Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Treatment
2.3. Lipid Analysis
2.4. Western Blot
2.5. Glucose Uptake
2.6. Statistical Analysis
3. Results
3.1. The Influence of 18 h PA and/or CBG Treatment on the Content of FFA, DAG, TAG, and PL Fractions in H9c2 Cardiomyocytes
3.2. The Influence of 18 h PA and/or CBG Treatment on the Level of Fatty Acid Transporters, Including CD36, FABPpm, FATP 1, and FATP 4 in H9c2 Cardiomyocytes
3.3. The Influence of 18 h PA and/or CBG Treatment on the Level of Proteins Involved in Fatty Acid Metabolism in H9c2 Cardiomyocytes
3.4. The Influence of 18 h PA and/or CBG Treatment on the Levels of Proteins Involved in the Insulin Signaling Pathway in H9c2 Cardiomyocytes
3.5. The Influence of 18 h PA and/or CBG Treatment on the 2-Deoxyglucose Uptake by H9c2 Cardiomyocytes
3.6. The Influence of 18 h PA and/or CBG Treatment on the Level of Glucose Transporter in H9c2 Cardiomyocytes
3.7. The Influence of 18 h PA and/or CBG Treatment on the Levels of Proteins Involved in the Metabolism of C20:4 in H9c2 Cardiomyocytes
3.8. The Influence of 18 h PA and/or CBG Treatment on the Components of the Endocannabinoid System in H9c2 Cardiomyocytes
3.9. The Influence of 18 h PA and/or CBG Treatment on the Fatty Acid Composition of the Free Fatty Acid Fraction in H9c2 Cardiomyocytes
3.10. The Influence of 18 h PA and/or CBG Treatment on the Fatty Acid Composition of the Diacylglycerol Fraction in H9c2 Cardiomyocytes
3.11. The Influence of 18 h PA and/or CBG Treatment on the Fatty Acid Composition of the Triacylglycerol Fraction in H9c2 Cardiomyocytes
3.12. The Influence of 18 h PA and/or CBG Treatment on the Fatty Acid Composition of the Phospholipid Fraction in H9c2 Cardiomyocytes
4. Discussion
Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, H.C.; Bloom, S.R.; Murphy, K.G. Peptides and Their Potential Role in the Treatment of Diabetes and Obesity. Rev. Diabet. Stud. 2011, 8, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Camacho, S.; Ruppel, A. Is the calorie concept a real solution to the obesity epidemic? Glob. Health Action 2017, 10, 1289650. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; and international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef]
- Glatz, J.F.C.; Nabben, M.; Young, M.E.; Schulze, P.C.; Taegtmeyer, H.; Luiken, J.J.F.P. Re-balancing cellular energy substrate metabolism to mend the failing heart. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165579. [Google Scholar] [CrossRef]
- Nabben, M.; Luiken, J.J.F.P.; Glatz, J.F.C. Metabolic remodelling in heart failure revisited. Nat. Rev. Cardiol. 2018, 15, 780. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010, 90, 207–258. [Google Scholar] [CrossRef]
- Boucher, J.; Kleinridders, A.; Kahn, C.R. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef]
- SKolwicz, C.; Tian, R. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res. 2011, 90, 194–201. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Folmes, C.D.L.; Stanley, W.C. Cardiac Energy Metabolism in Obesity. Circ. Res. 2007, 101, 335–347. [Google Scholar] [CrossRef]
- Aizpurua-Olaizola, O.; Elezgarai, I.; Rico-Barrio, I.; Zarandona, I.; Etxebarria, N.; Usobiaga, A. Targeting the endocannabinoid system: Future therapeutic strategies. Drug Discov. Today 2017, 22, 105–110. [Google Scholar] [CrossRef]
- Lowe, H.; Toyang, N.; Steele, B.; Bryant, J.; Ngwa, W. The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases. Int. J. Mol. Sci. 2021, 22, 9472. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2019, 16, 9–29. [Google Scholar] [CrossRef]
