The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review
Abstract
:1. Introduction
2. Methods and Search Strategy
- Original research articles (cohort, case control studies), addressing the human, adult serum or plasma metabolome in SSc, published without restriction to a single metabolite and published in English within the last ten years.
- Use of HPLC/UPLC-MS or LC-MS or 1H-NMR.
- SSc diagnosis according to the 2013 American College of Rheumatology and European League Against Rheumatism ACR/EULAR classification criteria.
- Studies focusing on other biological samples, e.g., urine.
- In vitro studies.
3. Results
3.1. Serum or Plasma Metabolome in Systemic Sclerosis
3.2. Skin Manifestation
3.3. Focus on Interstitial Lung Involvement (ILD) and Pulmonary Fibrosis
3.4. Focus on Pulmonary Arterial Hypertension (SSc-PAH)
3.5. Focus on Further Prognostic Metabolome Signatures Including Treatment Response:
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabrielli, A.; Avvedimento, E.V.; Krieg, T. Scleroderma. N. Engl. J. Med. 2009, 360, 1989–2003. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.D. Autoantibodies in systemic sclerosis. Semin. Arthritis Rheum. 2005, 35, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Moinzadeh, P.; Aberer, E.; Ahmadi-Simab, K.; Blank, N.; Distler, J.H.W.; Fierlbeck, G.; Genth, E.; Guenther, C.; Hein, R.; Henes, J.; et al. Disease progression in systemic sclerosis-overlap syndrome is significantly different from limited and diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 2015, 74, 730–737. [Google Scholar] [CrossRef]
- Mok, C.C.; Kwok, C.L.; Ho, L.Y.; Chan, P.T.; Yip, S.F. Life expectancy, standardized mortality ratios, and causes of death in six rheumatic diseases in Hong Kong, China. Arthritis Rheum. 2011, 63, 1182–1189. [Google Scholar] [CrossRef]
- Steen, V.D.; Medsger, T.A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 2007, 66, 940–944. [Google Scholar] [CrossRef]
- Elhai, M.; Meune, C.; Boubaya, M.; Avouac, J.; Hachulla, E.; Balbir-Gurman, A.; Riemekasten, G.; Airò, P.; Joven, B.; Vettori, S.; et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.; Scirè, C.A.; Talarico, R.; Airo, P.; Alexander, T.; Allanore, Y.; Bruni, C.; Codullo, V.; Dalm, V.; De Vries-Bouwstra, J.; et al. Systemic sclerosis: State of the art on clinical practice guidelines. RMD Open 2018, 4, e000782. [Google Scholar] [CrossRef]
- Hachulla, E.; Agard, C.; Allanore, Y.; Avouac, J.; Bader-Meunier, B.; Belot, A.; Berezne, A.; Bouthors, A.-S.; Condette-Wojtasik, G.; Constans, J.; et al. French recommendations for the management of systemic sclerosis. Orphanet J. Rare Dis. 2021, 16, 322. [Google Scholar] [CrossRef]
- Furst, D.; Khanna, D.; Matucci-Cerinic, M.; Clements, P.; Steen, V.; Pope, J.; Merkel, P.; Foeldvari, I.; Seibold, J.; Pittrow, D.; et al. Systemic sclerosis—Continuing progress in developing clinical measures of response. J. Rheumatol. 2007, 34, 1194–1200. [Google Scholar]
- Caramaschi, P.; Canestrini, S.; Martinelli, N.; Volpe, A.; Pieropan, S.; Ferrari, M.; Bambara, L.M.; Carletto, A.; Biasi, D. Scleroderma patients nailfold videocapillaroscopic patterns are associated with disease subset and disease severity. Rheumtology 2007, 46, 1566–1569. [Google Scholar] [CrossRef]
- Domsic, R.T. Scleroderma: The role of serum autoantibodies in defining specific clinical phenotypes and organ system involvement. Curr. Opin. Rheumatol. 2014, 26, 646–652. [Google Scholar] [CrossRef]
- Hachulla, E.; Czirjak, L. EULAR Textbook on Systemic Sclerosis, 1st ed.; BMJ Publishing Group Ltd.: London, UK, 2013. [Google Scholar]
