Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (257)

Search Parameters:
Keywords = cardiac energy metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2576 KiB  
Article
Tissue-Specific Modulation of Spexin Expression in Diet-Induced Obese Male Rats: Comparative Effects of Aerobic Exercise and Metformin
by İsa Aydemir, Vedat Çınar, Taner Akbulut, Mehmet Hanifi Yalçın, Yavuz Yasul, Berrin Tarakçi Gençer, Süleyman Aydın, Halil İbrahim Ceylan and Nicola Luigi Bragazzi
Appl. Sci. 2025, 15(16), 8828; https://doi.org/10.3390/app15168828 - 10 Aug 2025
Viewed by 279
Abstract
Obesity, a major global health concern, is associated with systemic metabolic dysregulation. Spexin, a peptide implicated in appetite control and energy balance, may represent a biomarker and therapeutic target in obesity management. This study aimed to investigate tissue-specific modulation of spexin expression in [...] Read more.
Obesity, a major global health concern, is associated with systemic metabolic dysregulation. Spexin, a peptide implicated in appetite control and energy balance, may represent a biomarker and therapeutic target in obesity management. This study aimed to investigate tissue-specific modulation of spexin expression in obese male rats subjected to aerobic exercise and/or metformin treatment. Thirty-six Sprague–Dawley rats were randomly assigned to six groups (n = 6 per group): (i) control, (ii) obese control, (iii) exercise, (iv) metformin, (v) metformin + exercise, and (vi) a decapitation baseline group. Obesity was induced via a 12-week high-calorie diet. Subsequently, interventions were applied over 4 weeks: treadmill running (30 min/day, 5 days/week) and/or metformin (150 mg/kg/day). Post-intervention, body weight significantly decreased in intervention groups (p < 0.001) exercise (−13.7%), metformin (−14.6%), and metformin + exercise (−21.1%) compared to the obese control group. ELISA revealed tissue-specific effects on spexin expression. In skeletal muscle, spexin levels were highest in controls (628 ± 160.5 pg/mL), with a significant reduction in the metformin + exercise group (349 ± 84.7 pg/mL; p = 0.003, Cohen’s d = 2.17). In the liver, the control group showed the highest expression (443 ± 240.8 pg/mL), while metformin + exercise yielded the lowest (254 ± 20.4 pg/mL). In contrast, heart tissue maintained elevated spexin levels across all intervention groups, with the metformin + exercise group nearly matching control levels (617 ± 25.2 vs. 618 ± 53.2 pg/mL). Immunohistochemistry confirmed these patterns, with the highest cardiac histoscore in the metformin + exercise group (2.34 ± 0.09). Hierarchical clustering underscored distinct tissue-specific expression patterns, separating muscle from liver and heart. Collectively, these findings suggest that spexin is differentially regulated by exercise and metformin, with joint effects and complex, tissue-specific modulation. This highlights spexin’s potential as a biomarker and therapeutic target in precision obesity interventions. Full article
Show Figures

Figure 1

22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 - 31 Jul 2025
Viewed by 330
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 573
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