- Rock, E.M.; Parker, L.A. Constituents of Cannabis Sativa. Adv. Exp. Med. Biol. 2021, 1264, 1–13. [Google Scholar]
- Schilling, S.; Melzer, R.; McCabe, P.F. Cannabis sativa. Curr. Biol. 2020, 30, R8–R9. [Google Scholar] [CrossRef]
- Rosenthaler, S.; Pöhn, B.; Kolmanz, C.; Huu, C.N.; Krewenka, C.; Huber, A.; Kranner, B.; Rausch, W.-D.; Moldzio, R. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures. Neurotoxicol. Teratol. 2014, 46, 49–56. [Google Scholar] [CrossRef]
- Nachnani, R.; Raup-Konsavage, W.M.; Vrana, K.E. The Pharmacological Case for Cannabigerol. J. Pharmacol. Exp. Ther. 2021, 376, 204–212. [Google Scholar] [CrossRef]
- De Petrocellis, L.; Ligresti, A.; Moriello, A.S.; Allarà, M.; Bisogno, T.; Petrosino, S.; Stott, C.G.; Di Marzo, V. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. Br. J. Pharmacol. 2011, 163, 1479–1494. [Google Scholar] [CrossRef]
- Cascio, M.; Gauson, L.; Stevenson, L.; Ross, R.; Pertwee, R. Evidence that the plant cannabinoid cannabigerol is a highly potent α2-adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. Br. J. Pharmacol. 2010, 159, 129–141. [Google Scholar] [CrossRef]
- Borrelli, F.; Fasolino, I.; Romano, B.; Capasso, R.; Maiello, F.; Coppola, D.; Orlando, P.; Battista, G.; Pagano, E.; Di Marzo, V.; et al. Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem. Pharmacol. 2013, 85, 1306–1316. [Google Scholar] [CrossRef]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms 2021, 9, 2031. [Google Scholar] [CrossRef]
- Mammana, S.; Cavalli, E.; Gugliandolo, A.; Silvestro, S.; Pollastro, F.; Bramanti, P.; Mazzon, E. Could the Combination of Two Non-Psychotropic Cannabinoids Counteract Neuroinflammation? Effectiveness of Cannabidiol Associated with Cannabigerol. Medicina 2019, 55, 747. [Google Scholar] [CrossRef]
- Echeverry, C.; Prunell, G.; Narbondo, C.; de Medina, V.S.; Nadal, X.; Reyes-Parada, M.; Scorza, C. A Comparative In Vitro Study of the Neuroprotective Effect Induced by Cannabidiol, Cannabigerol, and Their Respective Acid Forms: Relevance of the 5-HT1A Receptors. Neurotox. Res. 2021, 39, 335–348. [Google Scholar] [CrossRef]
- Stone, N.L.; England, T.J.; O’SUllivan, S.E. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood–Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res. 2021, 6, 315–326. [Google Scholar] [CrossRef]
- Konstantynowicz-Nowicka, K.; Harasim, E.; Baranowski, M.; Chabowski, A.; Cowart, A. New Evidence for the Role of Ceramide in the Development of Hepatic Insulin Resistance. PLoS ONE 2015, 10, e0116858. [Google Scholar] [CrossRef]
- Tam, E.; Sung, H.K.; Sweeney, G. MitoNEET prevents iron overload-induced insulin resistance in H9c2 cells through regulation of mitochondrial iron. J. Cell. Physiol. 2023, 238, 1867–1875. [Google Scholar] [CrossRef]
- Overhagen, S.; Blumensatt, M.; Fahlbusch, P.; de Wiza, D.H.; Müller, H.; Maxhera, B.; Akhyari, P.; Ouwens, D.M. Soluble CD14 inhibits contractile function and insulin action in primary adult rat cardiomyocytes. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 365–374. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Gürtler, A.; Kunz, N.; Gomolka, M.; Hornhardt, S.; Friedl, A.A.; McDonald, K.; Kohn, J.E.; Posch, A. Stain-Free technology as a normalization tool in Western blot analysis. Anal. Biochem. 2013, 433, 105–111. [Google Scholar] [CrossRef]
- Sung, H.K.; Song, E.; Jahng, J.W.S.; Pantopoulos, K.; Sweeney, G. Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress. Sci. Rep. 2019, 9, 4668. [Google Scholar] [CrossRef]