- van Laar, J.M.; Farge, D.; Sont, J.K.; Naraghi, K.; Marjanovic, Z.; Larghero, J.; Schuerwegh, A.J.; Marijt, E.W.A.; Vonk, M.C.; Schattenberg, A.V.; et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis:a randomizedclinical trial. JAMA 2014, 311, 2490–2498. [Google Scholar] [CrossRef] [PubMed]
- Scleroderma Lung Study Research Group; Tashkin, D.P.; Elashoff, R.; Clements, P.J.; Goldin, J.; Roth, M.D.; Furst, D.E.; Arriola, E.; Silver, R.; Strange, C.; et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 2006, 354, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Iudici, M.; Cuomo, G.; Vettori, S.; Bocchino, M.; Zamparelli, A.S.; Cappabianca, S.; Valentini, G. Low-dose pulse cyclophosphamide in interstitial lung disease associated with systemic sclerosis (SSc-ILD): Efficacy of maintenance immunosuppression in responders and non-responders. Semin. Arthritis Rheum. 2015, 44, 437–444. [Google Scholar] [CrossRef]
- Assassi, S.; Mayes, M.D. What does global gene expression profiling tell us about the pathogenesis of systemic sclerosis? Curr. Opin. Rheumatol. 2013, 25, 686–691. [Google Scholar] [CrossRef]
- Becker, M.O.; Brückner, C.; Scherer, H.U.; Wassermann, N.; Humrich, J.Y.; Hanitsch, L.G.; Schneider, U.; Kawald, A.; Hanke, K.; Burmester, G.R.; et al. The monoclonal anti-CD25 antibody basiliximab for the treatment of progressive systemic sclerosis: An open-label study. Ann. Rheum. Dis. 2011, 70, 1340–1341. [Google Scholar] [CrossRef]
- Mora, G.F. Systemic sclerosis: Environmental factors. J. Rheumatol. 2009, 36, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, E.M.; Van Woert, M.H.; Young, S.N.; Magnussen, I.; Baker, H.; Gauthier, S.; Osterland, C.K. Development of a scleroderma-like illness during therapy with L15-Hydroxytryptophan and carbidopa. N. Engl. J. Med. 1980, 303, 782–787. [Google Scholar] [CrossRef]
- Volkmann, E.R.; Hoffmann-Vold, A.-M.; Chang, Y.-L.; Jacobs, J.P.; Tillisch, K.; Mayer, E.A.; Clements, P.J.; Hov, J.R.; Kummen, M.; Midtvedt, Ø.; et al. Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol. 2017, 4, e000134. [Google Scholar] [CrossRef]
- Patrone, V.; Puglisi, E.; Cardinali, M.; Schnitzler, T.S.; Svegliati, S.; Festa, A.; Gabrielli, A.; Morelli, L. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci. Rep. 2017, 7, 14874. [Google Scholar] [CrossRef]
- Murphy, M.P.; O’Neill, L.A.J. Krebs cycle reimagined: The emerging roles of succinate and itaconate as signal transducers. Cell 2018, 174, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Krautkramer, K.A.; Feldman, J.L.; Denu, J.M. Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 2015, 10, 95–108. [Google Scholar] [CrossRef]
- Cameron, A.M.; Lawless, S.J.; Pearce, E.J. Metabolism and acetylation in innate immune cell function and fate. Semin. Immunol. 2016, 28, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Mason, E.F.; Rathmell, J.C. Cell metabolism: An essential link between cell growth and apoptosis. Biochem. Biophys. Acta 2011, 1813, 645–654. [Google Scholar] [CrossRef]
- Voss, K.; Larsen, S.E.; Snow, A.L. Metabolic reprogramming and apoptosis sensitivity: Defining the contours of a T cell response. Cancer Lett. 2017, 408, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Arcos, S.; Rothamel, K.; Jian, J.; Rose, K.L.; McDonald, W.H.; Bian, Y.; Reasoner, S.; Barrows, N.J.; Bradrick, S.; et al. Discovery of widespread host protein interactions with the pre-replicated genome of CHIKV Using VIR-CLASP. Mol. Cell 2020, 78, 624–640. [Google Scholar] [CrossRef]