27 pages, 1136 KiB  
Review
Metabolic Disturbances Involved in Cardiovascular Diseases: The Role of Mitochondrial Dysfunction, Altered Bioenergetics and Oxidative Stress
by Donatella Pietrangelo, Caroline Lopa, Margherita Litterio, Maria Cotugno, Speranza Rubattu and Angela Lombardi
Int. J. Mol. Sci. 2025, 26(14), 6791; https://doi.org/10.3390/ijms26146791 - 15 Jul 2025
Viewed by 598
Abstract
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart [...] Read more.
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart bioenergetics. During the initial phase of heart failure, mitochondrial number and function progressively decline, causing a decrease in oxidative metabolism and increased glucose uptake and glycolysis, leading to ATP depletion and bioenergetic starvation, finally contributing to overt heart failure. Compromised mitochondrial bioenergetics is associated with vascular damage in hypertension, vascular remodeling in pulmonary hypertension and acute cardiovascular events. Thus, mitochondrial dysfunction, leading to impaired ATP production, excessive ROS generation, the opening of mitochondrial permeability transition pores and the activation of apoptotic and necrotic pathways, is revealed as a typical feature of common CVDs. Molecules able to positively modulate cellular metabolism by improving mitochondrial bioenergetics and energy metabolism and inhibiting oxidative stress production are expected to exert beneficial protective effects in the heart and vasculature. This review discusses recent advances in cardiovascular research through the study of cellular bioenergetics in both chronic and acute CVDs. Emerging therapeutic strategies, specifically targeting metabolic modulators, mitochondrial function and quality control, are discussed. Full article
(This article belongs to the Special Issue Molecular Research in Cardiovascular Disease, 3rd Edition)
Show Figures

Figure 1

13 pages, 2212 KiB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 429
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

20 pages, 2891 KiB  
Review
MAPK, PI3K/Akt Pathways, and GSK-3β Activity in Severe Acute Heart Failure in Intensive Care Patients: An Updated Review
by Massimo Meco, Enrico Giustiniano, Fulvio Nisi, Pierluigi Zulli and Emiliano Agosteo
J. Cardiovasc. Dev. Dis. 2025, 12(7), 266; https://doi.org/10.3390/jcdd12070266 - 10 Jul 2025
Viewed by 982
Abstract
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular [...] Read more.
Acute heart failure (AHF) is a clinical syndrome characterized by the sudden onset or rapid worsening of heart failure signs and symptoms, frequently triggered by myocardial ischemia, pressure overload, or cardiotoxic injury. A central component of its pathophysiology is the activation of intracellular signal transduction cascades that translate extracellular stress into cellular responses. Among these, the mitogen-activated protein kinase (MAPK) pathways have received considerable attention due to their roles in mediating inflammation, apoptosis, hypertrophy, and adverse cardiac remodeling. The canonical MAPK cascades—including extracellular signal-regulated kinases (ERK1/2), p38 MAPK, and c-Jun N-terminal kinases (JNK)—are activated by upstream stimuli such as angiotensin II (Ang II), aldosterone, endothelin-1 (ET-1), and sustained catecholamine release. Additionally, emerging evidence highlights the role of receptor-mediated signaling, cellular stress, and myeloid cell-driven coagulation events in linking MAPK activation to fibrotic remodeling following myocardial infarction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling cascade plays a central role in regulating cardiomyocyte survival, hypertrophy, energy metabolism, and inflammation. Activation of the PI3K/Akt pathway has been shown to confer cardioprotective effects by enhancing anti-apoptotic and pro-survival signaling; however, aberrant or sustained activation may contribute to maladaptive remodeling and progressive cardiac dysfunction. In the context of AHF, understanding the dual role of this pathway is crucial, as it functions both as a marker of compensatory adaptation and as a potential therapeutic target. Recent reviews and preclinical studies have linked PI3K/Akt activation with reduced myocardial apoptosis and attenuation of pro-inflammatory cascades that exacerbate heart failure. Among the multiple signaling pathways involved, glycogen synthase kinase-3β (GSK-3β) has emerged as a key regulator of apoptosis, inflammation, metabolic homeostasis, and cardiac remodeling. Recent studies underscore its dual function as both a negative regulator of pathological hypertrophy and a modulator of cell survival, making it a compelling therapeutic candidate in acute cardiac settings. While earlier investigations focused primarily on chronic heart failure and long-term remodeling, growing evidence now supports a critical role for GSK-3β dysregulation in acute myocardial stress and injury. This comprehensive review discusses recent advances in our understanding of the MAPK signaling pathway, the PI3K/Akt cascade, and GSK-3β activity in AHF, with a particular emphasis on mechanistic insights, preclinical models, and emerging therapeutic targets. Full article
(This article belongs to the Topic Molecular and Cellular Mechanisms of Heart Disease)
Show Figures