- Chabowski, A.; Gorski, J.; Glatz, J.; Luiken, J.; Bonen, A.; Luiken, J. Protein-mediated Fatty Acid Uptake in the Heart. Curr. Cardiol. Rev. 2008, 4, 12–21. [Google Scholar] [CrossRef]
- Kuang, M.; Febbraio, M.; Wagg, C.; Lopaschuk, G.D.; Dyck, J.R.B. Fatty Acid Translocase/CD36 Deficiency Does Not Energetically or Functionally Compromise Hearts Before or After Ischemia. Circulation 2004, 109, 1550–1557. [Google Scholar] [CrossRef]
- Habets, D.D.; Coumans, W.A.; Voshol, P.J.; Boer, M.A.D.; Febbraio, M.; Bonen, A.; Glatz, J.F.; Luiken, J.J. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem. Biophys. Res. Commun. 2007, 355, 204–210. [Google Scholar] [CrossRef]
- Steinbusch, L.K.M.; Luiken, J.J.F.P.; Vlasblom, R.; Chabowski, A.; Hoebers, N.T.H.; Coumans, W.A.; Vroegrijk, I.O.C.M.; Voshol, P.J.; Ouwens, D.M.; Glatz, J.F.C.; et al. Absence of fatty acid transporter CD36 protects against Western-type diet-related cardiac dysfunction following pressure overload in mice. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E618–E627. [Google Scholar] [CrossRef]
- Liu, Y.; Steinbusch, L.K.; Nabben, M.; Kapsokalyvas, D.; van Zandvoort, M.; Schönleitner, P.; Antoons, G.; Simons, P.J.; Coumans, W.A.; Geomini, A.; et al. Palmitate-Induced Vacuolar-Type H+-ATPase Inhibition Feeds Forward Into Insulin Resistance and Contractile Dysfunction. Diabetes 2017, 66, 1521–1534. [Google Scholar] [CrossRef]
- Angin, Y.; Steinbusch, L.K.M.; Simons, P.J.; Greulich, S.; Hoebers, N.T.H.; Douma, K.; van Zandvoort, M.A.M.J.; Coumans, W.A.; Wijnen, W.; Diamant, M.; et al. CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes. Biochem. J. 2012, 448, 43–53. [Google Scholar] [CrossRef]
- Steinbusch, L.K.M.; Wijnen, W.; Schwenk, R.W.; Coumans, W.A.; Hoebers, N.T.H.; Ouwens, D.M.; Diamant, M.; Bonen, A.; Glatz, J.F.C.; Luiken, J.J.F.P. Differential regulation of cardiac glucose and fatty acid uptake by endosomal pH and actin filaments. Am. J. Physiol. Cell Physiol. 2010, 298, C1549–C1559. [Google Scholar] [CrossRef]
- Yang, J.; Sambandam, N.; Han, X.; Gross, R.W.; Courtois, M.; Kovacs, A.; Febbraio, M.; Finck, B.N.; Kelly, D.P. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ. Res. 2007, 100, 1208–1217. [Google Scholar] [CrossRef]
- Chabowski, A.; Górski, J.; Luiken, J.J.F.P.; Glatz, J.F.C.; Bonen, A. Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot. Essent. Fat. Acids 2007, 77, 345–353. [Google Scholar] [CrossRef]
- Glatz, J.F.; Luiken, J.J.; Nabben, M. CD36 (SR-B2) as a Target to Treat Lipid Overload-Induced Cardiac Dysfunction. J. Lipid Atheroscler. 2020, 9, 66–78. [Google Scholar] [CrossRef]
- Kazantzis, M.; Stahl, A. Fatty Acid transport Proteins, implications in physiology and disease. Biochim. Biophys. Acta 2012, 1821, 852–857. [Google Scholar] [CrossRef]
- Coe, N.R.; Smith, A.J.; Frohnert, B.I.; Watkins, P.A.; Bernlohr, D.A. The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J. Biol. Chem. 1999, 274, 36300–36304. [Google Scholar] [CrossRef]
- Hall, A.M.; Smith, A.J.; Bernlohr, D.A. Characterization of the Acyl-CoA Synthetase Activity of Purified Murine Fatty Acid Transport Protein 1. J. Biol. Chem. 2003, 278, 43008–43013. [Google Scholar] [CrossRef]
- Bielawiec, P.; Dziemitko, S.; Konstantynowicz-Nowicka, K.; Chabowski, A.; Dzięcioł, J.; Harasim-Symbor, E. Cannabidiol improves muscular lipid profile by affecting the expression of fatty acid transporters and inhibiting de novo lipogenesis. Sci. Rep. 2023, 13, 3694. [Google Scholar] [CrossRef]
- Charytoniuk, T.; Sztolsztener, K.; Bielawiec, P.; Chabowski, A.; Konstantynowicz-Nowicka, K.; Harasim-Symbor, E. Cannabidiol Downregulates Myocardial de Novo Ceramide Synthesis Pathway in a Rat Model of High-Fat Diet-Induced Obesity. Int. J. Mol. Sci. 2022, 23, 2232. [Google Scholar] [CrossRef]
