miao, L. Consumer perception of clean food labels. Br. Food J. 2022, 125, 433–448. [Google Scholar] [CrossRef]
- Khairuddin, M.A.N.; Lasekan, O. Gluten-Free Cereal Products and Beverages: A Review of Their Health Benefits in the Last Five Years. Foods 2021, 10, 2523. [Google Scholar] [CrossRef]
- Carroccio, A.; Celano, G.; Cottone, C.; Di Sclafani, G.; Vannini, L.; D’Alcamo, A.; Vacca, M.; Calabrese, F.M.; Mansueto, P.; Soresi, M.; et al. WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota. Dig. Liver Dis. 2021, 53, 1412–1421. [Google Scholar] [CrossRef]
- Kodape, A.; Kodape, A.; Desai, R. Rice bran: Nutritional value, health benefits, and global implications for aflatoxin mitigation, cancer, diabetes, and diarrhea prevention. Food Chem. 2025, 464, 141749. [Google Scholar] [CrossRef]
- Badia-Olmos, C.; Sanchez-Garcia, J.; Laguna, L.; Zuniga, E.; Monika Haros, C.; Maria Andres, A.; Tarrega, A. Flours from fermented lentil and quinoa grains as ingredients with new techno-functional properties. Food Res. Int. 2024, 177, 113915. [Google Scholar] [CrossRef]
- Patra, M.; Bashir, O.; Amin, T.; Wani, A.W.; Shams, R.; Chaudhary, K.S.; Mirza, A.A.; Manzoor, S. A comprehensive review on functional beverages from cereal grains-characterization of nutraceutical potential, processing technologies and product types. Heliyon 2023, 9, e16804. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cereal grain-based functional beverages: From cereal grain bioactive phytochemicals to beverage processing technologies, health benefits and product features. Crit. Rev. Food Sci. Nutr. 2022, 62, 2404–2431. [Google Scholar] [CrossRef]
- Charalampopoulos, D.; Wang, R.; Pandiella, S.S.; Webb, C. Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 2002, 79, 131–141. [Google Scholar] [CrossRef]
- Petrova, P.; Petrov, K. Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef]
- Rollan, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic Fermentation as a Strategy to Improve the Nutritional and Functional Values of Pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Wu, J. Food-based uses of brewers spent grains: Current applications and future possibilities. Food Biosci. 2023, 54, 102774. [Google Scholar] [CrossRef]
- Stefoska-Needham, A.; Tapsell, L. Considerations for progressing a mainstream position for sorghum, a potentially sustainable cereal crop, for food product innovation pipelines. Trends Food Sci. Technol. 2020, 97, 249–253. [Google Scholar] [CrossRef]
- Muñoz, L.A.; Cobos, A.; Diaz, O.; Aguilera, J.M. Chia Seed (Salvia hispanica): An Ancient Grain and a New Functional Food. Food Rev. Int. 2013, 29, 394–408. [Google Scholar] [CrossRef]
- Acheampong, R.; Osei Tutu, C.; Amissah, J.G.N.; Danquah, A.O.; Saalia, F.K. Physicochemical and sensory characteristics of a breakfast cereal made from sprouted finger millet-maize composite flour. Cogent Food Agric. 2024, 10, 2363003. [Google Scholar] [CrossRef]
- Habib, H.; Kumar, A.; Amin, T.; Bhat, T.A.; Aziz, N.; Rasane, P.; Ercisli, S.; Singh, J. Process optimization, growth kinetics, and antioxidant activity of germinated buckwheat and amaranth-based yogurt mimic. Food Chem. 2024, 457, 140138. [Google Scholar] [CrossRef]
- Li, H.; Zhu, F.; Li, G. Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70081. [Google Scholar] [CrossRef]
- Rudra, S.G.; Jakhar, N.; Nishad, J.; Saini, N.; Sen, S.; Bhardhwaj, R.; Jaiswal, S.; Suneja, P.; Singh, S.; Kaur, C. Extrusion Conditions and Antioxidant Properties of Sorghum, Barley and Horse Gram Based Snack. Vegetos 2015, 28, 171–182. [Google Scholar] [CrossRef]
Grain Type | Notable Nutrients/Bioactives | Documented/Proposed Health Benefits | Selected References |
---|---|---|---|
Traditional Red and Pigmented Rice (e.g., Mappillai Samba, Chakhao, YZ6H) | Phenolic acids, flavonoids, tocopherols, phytosterols, squalene, anthocyanins, vitamins, minerals | Antioxidant, anti-inflammatory, anticancer, antihypercholesterolemic, neuroprotective | [12,13,14] |
Wild Rice (Zizania spp.) | Protein, fiber, vitamins B/E, minerals (Fe, Zn, Mg), phenolics, phytosterols, γ-oryzanol | Anti-atherogenic, antidiabetic, hypocholesterolemic, metabolic and gut health benefits | [15,16,17,18] |
Australian Native Grains | Protein, polyunsaturated fatty acids, phenolics, Ca, Fe, Zn, Mg | Glycemic control, cardiovascular and metabolic health, antioxidant, and anti-inflammatory | [19,20] |
Indigenous and Aromatic Rice (India, Khasi, Himalaya) | Protein, resistant starch, fiber, iron, zinc, phenolics, aroma compounds | Low GI, antioxidant, digestive and metabolic benefits, ethnomedicinal value | [21,22,23] |
Thai and Korean Pigmented Rice Bran | Anthocyanins, flavonoids, tocopherols, γ-oryzanol, fatty acids | Antioxidant, anti-obesity, antidiabetic, immune-modulatory | [24,25,26] |
Teff, Fonio, Sorghum, Pearl Millet (African Grains) | Iron, zinc, calcium, vitamin A, B12, fiber, polyphenols | Combat malnutrition, manage NCDs, promote dietary diversity and food security | [27,28] |
Kañiwa, Quinoa, Kiwicha (Andean Grains) | Protein, essential amino acids, fiber, phenolics, flavonoids, betalains | Antioxidant, anti-inflammatory, anticancer, colon health | [29,30] |
Ancient Wheats (Einkorn, Emmer, Khorasan, Spelt) | Protein, fiber, polyphenols, minerals (Zn, Fe, Mg), MUFA, tocopherols | Antioxidant, anti-inflammatory, gut health, higher nutritional density than modern wheat | [31,32,33] |
Oats, Buckwheat, Rye | β-glucans, resistant starch, phenolics, minerals | Glycemic control, cholesterol-lowering, antioxidant and cardiovascular health | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aweya, J.J.; Sharma, D.; Bajwa, R.K.; Earnest, B.; Krache, H.; Moghadasian, M.H. Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science. Foods 2025, 14, 2529. https://doi.org/10.3390/foods14142529
Aweya JJ, Sharma D, Bajwa RK, Earnest B, Krache H, Moghadasian MH. Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science. Foods. 2025; 14(14):2529. https://doi.org/10.3390/foods14142529
Chicago/Turabian StyleAweya, Jude Juventus, Drupat Sharma, Ravneet Kaur Bajwa, Bliss Earnest, Hajer Krache, and Mohammed H. Moghadasian. 2025. "Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science" Foods 14, no. 14: 2529. https://doi.org/10.3390/foods14142529
APA StyleAweya, J. J., Sharma, D., Bajwa, R. K., Earnest, B., Krache, H., & Moghadasian, M. H. (2025). Ancient Grains as Functional Foods: Integrating Traditional Knowledge with Contemporary Nutritional Science. Foods, 14(14), 2529. https://doi.org/10.3390/foods14142529