- Pollizzi, K.N.; Powell, J.D. Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nat. Rev. Immunol. 2014, 14, 435–446. [Google Scholar] [CrossRef]
- Jellusova, J. Cross-talk between signal transduction and metabolism in B cells. Immunol. Lett. 2018, 201, 1–13. [Google Scholar] [CrossRef]
- Zasfona, Z.; O’Neill, L.A.J. Cytokine-like roles for metabolites in immunity. Mol. Cell 2020, 78, 814–823. [Google Scholar] [CrossRef]
- Krause, L.; Becker, M.O.; Brueckner, C.S.; Bellinghausen, C.-J.; Becker, C.; Schneider, U.; Haeupl, T.; Hanke, K.; Hensel-Wiegel, K.; Ebert, H.; et al. Nutritional status as marker for disease activity and severity predicting mortality in patients with systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 1951–1957. [Google Scholar] [CrossRef]
- Villas-Bas, S.G.; Roessner-Tunali, U.; Hansen, M.A.E.; Smedsgaard, J.; Nielsen, J. Metabolome Analysis: An Introduction, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Fiehn, O. Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks. Comp. Funct. Genom. 2001, 2, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D. Plant Metabolomics: From Holistic Hope, to Hype, to Hot Topic. N. Phytol. 2006, 169, 453–468. [Google Scholar] [CrossRef]
- Karu, N.; Deng, L.; Slae, M.; Guo, A.C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D.S. A Review on Human Fecal Metabolomics: Methods, Applications and the Human Fecal Metabolome Database. Anal. Chim. Acta 2018, 1030, 1–24. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Fernández-Ochoa, Á.; Brunius, C.; Borrás-Linares, I.; Quirantes-Piné, R.; Cádiz-Gurrea, M.d.l.L.; PRECISESADS Clinical Consortium; Riquelme, M.E.A.; Segura-Carretero, A. Metabolic disturbances in urinary and plasma samples from seven different systemic autoimmune diseases detected by HPLCESI-QTOF-MS. J. Proteome Res. 2020, 19, 3220–3229. [Google Scholar] [CrossRef]
- Bengtsson, A.A.; Trygg, J.; Wuttge, D.M.; Sturfelt, G.; Theander, E.; Donten, M.; Moritz, T.; Sennbro, C.-J.; Torell, F.; Lood, C.; et al. Metabolic profiling of systemic lupus erythematosus and comparison with primary Sjögren’s syndrome and systemic sclerosis. PLoS ONE 2016, 11, e0159384. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Meng, Q.; Wang, L. The effect of gut microbiome and plasma metabolome on systemic sclerosis: A bidirectional two-sample Mendelian randomization study. Front. Microbiol. 2024, 15, 1427195. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, D.; Jiang, Y.; Chen, W.; Zhao, L.; Bao, D.; Li, Y.; Distler, J.H.; Zhu, H. Serum metabolomic profiling reveals potential biomarkers in systemic sclerosis. Metabolism 2023, 144, 155587. [Google Scholar] [CrossRef]
- Ung, C.Y.; Onoufriadis, A.; Parsons, M.; McGrath, J.A.; Shaw, T.J. Metabolic perturbations in fibrosis disease. Int. J. Biochem. Cell Biol. 2021, 139, 106073. [Google Scholar] [CrossRef]
- Karna, E.; Szoka, L.; Huynh, T.Y.L.; Palka, J.A. Proline-dependentregulation of collagen metabolism. Cell Mol. Life Sci. 2020, 77, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Schwörer, S.; Berisa, M.; Violante, S.; Qin, W.; Zhu, J.; Hendrickson, R.C.; Cross, J.R.; Thompson, C.B. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J. 2020, 39, e103334. [Google Scholar] [CrossRef] [PubMed]
- Kay, E.J.; Koulouras, G.; Zanivan, S. Regulation of extracellular matrix production in activated fibroblasts: Roles of amino acid metabolism in collagen synthesis. Front. Oncol. 2021, 11, 719922. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Keane, K.N.; Curi, R.; Newsholme, P. Glutamine: Metabolism and immune function, supplementation and clinical translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef] [PubMed]