- Van Nieuwenhoven, F.A.; Luiken, J.J.; De Jong, Y.F.; Grimaldi, P.A.; Van der Vusse, G.J.; Glatz, J.F. Stable transfection of fatty acid translocase (CD36) in a rat heart muscle cell line (H9c2). J. Lipid Res. 1998, 39, 2039–2047. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Trent, C.M.; Schulze, P.C. Lipid metabolism and toxicity in the heart. Cell Metab. 2012, 15, 805–812. [Google Scholar] [CrossRef]
- Jornayvaz, F.R.; Shulman, G.I. Diacylglycerol Activation of Protein Kinase Cε and Hepatic Insulin Resistance. Cell Metab. 2012, 15, 574–584. [Google Scholar] [CrossRef]
- Szendroedi, J.; Yoshimura, T.; Phielix, E.; Koliaki, C.; Marcucci, M.; Zhang, D.; Jelenik, T.; Müller, J.; Herder, C.; Nowotny, P.; et al. Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA 2014, 111, 9597–9602. [Google Scholar] [CrossRef]
- Schulze, P.C.; Drosatos, K.; Goldberg, I.J. Lipid Use and Misuse by the Heart. Circ. Res. 2016, 118, 1736–1751. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.L.E.; Stone, S.J.; Koliwad, S.; Harris, C.; Farese, R.V. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 2008, 49, 2283–2301. [Google Scholar] [CrossRef] [PubMed]
- Roe, N.D.; Handzlik, M.K.; Li, T.; Tian, R. The Role of Diacylglycerol Acyltransferase (DGAT) 1 and 2 in Cardiac Metabolism and Function. Sci. Rep. 2018, 8, 4983. [Google Scholar] [CrossRef]
- DeLany, J.P.; Windhauser, M.M.; Champagne, C.M.; Bray, G.A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 2000, 72, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Rutkowsky, J.M.; Snodgrass, R.G.; Ono-Moore, K.D.; Schneider, D.A.; Newman, J.W.; Adams, S.H.; Hwang, D.H. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 2012, 53, 2002–2013. [Google Scholar] [CrossRef]
- Haffar, T.; Akoumi, A.; Bousette, N. Lipotoxic Palmitate Impairs the Rate of β-Oxidation and Citric Acid Cycle Flux in Rat Neonatal Cardiomyocytes. Cell. Physiol. Biochem. 2016, 40, 969–981. [Google Scholar] [CrossRef]
- Jiang, M.; Huizenga, M.C.W.; Wirt, J.L.; Paloczi, J.; Amedi, A.; Berg, R.J.B.H.N.v.D.; Benz, J.; Collin, L.; Deng, H.; Di, X.; et al. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat. Commun. 2023, 14, 8039. [Google Scholar] [CrossRef]
- Bátkai, S.; Rajesh, M.; Mukhopadhyay, P.; Haskó, G.; Liaudet, L.; Cravatt, B.F.; Csiszár, A.; Ungvári, Z.; Pacher, P. Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H909–H918. [Google Scholar] [CrossRef]
- Oppedisano, F.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Macrì, R.; Carresi, C.; Maiuolo, J.; Serra, M.; Cardamone, A.; et al. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021, 13, 2965. [Google Scholar] [CrossRef]
- Clifton, P.M.; Keogh, J.B. A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 1060–1080. [Google Scholar] [CrossRef]
- Liu, T.W.; Heden, T.D.; Morris, E.M.; Fritsche, K.L.; Vieira-Potter, V.J.; Thyfault, J.P. High-fat diet alters serum fatty acid profiles in obesity prone rats: Implications for in-vitro studies. Lipids 2015, 50, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Ruhaak, L.R.; Felth, J.; Karlsson, P.C.; Rafter, J.J.; Verpoorte, R.; Bohlin, L. Evaluation of the Cyclooxygenase Inhibiting Effects of Six Major Cannabinoids Isolated from Cannabis sativa. Biol. Pharm. Bull. 2011, 34, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Sztolsztener, K.; Harasim-Symbor, E.; Chabowski, A.; Konstantynowicz-Nowicka, K. Cannabigerol as an anti-inflammatory agent altering the level of arachidonic acid derivatives in the colon tissue of rats subjected to a high-fat high-sucrose diet. Biomed. Pharmacother. 2024, 178, 117286. [Google Scholar] [CrossRef] [PubMed]