Figure 1

9 pages, 920 KiB  
Article
Characterisation of Ventricular Nucleotide Metabolism and Clinical Predictors Associated with the Onset of Atrial Fibrillation Following Cardiac Surgery
by Daniel Paul Fudulu, Arnaldo Dimagli, Marco Moscarelli, Rahul Kota, Tim Dong, Marco Gemelli, Manraj Sandhu, Saadeh Suleiman and Gianni D. Angelini
J. Clin. Med. 2025, 14(13), 4777; https://doi.org/10.3390/jcm14134777 - 7 Jul 2025
Viewed by 470
Abstract
Introduction: Postoperative atrial fibrillation (POAF) is a common complication after heart surgery, adversely impacting clinical outcomes and healthcare costs. Little is known about the dynamics of nucleotide metabolism associated with the development of POAF at a ventricular level. We conducted a post hoc [...] Read more.
Introduction: Postoperative atrial fibrillation (POAF) is a common complication after heart surgery, adversely impacting clinical outcomes and healthcare costs. Little is known about the dynamics of nucleotide metabolism associated with the development of POAF at a ventricular level. We conducted a post hoc trial analysis to investigate the changes in ventricular adenine nucleotides and the clinical predictors associated with the development of AF. Methods: Using data from a randomised trial, we analysed ATP/ADP, ATP/AMP, and energy charges in left and right ventricular biopsies of patients who developed AF compared to non-AF patients. A logistic regression model was used to understand the predictors associated with the development of atrial fibrillation in this cohort. Results: We analysed adenine nucleotide levels available in 88 patients who underwent coronary artery bypass grafting (CABG) (n = 65) and aortic valve replacement (AVR) (n = 23), out of which 27 (31%) developed a new onset of AF. Seventeen (43.4%) patients in the CABG group and ten (26.15%) in the AVR group developed AF. The patients who developed postoperative AF had longer cross-clamp times for CABG (p = 0.013) and AVR (p = 0.002). The most significant predictors for AF development were age (p = 0.003) and cross-clamp time (p = 0.012). In patients undergoing CABG who developed AF, we found a significant drop in post-reperfusion ATP/ADP and ATP/AMP ratios compared to pre-reperfusion. This was not significant for the patients who underwent AVR. Furthermore, the patients who underwent CABG and developed AF had higher pre- and post-reperfusion ATP/ADP ratios and energy charges than non-AF patients, suggesting a higher reserve of cardiac nucleotides. Conclusions: The development of postoperative atrial fibrillation is associated with intraoperative changes in the ventricular adenine nucleotide metabolism of patients undergoing CABG. In the clinical analysis, age and cross-clamp time were significant predictors of AF development. Full article
Show Figures

Figure 1

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 470
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

16 pages, 744 KiB  
Review
Carnitine Deficiency in Chronic Kidney Disease: Pathophysiology, Clinical Implications, and Therapeutic Perspectives
by Yusuke Kaida, Kensei Taguchi and Kei Fukami
Nutrients 2025, 17(13), 2084; https://doi.org/10.3390/nu17132084 - 23 Jun 2025
Viewed by 1107
Abstract
Carnitine is essential for the mitochondrial transport of long-chain fatty acids and thus plays a pivotal role in energy metabolism, particularly in metabolically active organs, such as skeletal and cardiac muscle. In patients with dialysis, carnitine homeostasis is disrupted because of the reduced [...] Read more.
Carnitine is essential for the mitochondrial transport of long-chain fatty acids and thus plays a pivotal role in energy metabolism, particularly in metabolically active organs, such as skeletal and cardiac muscle. In patients with dialysis, carnitine homeostasis is disrupted because of the reduced synthesis, impaired renal reabsorption, and carnitine loss during extracorporeal procedures. Carnitine deficiency is linked to a wide range of clinical manifestations, including muscle weakness, treatment-resistant anemia, intradialytic hypotension, mental disorder, and cardiovascular disease. This review provides a comprehensive overview of the physiological function of carnitine, elucidates the underlying mechanisms of carnitine deficiency in patients with dialysis, and explores the clinical consequences. Furthermore, the efficacy and limitations of L-carnitine supplementation in clinical practice are discussed based on the current literature. A better understanding of the pathophysiological and clinical relevance of carnitine deficiency may help facilitate personalized therapeutic strategies for patients with kidney diseases. Full article
Show Figures