- Smolenska, Z.; Zabielska-Kaczorowska, M.; Wojteczek, A.; Kutryb-Zajac, B.; Zdrojewski, Z. Metabolic Pattern of Systemic Sclerosis: Association of Changes in Plasma Concentrations of Amino Acid-Related Compounds With Disease Presentation. Front. Mol. Biosci. 2020, 7, 585161. [Google Scholar] [CrossRef] [PubMed]
- Gogulska, Z.; Smolenska, Z.; Turyn, J.; Mika, A.; Zdrojewski, Z. Lipid alterations in systemic sclerosis. Front. Mol. Biosci. 2021, 8, 761721. [Google Scholar] [CrossRef]
- Fernández-Ochoa, Á.; Quirantes-Piné, R.; Borrás-Linares, I.; Gemperline, D.; Riquelme, M.E.A.; Beretta, L.; Segura-Carretero, A. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J. Pharm. Biomed. Anal. 2019, 162, 82–90. [Google Scholar] [CrossRef]
- Cartier, A.; Hla, T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2019, 366, eaar5551. [Google Scholar] [CrossRef]
- Jendrek, S.T.; Schmelter, F.; Schinke, S.; Hackel, A.; Graßhoff, H.; Lamprecht, P.; Humrich, J.Y.; Sina, C.; Müller, A.; Günther, U.; et al. Metabolomic signature identifies HDL and apolipoproteins as potential biomarker for systemic sclerosis with interstitial lung disease. Respir. Med. 2024, 234, 107825. [Google Scholar] [CrossRef]
- Hettema, M.E.; Zhang, D.; de Leeuw, K.; Stienstra, Y.; Smit, A.J.; Kallenberg, C.G.; Bootsma, H. Early atherosclerosis in systemic sclerosis and its relation to disease or traditional risk factors. Arthritis Res. Ther. 2008, 10, R49. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Kang, S.G.; Jannasch, A.H.; Cooper, B.; Patterson, J.; Kim, C.H. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015, 8, 80–93. [Google Scholar] [CrossRef]
- Cleophas, M.C.P.; Ratter, J.M.; Bekkering, S.; Quintin, J.; Schraa, K.; Stroes, E.S.; Netea, M.G.; Joosten, L.A.B. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci. Rep. 2019, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Murgia, F.; Svegliati, S.; Poddighe, S.; Lussu, M.; Manzin, A.; Spadoni, T.; Fischetti, C.; Gabrielli, A.; Atzori, L. Metabolomic profile of systemic sclerosis patients. Sci. Rep. 2018, 8, 7627. [Google Scholar] [CrossRef] [PubMed]
- Deidda, M.; Piras, C.; Dessalvi, C.C.; Locci, E.; Barberini, L.; Orofino, S.; Musu, M.; Mura, M.N.; Manconi, P.E.; Finco, G.; et al. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary arterial hypertension. Int. J. Cardiol. 2017, 241, 401–406. [Google Scholar] [CrossRef]
- Bellocchi, C.; Fernández-Ochoa, Á.; Montanelli, G.; Vigone, B.; Santaniello, A.; Milani, C.; Quirantes-Piné, R.; Borrás-Linares, I.; Ventura, M.; Segura-Carrettero, A.; et al. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann. N. Y. Acad. Sci. 2018, 1421, 97–109. [Google Scholar] [CrossRef]
- Bögl, T.; Mlynek, F.; Himmelsbach, M.; Sepp, N.; Buchberger, W.; Geroldinger-Simić, M. Plasma metabolomic profiling reveals four possibly disrupted mechanisms in systemic sclerosis. Biomedicines 2022, 10, 607. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Freiburghaus, K.; Bovet, C.; Schniering, J.; Allanore, Y.; Distler, O.; Nakas, C.; Maurer, B. Serum metabolites as biomarkers in systemic sclerosis-associated interstitial lung disease. Sci. Rep. 2020, 10, 21912. [Google Scholar] [CrossRef]
- Sun, C.; Zhu, H.; Wang, Y.; Han, Y.; Zhang, D.; Cao, X.; Alip, M.; Nie, M.; Xu, X.; Lv, L.; et al. Serum metabolite differences detected by HILIC UHPLC-Q-TOF MS in systemic sclerosis. Clin. Rheumatol. 2023, 42, 125–134. [Google Scholar] [CrossRef]