- Bielawiec, P.; Dziemitko, S.; Konstantynowicz-Nowicka, K.; Sztolsztener, K.; Chabowski, A.; Harasim-Symbor, E. Cannabigerol–A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats? Front. Mol. Biosci. 2024, 11, 1401558. [Google Scholar] [CrossRef]
- Hue, L.; Taegtmeyer, H. The Randle cycle revisited: A new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E578–E591. [Google Scholar] [CrossRef]
- McGavock, J.M.; Lingvay, I.; Zib, I.; Tillery, T.; Salas, N.; Unger, R.; Levine, B.D.; Raskin, P.; Victor, R.G.; Szczepaniak, L.S. Cardiac Steatosis in Diabetes Mellitus. Circulation 2007, 116, 1170–1175. [Google Scholar] [CrossRef]
- Han, X.-X.; Chabowski, A.; Tandon, N.N.; Calles-Escandon, J.; Glatz, J.F.C.; Luiken, J.J.F.P.; Bonen, A. Metabolic challenges reveal impaired fatty acid metabolism and translocation of FAT/CD36 but not FABPpm in obese Zucker rat muscle. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E566–E575. [Google Scholar] [CrossRef]
- Luiken, J.J.F.P.; Dyck, D.J.; Han, X.-X.; Tandon, N.N.; Arumugam, Y.; Glatz, J.F.C.; Bonen, A. Insulin induces the translocation of the fatty acid transporter FAT/CD36 to the plasma membrane. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E491–E495. [Google Scholar] [CrossRef]
- Ouwens, D.M.; Diamant, M.; Fodor, M.; Habets, D.D.J.; Pelsers, M.M.A.L.; El Hasnaoui, M.; Dang, Z.C.; Brom, C.E.v.D.; Vlasblom, R.; Rietdijk, A.; et al. Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification. Diabetologia 2007, 50, 1938–1948. [Google Scholar] [CrossRef]
- Coort, S.L.; Hasselbaink, D.M.; Koonen, D.P.; Willems, J.; Coumans, W.A.; Chabowski, A.; van der Vusse, G.J.; Bonen, A.; Glatz, J.F.; Luiken, J.J. Enhanced Sarcolemmal FAT/CD36 Content and Triacylglycerol Storage in Cardiac Myocytes From Obese Zucker Rats. Diabetes 2004, 53, 1655–1663. [Google Scholar] [CrossRef]
- Bonen, A.; Jain, S.S.; Snook, L.A.; Han, X.-X.; Yoshida, Y.; Buddo, K.H.; Lally, J.S.; Pask, E.D.; Paglialunga, S.; Beaudoin, M.-S.; et al. Extremely rapid increase in fatty acid transport and intramyocellular lipid accumulation but markedly delayed insulin resistance after high fat feeding in rats. Diabetologia 2015, 58, 2381–2391. [Google Scholar] [CrossRef] [PubMed]
- Glatz, J.F.C.; Heather, L.C.; Luiken, J.J.F.P. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol. Rev. 2024, 104, 727–764. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Schianchi, F.; Neumann, D.; Wong, L.-Y.; Sun, A.; van Nieuwenhoven, F.A.; Zeegers, M.P.; Strzelecka, A.; Col, U.; Glatz, J.F.; et al. Specific amino acid supplementation rescues the heart from lipid overload-induced insulin resistance and contractile dysfunction by targeting the endosomal mTOR–v-ATPase axis. Mol. Metab. 2021, 53, 101293. [Google Scholar] [CrossRef] [PubMed]
- Kogan, N.M.; Lavi, Y.; Topping, L.M.; Williams, R.O.; McCann, F.E.; Yekhtin, Z.; Feldmann, M.; Gallily, R.; Mechoulam, R. Novel CBG Derivatives Can Reduce Inflammation, Pain and Obesity. Molecules 2021, 26, 5601. [Google Scholar] [CrossRef]
- Vernail, V.L.; Bingaman, S.S.; Silberman, Y.; Raup-Konsavage, W.M.; Vrana, K.E.; Arnold, A.C. Acute Cannabigerol Administration Lowers Blood Pressure in Mice. Front. Physiol. 2022, 13, 871962. [Google Scholar] [CrossRef]