Figure 1

24 pages, 3424 KiB  
Article
Oxidative Stress, Energy Metabolism Disorder, Mitochondrial Damage, and miR-144 Participated in Molecular Mechanisms of 4-Octylphenol-Caused Cardiac Autophagic Damage in Common Carps (Cyprinus carpio L.)
by Minna Qiu, Chunyu Jiang, Jiatian Liang, Qin Zhou, Yuhao Liu, Zhiyu Hao, Yuhang Liu, Xiumei Liu, Xiaohua Teng, Wei Sun and You Tang
Metabolites 2025, 15(6), 391; https://doi.org/10.3390/metabo15060391 - 11 Jun 2025
Viewed by 657
Abstract
Background/Objectives: In 4-octylphenol (4-OP), a toxic environmental pollutant with endocrine disruptive effect, the use of 4-OP causes pollution in the freshwater environment and poses risks to aquatic organisms. Common carps (Cyprinus carpio L.) live in freshwater and are experimental animals for [...] Read more.
Background/Objectives: In 4-octylphenol (4-OP), a toxic environmental pollutant with endocrine disruptive effect, the use of 4-OP causes pollution in the freshwater environment and poses risks to aquatic organisms. Common carps (Cyprinus carpio L.) live in freshwater and are experimental animals for studying the toxic effects of environmental pollutants on fish. Its heart is susceptible to toxicants. However, whether 4-OP has a toxic effect on common carp heart remains unknown. Methods: Here, we conducted a common carp 4-OP exposure experiment (carp treated with 17 μg/L 4-OP for 45 days), aiming to investigate whether 4-OP has a toxic effect on common carp hearts. We observed the microstructure and ultrastructure of carp heart and detected autophagy genes, mitochondrial fission genes, mitochondrial fusion genes, glycolytic enzymes, AMPK, ATPase, and oxidative stress factors, to investigate the molecular mechanism of 4-OP induced damage in common carp hearts. Results: Our results showed that 4-OP exposure caused mitochondrial damage, autophagy, and damage in common carp hearts. 4-OP exposure increased the levels of miR-144, and eight autophagy factors (Beclin1, RB1CC1, ULK1, LC3-I, LC3-II, ATG5, ATG12, and ATG13), and decreased the levels of four autophagy factors (PI3K, AKT, mTOR, and SQSTM1). Furthermore, 4-OP exposure induced the imbalance between mitochondrial fission and fusion and mitochondrial dynamics imbalance, as demonstrated by the increase in three mitochondrial fission factors (Mff, Drp1, and Fis1) and the decrease in three mitochondrial fusion factors (Mfn1, Mfn2, and Opa1). Moreover, excess 4-OP treatment caused energy metabolism disorder, as demonstrated by the reduction in four ATPase (Na+K+-ATPase, Ca2+Mg2+-ATPase, Ca2+-ATPase, and Mg2+-ATPase), elevation in four glycolysis genes (HK1, HK2, LDHA, and PGK1), reduction in glycolysis gen (PGAM2), and the elevation in energy-sensing AMPK. Finally, 4-OP treatment induced the imbalance between antioxidant and oxidant and oxidative stress, as demonstrated by the increase in oxidant H2O2, and the decreases in five antioxidant factors (CAT, SOD, T-AOC, Nrf2, and HO-1). Conclusions: miR-144 mediated autophagy by targeting PI3K, mTOR, and SQSTM1, and the miR-144/PI3K-AKT-mTOR/ULK1 pathway was involved in 4-OP-induced autophagy. Mff-Drp1 axis took part in 4-OP-caused mitochondrial dynamics imbalance, and mitochondrial dynamics imbalance mediated autophagy via Mfn2-SQSTM1, Mfn2/Beclin1, and Mff-LC3-II axes. Energy metabolism disorder mediated mitochondrial dynamics imbalance through the AMPK-Mff-Drp1 pathway. Oxidative stress mediated energy metabolism disorder via the H2O2-AMPK axis. Taken together, oxidative stress triggered energy metabolism disorder, induced mitochondrial dynamics imbalance, and caused autophagy via the H2O2-AMPK-Mff-LC3-II pathway. Our study provided references for the toxic effects of endocrine disruptor on common carp hearts, and provided a basis for assessing environmental pollutant-induced damage in common carp heart. We only studied the toxic effects of 4-OP on common carp, and the toxic effects of 4-OP on other fish species need to be further studied. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