- Ottria, A.; Hoekstra, A.T.; Zimmermann, M.; van der Kroef, M.; Vazirpanah, N.; Cossu, M.; Chouri, E.; Rossato, M.; Beretta, L.; Tieland, R.G.; et al. Fatty acid and carnitine metabolism are dysregulated in systemic sclerosis patients. Front. Immunol. 2020, 11, 822. [Google Scholar] [CrossRef]
- Avouac, J.; Airo, P.; Meune, C.; Beretta, L.; Dieude, P.; Caramaschi, P.; Tiev, K.; Cappelli, S.; Diot, E.; Vacca, A.; et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J. Rheumatol. 2010, 37, 2290–2298. [Google Scholar] [CrossRef]
- Naranjo, M.; Hassoun, P.M. Systemic sclerosis-associated pulmonary hypertension: Spectrum and impact. Diagnostics 2021, 11, 911. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Yaici, A.; de Groote, P.; Montani, D.; Sitbon, O.; Launay, D.; Gressin, V.; Guillevin, L.; Clerson, P.; Simonneau, G.; et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: Clinical characteristics at diagnosis and long-term survival. ArthritisRheum 2011, 63, 3522–3530. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, V.; Stevens, W.; Prior, D.; Rabusa, C.; Sahhar, J.; Walker, J.G.; Roddy, J.; Lester, S.; Rischmueller, M.; Zochling, J.; et al. The role of asymmetric dimethylarginine alone and in combination with N-terminal pro-B-type natriuretic peptide as a screening biomarker for systemic sclerosis-related pulmonary arterial hypertension: A case control study. Clin. Exp. Rheumatol. 2016, 1, 129–136. [Google Scholar]
- Alotaibi, M.; Shao, J.; Pauciulo, M.W.; Nichols, W.C.; Hemnes, A.R.; Malhotra, A.; Kim, N.H.; Yuan, J.X.-J.; Fernandes, T.; Kerr, K.M.; et al. Metabolomic pro files differentiate Scleroderma PAH from idiopathic PAH and correspond with worsened functional capacity. Chest 2023, 163, 204–215. [Google Scholar] [CrossRef]
- Simpson, C.E.; Ambade, A.S.; Harlan, R.; Roux, A.; Aja, S.; Graham, D.; Shah, A.A.; Hummers, L.K.; Hemnes, A.R.; Leopold, J.A.; et al. Kynurenine pathway metabolism evolves with development of preclinical and scleroderma-associated pulmonary arterial hypertension. Am. J. Physiol. Cell. Mol. Physiol. 2023, 325, L617–L627. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Matteson, E.L.; Goronzy, J.J.; Weyand, C. T-cell metabolism in autoimmune disease. Arthritis Res. Ther. 2015, 17, 29. [Google Scholar] [CrossRef]
- Peng, Y.; Wu, C.; Qin, X.; Du, H.; Li, N.; Ren, W. The immunological function of GABAergic system. Front. Biosci. 2017, 22, 1162–1172. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef]
- Newsholme, P.; Curi, R.; Curi, T.P.; Murphy, C.; Garcia, C.; de Melo, M.P. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem. 1999, 10, 316–324. [Google Scholar] [CrossRef]
- Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 2010, 185, 1037–1044. [Google Scholar] [CrossRef]
- Ardawi, M.S.M. Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 1988, 37, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J.; Hossain, T.; Hill, D.S.; Phillips, B.E.; Crossland, H.; Williams, J.; Loughna, P.; Churchward-Venne, T.A.; Breen, L.; Phillips, S.M.; et al. Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013, 591, 2911–2923. [Google Scholar] [CrossRef] [PubMed]
- Suto, T.; Karonitsch, T. The immunobiology of mTOR in autoimmunity. J. Autoimmun. 2019, 110, 102373. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.; Nho, R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. Int. J. Mol. Sci. 2018, 19, 778. [Google Scholar] [CrossRef]