- Aljobaily, N.; Krutsinger, K.; Viereckl, M.J.; Joly, R.; Menlove, B.; Cone, B.; Suppes, A.; Han, Y. Low-Dose Administration of Cannabigerol Attenuates Inflammation and Fibrosis Associated with Methionine/Choline Deficient Diet-Induced NASH Model via Modulation of Cannabinoid Receptor. Nutrients 2023, 15, 178. [Google Scholar] [CrossRef]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef]
- Bosma, M.; Dapito, D.H.; Drosatos-Tampakaki, Z.; Huiping-Son, N.; Huang, L.-S.; Kersten, S.; Drosatos, K.; Goldberg, I.J. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim. Biophys. Acta 2014, 1841, 1648–1655. [Google Scholar] [CrossRef]
- Tapiero, H.; Ba, G.N.; Couvreur, P.; Tew, K.D. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 2002, 56, 215–222. [Google Scholar] [CrossRef]
- Nigro, E.; Formato, M.; Crescente, G.; Initiation, A.D.C. Progression and Resistance: Are Phytocannabinoids from Cannabis sativa L. Promising Compounds? Molecules 2021, 26, 2668. [Google Scholar] [CrossRef]
- Lah, T.T.; Novak, M.; Pena Almidon, M.A.; Marinelli, O.; Žvar Baškovič, B.; Majc, B.; Mlinar, M.; Bošnjak, R.; Breznik, B.; Zomer, R.; et al. Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma. Cells 2021, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, W.; Dobrzyńska, I.; Skrzydlewska, E. Differences in the phospholipid profile of melanocytes and melanoma cells irradiated with UVA and treated with cannabigerol and cannabidiol. Sci. Rep. 2023, 13, 16121. [Google Scholar] [CrossRef] [PubMed]
- Brierley, D.I.; Harman, J.R.; Giallourou, N.; Leishman, E.; Roashan, A.E.; Mellows, B.A.; Bradshaw, H.B.; Swann, J.R.; Patel, K.; Whalley, B.J.; et al. Chemotherapy-induced cachexia dysregulates hypothalamic and systemic lipoamines and is attenuated by cannabigerol. J. Cachexia Sarcopenia Muscle 2019, 10, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Bzdęga, W.; Kurzyna, P.F.; Harasim-Symbor, E.; Hołownia, A.; Chabowski, A.; Konstantynowicz-Nowicka, K. How Does CBG Administration Affect Sphingolipid Deposition in the Liver of Insulin-Resistant Rats? Nutrients 2023, 15, 4350. [Google Scholar] [CrossRef]
FFA | Control | CBG 2.5 | CBG 5 | CBG 10 | PA | PA + CBG 2.5 | PA + CBG 5 | PA + CBG 10 |
---|---|---|---|---|---|---|---|---|
C14:0 | 1.74 ± 0.41 | 1.72 ± 0.32 | 1.44 ± 0.18 | 1.51 ± 0.14 | 1.71 ± 0.35 | 3.77 ± 0.49 ab | 3.88 ± 0.49 ab | 3.13 ± 0.18 abf |
C16:0 | 11.16 ± 1.71 | 9.26 ± 1.04 | 8.76 ± 1.34 | 9.00 ± 1.15 | 29.54 ± 4.18 a | 35.66 ± 1.73 ab | 46.72 ± 2.88 abe | 40.45 ± 5.03 abf |
C16:1 | 0.68 ± 0.16 | 0.45 ± 0.09 | 0.40 ± 0.05 | 0.56 ± 0.11 | 0.99 ± 0.20 a | 0.80 ± 0.13 | 1.14 ± 0.23 ae | 0.94 ± 0.14 |
C18:0 | 8.97 ± 0.95 | 9.39 ± 0.61 | 10.45 ± 1.69 | 9.59 ± 1.39 | 12.45 ± 2.67 a | 13.11 ± 1.85 | 15.90 ± 0.99 ab | 18.29 ± 2.31 abe |
C18:1 | 1.92 ± 0.27 | 1.50 ± 0.14 | 1.58 ± 0.13 | 1.49 ± 0.13 | 1.45 ± 0.20 | 2.00 ± 0.44 b | 2.25 ± 0.46 b | 2.19 ± 0.24 b |
C18:2 | 0.77 ± 0.18 | 0.58 ± 0.06 | 0.54 ± 0.14 | 0.70 ± 0.12 | 0.81 ± 0.10 | 1.00 ± 0.28 | 1.30 ± 0.16 ab | 1.15 ± 0.18 ab |
C20:0 | 0.89 ± 0.24 | 0.38 ± 0.15 a | 0.31 ± 0.07 a | 0.73 ± 0.13 cd | 0.66 ± 0.13 | 0.76 ± 0.11 | 0.91 ± 0.11 | 0.89 ± 0.11 |
C18:3 | 0.54 ± 0.08 | 0.36 ± 0.11 | 0.51 ± 0.15 | 0.66 ± 0.17 | 1.08 ± 0.29 a | 0.98 ± 0.26 a | 1.38 ± 0.29 abe | 1.11 ± 0.11 a |
C22:0 | 0.57 ± 0.11 | 0.40 ± 0.10 | 0.37 ± 0.06 | 0.75 ± 0.09 cd | 0.60 ± 0.07 | 0.84 ± 0.19 ab | 1.14 ± 0.19 abe | 0.78 ± 0.09 f |
C20:4 | 0.54 ± 0.09 | 0.40 ± 0.10 | 0.45 ± 0.04 | 0.61 ± 0.19 | 0.71 ± 0.13 | 1.09 ± 0.29 ab | 1.66 ± 0.36 abe | 1.07 ± 0.20 af |
C24:0 | 0.57 ± 0.06 | 0.37 ± 0.11 a | 0.36 ± 0.06 a | 0.53 ± 0.14 | 0.64 ± 0.14 | 0 ± 0.00 ab | 0 ± 0.00 ab | 0.73 ± 0.13 |