20 pages, 608 KiB  
Systematic Review
The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review
by Sebastian T. Jendrek, Franziska Schmelter, Christian Sina, Ulrich L. Günther and Gabriela Riemekasten
Sclerosis 2025, 3(2), 18; https://doi.org/10.3390/sclerosis3020018 - 29 May 2025
Viewed by 852
Abstract
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains [...] Read more.
The mortality risk in systemic sclerosis (SSc) is primarily determined by pulmonary involvement (interstitial lung disease (ILD), pulmonary fibrosis), pulmonary arterial hypertension (PAH), and cardiac involvement. With timely and intensive treatment, the disease can be halted or even improved. Therefore, early diagnosis remains crucial. Unfortunately, biomarkers currently available cannot meet this requirement. SSc is characterized by autoimmune inflammation, vasculopathy, and fibrosis. The immunometabolic characterization of autoimmune diseases contributes to a better understanding of the underlying inflammatory processes. In this narrative review, we included 13 studies on metabolomic patterns in SSc in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA). Current studies indicate an altered metabolome in SSc. All documented significant differences between patients with SSc and healthy controls, although the observed metabolomic patterns in SSc were inconsistent between studies. Metabolome alterations include, in particular, energy-related metabolic pathways such as glycolysis/gluconeogenesis, including the synthesis and degradation of ketones, fatty acid oxidation, amino acid-related metabolic pathways, lipid metabolism, and the tricarboxylic acid (TCA) cycle, including pyruvate metabolism. The most frequently examined organ complications with reported significant aberrations of the metabolome were skin involvement, ILD, and PAH. Conclusion: The detailed characterization of the SSc-specific metabolome promises a more comprehensive understanding of the pathogenic mechanisms of the disease. Furthermore, the detection of associations between specific metabolic aberrations and disease phenotypes bears hope for new biomarkers and an improved personalized approach to diagnostics, therapy, and follow-up in the management of SSc. Full article
(This article belongs to the Special Issue Recent Advances in Understanding Systemic Sclerosis)
Show Figures