- Badawy, A.A.B. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci. Rep. 2022, 42, BSR20221682. [Google Scholar] [CrossRef]
- Ramprasath, T.; Han, Y.-M.; Zhang, D.; Yu, C.-J.; Zou, M.-H. Tryptophan catabolism and inflammation: A Novel Therapeutic Target for aortic diseases. Front. Immunol. 2021, 12, 731701. [Google Scholar] [CrossRef]
- Perl, A.; Hanczko, R.; Lai, Z.-W.; Oaks, Z.; Kelly, R.; Borsuk, R.; Asara, J.M.; Phillips, P.E. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of the mechanistic target of rapamycin. Metabolomics 2015, 11, 1157–1174. [Google Scholar] [CrossRef]
- Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.-H.; May, C.; Wilck, N.; et al. Dietary fatty acids directly Impact Central Nervous System Autoimmunity via the small intestine. Immunity 2015, 43, 817–829. [Google Scholar] [CrossRef]
- Ji, X.; Wu, L.; Marion, T.; Luo, Y. Lipid metabolism in regulation of B cell development and autoimmunity. Cytokine Growth Factor Rev. 2023, 73, 40–51. [Google Scholar] [CrossRef]
- Nofer, J.-R.; van der Giet, M.; Tölle, M.; Wolinska, I.; Lipinski, K.V.W.; Baba, H.A.; Tietge, U.J.; Gödecke, A.; Ishii, I.; Kleuser, B.; et al. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Investig. 2004, 113, 569–581. [Google Scholar] [CrossRef]
- Calabresi, L.; Gomaraschi, M.; Franceschini, G. Endothelial protection by high-density lipoproteins: From bench to bedside. Arter. Thromb. Vasc. Biol. 2003, 23, 1724–1731. [Google Scholar] [CrossRef]
- Assanasen, C.; Mineo, C.; Seetharam, D.; Yuhanna, I.S.; Marcel, Y.L.; Connelly, M.A.; Williams, D.L.; de la Llera-Moya, M.; Shaul, P.W.; Silver, D.L. Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor-BI mediate HDL-initiated signaling. J. Clin. Investig. 2005, 115, 969–977. [Google Scholar] [CrossRef]
- Gong, M.; Wilson, M.; Kelly, T.; Su, W.; Dressman, J.; Kincer, J.; Matveev, S.V.; Guo, L.; Guerin, T.; Li, X.-A.; et al. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI-dependent manner. J. Clin. Investig. 2003, 111, 1579–1587. [Google Scholar] [CrossRef]
- Barter, P.J.; Nicholls, S.; Rye, K.-A.; Anantharamaiah, G.; Navab, M.; Fogelman, A.M. Antiinflammatory properties of HDL. Circ. Res. 2004, 95, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Borba, E.F.; Borges, C.T.L.; Bonfá, E. Lipoprotein profile in limited systemic sclerosis. Rheumatol. Int. 2005, 25, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Amaro, I.; Delgado-Frías, E.; Hernández-Hernández, V.; Sánchez-Pérez, H.; de Armas-Rillo, L.; Armas-González, E.; Machado, J.D.; Diaz-González, F. HDL cholesterol efflux capacity and lipid profile in patients with systemic sclerosis. Arthritis Res. Ther. 2021, 23, 62. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 2009, 5, 435–458. [Google Scholar] [CrossRef]
- Wachsmuth, C.; Oefner, P.; Dettmer, K. 1—Equipment and metabolite identification (ID) strategies for mass-based metabolomic analysis. In Metabolomics in Food and Nutrition; Woodhead Publishing Series in Food Science; Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2013; pp. 3–28. [Google Scholar] [CrossRef]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. TrAC Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar]
- Li, S.; Looby, N.; Chandran, V.; Kulasingam, V. Challenges in the Metabolomics-Based Biomarker Validation Pipeline. Metabolites 2024, 14, 200. [Google Scholar] [CrossRef]