SFAs | 29.89 ± 2.83 | 27.81 ± 2.14 | 25.37 ± 1.82 | 27.84 ± 2.72 | 44.56 ± 5.04 a | 55.22 ± 3.75 ab | 50.77 ± 3.76 a | 67.37 ± 6.73 abef |
MUFAs | 3.08 ± 0.48 | 2.45 ± 0.12 | 2.66 ± 0.42 | 2.53 ± 0.46 | 2.36 ± 0.32 a | 2.65 ± 0.13 | 2.31 ± 0.33 a | 3.32 ± 0.32 bf |
PUFAs | 2.30 ± 0.17 | 1.65 ± 0.20 | 1.81 ± 0.42 | 2.69 ± 0.43 cd | 2.70 ± 0.28 | 2.94 ± 0.41 | 3.22 ± 0.41 a | 3.53 ± 0.34 ab |
DAG | Control | CBG 2.5 | CBG 5 | CBG 10 | PA | PA + CBG 2.5 | PA + CBG 5 | PA + CBG 10 |
---|---|---|---|---|---|---|---|---|
C14:0 | 2.82 ± 0.38 | 2.85 ± 0.55 | 2.51 ± 0.26 | 1.61 ± 0.47 ac | 3.03 ± 0.72 | 4.35 ± 0.58 ab | 3.88 ± 0.73 a | 3.18 ± 0.23 e |
C16:0 | 11.44 ± 0.59 | 10.04 ± 1.46 | 9.30 ± 0.89 | 11.64 ± 1.93 | 97.04 ± 5.94 a | 67.63 ± 9.69 ab | 61.94 ± 1.66 ab | 58.05 ± 4.72 abe |
C16:1 | 0.33 ± 0.06 | 0.46 ± 0.09 | 0.42 ± 0.05 | 0.61 ± 0.32 | 0.62 ± 0.18 | 0.45 ± 0.10 | 0.85 ± 0.29 ae | 1.08 ± 0.14 abe |
C18:0 | 8.53 ± 0.96 | 8.58 ± 1.30 | 7.09 ± 0.80 | 8.53 ± 1.23 | 12.69 ± 2.24 a | 13.34 ± 1.18 a | 14.84 ± 2.34 a | 10.37 ± 2.37 f |
C18:1 | 2.31 ± 0.42 | 2.76 ± 0.43 | 1.39 ± 0.27 | 4.22 ± 1.27 | 3.67 ± 0.65 | 6.05 ± 1.77 a | 5.63 ± 1.85 a | 4.99 ± 2.69 |
C18:2 | 2.09 ± 0.53 | 2.74 ± 0.80 | 1.16 ± 0.32 | 5.03 ± 1.50 ad | 4.77 ± 1.63 | 5.14 ± 1.68 a | 4.46 ± 1.95 | 3.01 ± 1.37 |
C20:0 | 0.34 ± 0.09 | 0.28 ± 0.04 | 0.32 ± 0.11 | 0.29 ± 0.04 | 0.40 ± 0.11 | 4.84 ± 0.88 ab | 6.00 ± 0.90 abe | 3.65 ± 0.50 abef |
C18:3 | 0.44 ± 0.10 | 0.60 ± 0.24 | 0.58 ± 0.39 | 0.59 ± 0.15 | 0.82 ± 0.27 | 0.47 ± 0.15 | 0.67 ± 0.14 | 0.99 ± 0.16 ae |
C22:0 | 0.38 ± 0.13 | 0.41 ± 0.11 | 0.41 ± 0.17 | 0.46 ± 0.07 | 0.76 ± 0.09 | 7.22 ± 1.22 ab | 9.63 ± 1.33 abe | 5.57 ± 0.67 abef |
C20:4 | 0.63 ± 0.13 | 0.64 ± 0.10 | 0.59 ± 0.10 | 0.46 ± 0.09 | 0.60 ± 0.14 | 1.69 ± 0.50 ab | 1.13 ± 0.20 | 1.46 ± 0.62 a |
C24:0 | 0.42 ± 0.13 | 0.42 ± 0.14 | 0.33 ± 0.11 | 0.41 ± 0.06 | 0.62 ± 0.13 | 4.24 ± 0.75 ab | 4.77 ± 1.03 ab | 3.40 ± 0.33 abf |
SFAs | 24.87 ± 3.07 | 22.84 ± 4.11 | 19.86 ± 1.92 | 22.70 ± 3.43 | 114.59 ± 6.73 a | 106.98 ± 15.45 a | 102.50 ± 7.96 a | 83.13 ± 5.35 abef |
MUFAs | 2.71 ± 0.31 | 3.21 ± 0.47 | 1.81 ± 0.25 | 4.83 ± 1.46 | 4.23 ± 0.55 | 6.49 ± 1.71 a | 5.89 ± 2.10 a | 6.63 ± 2.68 a |
PUFAs | 3.26 ± 0.46 | 4.11 ± 0.98 | 2.33 ± 0.44 | 5.99 ± 1.41 | 6.25 ± 1.75 | 9.55 ± 3.85 a | 7.65 ± 2.36 a | 5.90 ± 1.86 |
TAG | Control | CBG 2.5 | CBG 5 | CBG 10 | PA | PA + CBG 2.5 | PA + CBG 5 | PA + CBG 10 |
---|---|---|---|---|---|---|---|---|
C14:0 | 3.86 ± 0.67 | 3.88 ± 0.45 | 4.58 ± 0.31 | 3.26 ± 0.38 d | 4.10 ± 0.76 | 6.52 ± 0.56 ab | 7.44 ± 0.41 ab | 5.81 ± 0.61 abf |
C16:0 | 10.54 ± 1.72 | 19.97 ± 2.87 | 26.25 ± 2.58 | 20.50 ± 2.98 | 208.14 ± 12.25 a | 359.80 ± 32.72 ab | 414.68 ± 30.16 abe | 356.60 ± 26.73 abf |
C16:1 | 3.88 ± 0.58 | 1.87 ± 0.35 a | 2.15 ± 0.37 a | 2.61 ± 0.35 a | 2.49 ± 0.65 a | 2.32 ± 0.23 a | 5.75 ± 1.01 abe | 3.23 ± 0.35 f |
C18:0 | 6.60 ± 2.44 | 10.59 ± 1.31 a | 13.87 ± 2.00 a | 8.65 ± 0.73 d | 10.51 ± 1.66 a | 14.13 ± 1.68 a | 16.18 ± 2.76 ab | 13.50 ± 1.90 a |
C18:1 | 9.62 ± 2.76 | 19.90 ± 4.23 a | 17.79 ± 3.26 a | 10.45 ± 2.11 cd | 6.19 ± 1.64 | 14.86 ± 3.10 b | 10.19 ± 1.56 | 7.48 ± 2.20 e |
C18:2 | 6.36 ± 1.68 | 22.76 ± 3.66 a | 14.02 ± 5.12 ac | 5.14 ± 1.38 cd | 5.54 ± 2.07 | 12.75 ± 3.83 ab | 7.49 ± 1.76 | 3.71 ± 1.71 e |
C20:0 | 1.50 ± 0.33 | 1.96 ± 0.34 | 1.98 ± 0.34 | 2.48 ± 0.37 a | 3.25 ± 0.57 a | 2.67 ± 0.50 a | 2.27 ± 0.41 b | 1.70 ± 0.47 be |
C18:3 | 3.66 ± 0.36 | 1.71 ± 0.40 a | 1.86 ± 0.24 a | 0.94 ± 0.28 acd | 1.02 ± 0.25 a | 1.17 ± 0.39 a | 1.69 ± 0.38 ab | 1.21 ± 0.32 a |
C22:0 | 2.43 ± 0.09 | 1.70 ± 0.28 | 1.66 ± 0.50 | 1.42 ± 0.31 a | 2.06 ± 0.38 | 2.19 ± 0.60 | 1.90 ± 0.66 | 2.22 ± 0.31 |