Figure 1

20 pages, 1310 KiB  
Review
Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review
by Loukia Pliouta, Stamatios Lampsas, Aikaterini Kountouri, Emmanouil Korakas, John Thymis, Eva Kassi, Evangelos Oikonomou, Ignatios Ikonomidis and Vaia Lambadiari
J. Clin. Med. 2025, 14(11), 3706; https://doi.org/10.3390/jcm14113706 - 25 May 2025
Cited by 1 | Viewed by 1534
Abstract
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression [...] Read more.
Mitochondria play a central role in energy metabolism and continuously adapt through dynamic processes such as fusion and fission. When the balance between these processes is disrupted, it can lead to mitochondrial dysfunction and increased oxidative stress, contributing to the development and progression of various cardiometabolic diseases (CMDs). Their role is crucial in diabetes mellitus (DM), since their dysfunction drives β-cell apoptosis, immune activation, and chronic inflammation through excessive ROS production, worsening endogenous insulin secretion. Moreover, sympathetic nervous system activation and altered dynamics, contribute to hypertension through oxidative stress, impaired mitophagy, endothelial dysfunction, and cardiomyocyte hypertrophy. Furthermore, the role of mitochondria is catalytic in endothelial dysfunction through excessive reactive oxygen species (ROS) production, disrupting the vascular tone, permeability, and apoptosis, while impairing antioxidant defense and promoting inflammatory processes. Mitochondrial oxidative stress, resulting from an imbalance between ROS/Reactive nitrogen species (RNS) imbalance, promotes atherosclerotic alterations and oxidative modification of oxidizing low-density lipoprotein (LDL). Mitochondrial DNA (mtDNA), situated in close proximity to the inner mitochondrial membrane where ROS are generated, is particularly susceptible to oxidative damage. ROS activate redox-sensitive inflammatory signaling pathways, notably the nuclear factor kappa B (NF-κB) pathway, leading to the transcriptional upregulation of proinflammatory cytokines, chemokines, and adhesion molecules. This proinflammatory milieu promotes endothelial activation and monocyte recruitment, thereby perpetuating local inflammation and enhancing atherogenesis. Additionally, mitochondrial disruptions in heart failure promote further ischemic injury and excessive oxidative stress release and impair ATP production and Ca2⁺ dysregulation, contributing to cell death, fibrosis, and decreased cardiac performance. This narrative review aims to investigate the intricate relationship between mitochondrial dysfunction and CMDs. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

22 pages, 3140 KiB  
Review
Sex-Specific Antioxidant and Anti-Inflammatory Protective Effects of AMPK in Cardiovascular Diseases
by Lea Strohm, Dominika Mihalikova, Alexander Czarnowski, Zita Schwaibold, Andreas Daiber and Paul Stamm
Antioxidants 2025, 14(5), 615; https://doi.org/10.3390/antiox14050615 - 21 May 2025
Viewed by 1041
Abstract
Cardiovascular diseases such as coronary heart disease, heart failure, or stroke are the most common cause of death worldwide and are regularly based on risk factors like diabetes mellitus, hypertension, or obesity. At the same time, both diseases and risk factors are significantly [...] Read more.
Cardiovascular diseases such as coronary heart disease, heart failure, or stroke are the most common cause of death worldwide and are regularly based on risk factors like diabetes mellitus, hypertension, or obesity. At the same time, both diseases and risk factors are significantly influenced by sex hormones. In order to better understand this influence and also specifically improve the therapy of female patients, medical research has recently focused increasingly on gender-specific differences. The goal is to develop personalized, gender-specific therapy concepts for these diseases to further enhance health outcomes. The enzyme adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of energy metabolism, protecting the cardiovascular system from energy depletion, thereby promoting vascular health and preventing cellular damage. AMPK confers cardioprotective effects by preventing endothelial and vascular dysfunction, and by controlling or regulating oxidative stress and inflammatory processes. For AMPK, sex-specific effects were reported, influencing metabolic and cardiovascular responses. Exercise and metabolic stress generally cause higher AMPK activity in males. At the same time, females exhibit protective mechanisms against insulin resistance or oxidative stress, particularly in conditions like obesity. Additionally, males subject to AMPK deficiency seem to experience greater cardiac and mitochondrial dysfunction. In contrast, females show improvement in cardiovascular function after pharmacological AMPK activation. These differences, influenced by hormones, body composition, and gene expression, highlight the potential to develop personalized, sex-specific AMPK-targeted therapeutic strategies for cardiovascular diseases in the future. Here, we discuss the most actual scientific background, focusing on the protective, gender-specific effects of AMPK, and highlight potential clinical applications. Full article
(This article belongs to the Special Issue Oxidative/Nitrosative Stress in Cardiovascular Diseases)
Show Figures