- Markusse, I.M.; Meijs, J.; de Boer, B.; Bakker, J.A.; Schippers, H.P.C.; Schouffoer, A.A.; Marsan, N.A.; Kroft, L.J.M.; Ninaber, M.K.; Huizinga, T.W.J.; et al. Predicting cardiopulmonary involvement in patients with systemic sclerosis: Complementary value of nailfold videocapillaroscopy patterns and disease-specificautoantibodies. Rheumatology 2017, 56, 1081–1088. [Google Scholar] [CrossRef]
- Caramaschi, P.; Volpe, A.; Canestrini, S.; Bambara, L.M.; Faccini, G.; Carletto, A.; Biasi, D. Correlation between homocysteine plasma levels and nailfold videocapillaroscopic patterns in systemic sclerosis. Clin. Rheumatol. 2007, 26, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Volpe, A.; Biasi, D.; Caramaschi, P.; Mantovani, W.; Bambara, L.M.; Canestrini, S.; Ferrari, M.; Poli, G.; Degan, M.; Carletto, A.; et al. Levels of F2-isoprostanes in systemic sclerosis: Correlation with clinical features. Rheumatology 2006, 45, 314–320. [Google Scholar] [CrossRef] [PubMed]
Original Papers | Cohort/Control | Analytical Technique, Method | Result Selection |
---|---|---|---|
Fernández-Ochoa Á et al., 2020 [38] | N = 43 SSc (83.6% female)/HC | liquid chromatography–mass spectrometry (LC-MS), plasma and urine analysis | Differences in L-kynurenine and N-acetylaspartylglutamic acid compared to controls. No further characterization of SSc individuals. Focus on other autoimmune diseases. Urine metabolites can tendentially achieve better accuracy. |
Bengtsson AA et al., 2016 [39] | N = 19 SSc (84% female, 52.6% dcSSc, 42.1% ACA positive, 21%, anti-Scl70 positive) | gas chromatography–mass spectroscopy (GC-MS) | Focus on SLE, SSc individuals served as control, e.g., increase in arginine and simultaneous decrease in 2-oxoglutaric acid for SSc compared to HC and SLE. |
Guo M et al., 2023 [41] | N = 127 SSc non-treated (59.8% female, 57 treated (59.6% female) | high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry (HPLC-Q-TOFMS)/MS | Starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism dysregulated in new-onset SSc, but restored upon treatment. Allysine and all-trans-retinoic acid negatively correlated, while D-glucuronic acid and hexanoyl carnitine positively correlated with mRSS. Proline betaine, phloretin 2′-Oglucuronide, gamma-linolenic acid, and L-cystathionine associated with SSc-ILD. |
Smolenska Z et al., 2020 [47] | N = 42 SSc (83.3% female, 50% dcSSc) | liquid chromatography–mass spectrometry (LC-MS) | Increase in concentrations of NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) in SSc vs. HC. NOS inhibitor L-NAME elevated in patients with dcSSc or telangiectasia. |
Fernández-Ochoa Á et al., 2019 [49] | N = 59 SSc (88.1% female, 16.9% dcSSc, 39% ACA positive, 39% anti-Scl70 positive)/HC | reversed-phase high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry (RP-HPLC–ESI-Q-TOF-MS) | Main parameters in urine were acylcarnitines, acylglycines and metabolites derived from amino acids (proline, histidine, and glutamine). Main plasma biomarker was 2-arachidonoylglycerol (potential crosslink to endocannabinoid system). |
Jendrek ST et al., 2024 [51] | N = 100 SSc (75% female, 38% dcSSc, 62% lcSSc, 31% SSc-ILD)/HC | proton nuclear magnetic resonance spectroscopy (1H-NMR) | Reduced HDL levels are linked to SSc-ILD independently from clinical confounders. High-density lipoprotein (HDL) and (HDL) apolipoprotein (Apo) A1/A2 levels positively correlate with parameters of lung involvement in SSc-ILD such as FVC and DLCO. HDL and (HDL) ApoA1/A2 levels negatively correlate with skin fibrosis in SSc patients with and without ILD. |
Bellocchi C et al., 2018 [57] | N = 59 SSc (88.1% female, 17.1% dcSSc, 39% ACA-positive, 39% anti-scl70 positive)/HC | high-performance liquid chromatography–mass spectrometry (HPLC-MS); 16S rRNA gene amplification and sequencing (fecal microbiota) | Metabolomic alterations in glycerophospholipidmetabolites and benzene derivatives. Microbial and metabolic data showed significant interactions between Desulfovibrio and alpha-N-phenylacetyl-l-glutamine and 2,4-dinitrobenzenesulfonic acid. |
Bögl T et al., 2022 [58] | N = 52 SSc (84.6% female, 21.2% dcSSc, 34.6% ACA positive, 32.7 anti-Scl70 positive)/HC [Exclusion criteria for control group: acute infections, liver and/or kidney diseases and diabetes] | high-performance liquid chromatography–mass spectrometry (HPLC-MS) | SSc-specific alterations, inter alia, in the kynurenine pathway, the urea cycle, lipid metabolism. |
Meier C et al., 2020 [59] | N = 36 SSc (83.3% female, 25% dSSc, 33.3% ACA positive, 27.8% anti-Scl70 positive)/HC | targeted liquid chromatography–mass spectrometry (LC-MS) | SSc/HC-discriminating profile consisting of 4 amino acids and 3 purine metabolites (L-tyrosine, L-tryptophan, and 1-methyl-adenosine). Differentiation between progressing and stable SSc-ILD through L-leucine, L-isoleucine, xanthosine, and adenosine monophosphate. L-leucine and xanthosine negatively correlated with changes in FVC% and xanthosine negatively correlated with changes in DLCO%. |
Sun C et al., 2023 [60] | N = 30 SSc (80% female, 40% dcSSc) | ultra-high-pressure liquid chromatography–quadrupole-time-of-fight mass spectrometry (UPLC-Q-TOF) | Fatty acids, amino acids, and glycerophospholipids, primarily altered in SSc patients. Glutamine metabolism primarily altered in SSc-ILD, whereas amino acid metabolism and steroid hormone biosynthesis primarily altered in leading skin fibrosis. |
Thakkar V et al., 2016 [65] | Case–Control study: 15 consecutive treatment naive patients with newly diagnosed SSc-PAH and compared with 30 SSc-controls without PAH. | high-performance liquid chromatography–mass spectrometry (HPLC-MS); | Asymmetric dimethylarginine (ADMA) levels higher in SSc-PAH. |
Alotaibi M et al., 2023 [66] | N = 400 SSc-PAH. Controls: N = 1.082 IPAH. Validation Cohort of 100 patients with SSc without PAH | liquid chromatography–high-resolution mass spectrometry (LC-MS) | Lignoceric acid and nervonic acid, eicosanoids/oxylipins and sex hormone metabolites distinguishing between SSc-PAH and IPAH. |
Simpson CE et al., 2023 [67] | N = 62 SSc-PAH, N = 19 SSc comparators without PAH, N = 85 HC | liquid chromatography–mass spectrometry (LC-MS) | Kynurenine and its ratio to tryptophan (kyn/trp) increased over the surveillance period in patients with SSc who developed PAH. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jendrek, S.T.; Schmelter, F.; Sina, C.; Günther, U.L.; Riemekasten, G. The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review. Sclerosis 2025, 3, 18. https://doi.org/10.3390/sclerosis3020018
Jendrek ST, Schmelter F, Sina C, Günther UL, Riemekasten G. The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review. Sclerosis. 2025; 3(2):18. https://doi.org/10.3390/sclerosis3020018
Chicago/Turabian StyleJendrek, Sebastian T., Franziska Schmelter, Christian Sina, Ulrich L. Günther, and Gabriela Riemekasten. 2025. "The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review" Sclerosis 3, no. 2: 18. https://doi.org/10.3390/sclerosis3020018
APA StyleJendrek, S. T., Schmelter, F., Sina, C., Günther, U. L., & Riemekasten, G. (2025). The Metabolomic View of Systemic Sclerosis—A Systematic Literature Review. Sclerosis, 3(2), 18. https://doi.org/10.3390/sclerosis3020018