C20:4 | 2.31 ± 0.18 | 1.32 ± 0.33 a | 2.00 ± 0.51 c | 1.20 ± 0.30 ad | 1.38 ± 0.38 a | 1.29 ± 0.38 a | 1.74 ± 0.39 | 1.40 ± 0.33 a |
SFAs | 24.91 ± 3.93 | 37.89 ± 4.44 | 52.09 ± 7.71 | 35.99 ± 5.80 | 228.74 ± 12.62 a | 389.65 ± 35.07 ab | 445.77 ± 25.81 abe | 380.30 ± 28.66 abf |
MUFAs | 13.12 ± 3.09 | 21.74 ± 4.59 a | 19.95 ± 3.22 a | 12.91 ± 2.51 cd | 8.67 ± 2.28 | 15.22 ± 3.20 | 15.31 ± 2.52 | 11.46 ± 2.86 |
PUFAs | 12.39 ± 1.66 | 25.37 ± 3.90 a | 17.97 ± 5.12 | 7.20 ± 1.73 cd | 8.11 ± 2.71 | 16.49 ± 5.20 b | 12.89 ± 5.11 | 6.97 ± 2.62 e |
PL | Control | CBG 2.5 | CBG 5 | CBG 10 | PA | PA + CBG 2.5 | PA + CBG 5 | PA + CBG 10 |
---|---|---|---|---|---|---|---|---|
C14:0 | 9.59 ± 0.60 | 14.79 ± 3.39 | 16.18 ± 3.15 | 13.04 ± 1.87 | 16.38 ± 3.47 | 30.16 ± 6.34 ab | 35.30 ± 6.80 ab | 22.55 ± 4.89 a |
C16:0 | 77.18 ± 5.36 | 87.24 ± 7.70 | 108.67 ± 11.54 | 90.00 ± 5.27 | 460.48 ± 31.51 a | 531.37 ± 72.55 ab | 570.84 ± 27.45 ab | 523.59 ± 9.43 a |
C16:1 | 5.38 ± 1.43 | 21.17 ± 2.45 a | 20.80 ± 2.12 a | 16.84 ± 1.80 acd | 15.28 ± 2.48 a | 13.03 ± 1.79 a | 20.90 ± 1.80 abe | 13.58 ± 1.63 af |
C18:0 | 75.41 ± 6.03 | 76.85 ± 5.78 | 91.73 ± 12.17 a | 85.38 ± 5.87 | 75.12 ± 3.46 | 87.32 ± 12.72 | 91.59 ± 7.01 ab | 76.72 ± 6.47 |
C18:1 | 37.27 ± 2.21 | 52.51 ± 9.62 a | 48.90 ± 4.52 | 36.12 ± 4.09 cd | 35.01 ± 2.52 | 36.80 ± 8.47 | 39.05 ± 5.54 | 31.70 ± 3.96 |
C18:2 | 16.86 ± 2.33 | 29.27 ± 5.48 a | 23.97 ± 1.27 | 20.27 ± 3.76 | 20.56 ± 6.35 | 21.04 ± 5.35 | 35.18 ± 8.79 abe | 18.69 ± 6.65 f |
C20:0 | 2.05 ± 0.24 | 4.48 ± 1.49 | 3.98 ± 0.48 | 4.97 ± 0.45 a | 5.73 ± 1.90 a | 7.77 ± 1.81 a | 9.07 ± 2.13 ab | 7.05 ± 1.63 a |
C18:3 | 3.59 ± 1.60 | 8.61 ± 1.98 | 4.97 ± 0.41 | 8.80 ± 2.65 | 8.57 ± 2.20 | 11.67 ± 1.37 a | 18.61 ± 4.92 abe | 9.69 ± 2.25 af |
C22:0 | 3.81 ± 0.35 | 7.85 ± 0.99 | 8.79 ± 1.13 | 8.37 ± 1.92 | 10.94 ± 2.28 a | 14.83 ± 3.29 a | 25.22 ± 7.02 abe | 10.88 ± 2.31 af |
C20:4 | 52.88 ± 5.02 | 64.87 ± 4.89 a | 71.32 ± 5.83 a | 64.97 ± 5.09 a | 65.74 ± 6.02 a | 56.66 ± 9.56 | 65.97 ± 5.16 a | 55.70 ± 3.31 |
C20:5 | 8.62 ± 0.74 | 16.03 ± 1.47 a | 16.73 ± 2.68 a | 14.85 ± 2.15 a | 17.30 ± 1.97 a | 15.99 a ± 2.63 | 20.06 ± 2.04 a | 15.50 ± 4.33 a |
C22:6 | 5.89 ± 1.05 | 12.58 ± 2.15 a | 15.37 ± 3.02 a | 10.07 ± 2.05 | 13.73 ± 1.60 a | 12.90 ± 3.98 a | 23.34 ± 1.60 abe | 21.14 ± 5.01 abe |
SFAs | 168.03 ± 0.94 | 202.34 ± 21.58 | 219.44 ± 15.43 | 207.84 ± 19.20 | 600.55 ± 47.92 a | 690.76 ± 83.47 ab | 729.25 ± 28.41 ab | 685.80 ± 47.30 ab |
MUFAs | 43.87 ± 3.63 | 76.39 ± 9.69 a | 70.41 ± 5.41 a | 56.50 ± 8.85 acd | 51.47 ± 5.22 | 49.83 ± 9.24 | 59.96 ± 5.42 a | 45.28 ± 3.55 f |
PUFAs | 85.91 ± 5.39 | 129.63 ± 15.81 a | 128.37 ± 13.01 a | 116.05 ± 15.82 | 130.7 ± 12.57 a | 115.34 ± 20.71 | 169.60 ± 14.57 abe | 116.50 ± 19.23 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziemitko, S.; Chabowski, A.; Harasim-Symbor, E. Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions. Cells 2025, 14, 998. https://doi.org/10.3390/cells14130998
Dziemitko S, Chabowski A, Harasim-Symbor E. Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions. Cells. 2025; 14(13):998. https://doi.org/10.3390/cells14130998
Chicago/Turabian StyleDziemitko, Sylwia, Adrian Chabowski, and Ewa Harasim-Symbor. 2025. "Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions" Cells 14, no. 13: 998. https://doi.org/10.3390/cells14130998
APA StyleDziemitko, S., Chabowski, A., & Harasim-Symbor, E. (2025). Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions. Cells, 14(13), 998. https://doi.org/10.3390/cells14130998