Graphical abstract

20 pages, 1313 KiB  
Review
Ketone Bodies in the Regulation of Myocardial Perfusion in Cardiovascular Disease: Metabolic and Vasodilatory Effects
by Afolasayo A. Aromiwura, Kara R. Gouwens, Daniel C. Nguyen, Maryta Sztukowska, Luanne Didelot and Dinesh K. Kalra
Int. J. Mol. Sci. 2025, 26(10), 4856; https://doi.org/10.3390/ijms26104856 - 19 May 2025
Viewed by 804
Abstract
Ketone bodies (KBs) serve as an alternative energy source for healthy and failing hearts and have important effects on myocardial blood perfusion in both physiological and pathological states. Early animal studies suggest that KBs may provide protective benefits in ischemic heart disease and [...] Read more.
Ketone bodies (KBs) serve as an alternative energy source for healthy and failing hearts and have important effects on myocardial blood perfusion in both physiological and pathological states. Early animal studies suggest that KBs may provide protective benefits in ischemic heart disease and heart failure. Under normal circumstances, coronary blood flow regulation is an intricate system with contributions from metabolic, autonomic, compressive, and endothelial factors, with the metabolic regulatory pathway being the most significant contributor. We conducted a non-systematic review of studies published between 1987 and 2024. In this review, we explored the physiological autoregulation of normal coronary blood flow, the role of ketone bodies in myocardial perfusion in health and disease, and the potential role of exogenous ketone body supplementation in producing salutary effects on myocardial blood flow (MBF) and metabolism in exercise and cardiac disease states including ischemia, heart failure, and the aging heart. Overall, our findings demonstrated that KBs improve MBF and ejection fraction in healthy human subjects and have beneficial effects on cardiac output and left heart filling pressures in patients with decompensated heart failure. Although resting myocardial blood flow decreases with age, further studies are required to assess the impact of KBs on MBF in aging populations. Additionally, more research is needed to investigate the effects of KBs during exercise and in instances of myocardial ischemia. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

17 pages, 874 KiB  
Review
Effect of KLF15-Mediated Circadian Rhythm on Myocardial Infarction: A Narrative Review
by Junxin Zhao, Zhuoyang Chen, Jingyi Yang, Lincheng Duan, Hong Yang, Dingjun Cai and Zhengyu Zhao
Int. J. Mol. Sci. 2025, 26(10), 4831; https://doi.org/10.3390/ijms26104831 - 18 May 2025
Viewed by 576
Abstract
Normal circadian rhythms are essential for organisms to adapt to diurnal changes and maintain an optimal state of physiological function. Disturbances in circadian rhythms such as shift work and working at night increase the risk of cardiovascular disease. Myocardial infarction exhibits a marked [...] Read more.
Normal circadian rhythms are essential for organisms to adapt to diurnal changes and maintain an optimal state of physiological function. Disturbances in circadian rhythms such as shift work and working at night increase the risk of cardiovascular disease. Myocardial infarction exhibits a marked circadian rhythm, usually peaking in the early morning. Krüppel-like factor 15 (KLF15), a transcription factor with a circadian rhythm, plays an important role in cardiac physiopathology. It has a protective effect against myocardial injury after myocardial infarction by regulating energy metabolism and inflammatory factors, among other pathways. Currently, the association between circadian rhythm, KLF15, and myocardial infarction is unclear, thus this paper reviews how circadian rhythm influences the role of KLF15 in myocardial infarction, aiming to reveal the association between circadian rhythm, KLF15, and myocardial infarction, and to explore the underlying mechanisms, to provide new theoretical insights and therapeutic strategies for the clinical treatment of myocardial infarction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop