Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = bipolar dc grid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 350 KiB  
Article
A Family of Newton and Quasi-Newton Methods for Power Flow Analysis in Bipolar Direct Current Networks with Constant Power Loads
by Oscar Danilo Montoya, Juan Diego Pulgarín Rivera, Luis Fernando Grisales-Noreña, Walter Gil-González and Fabio Andrade-Rengifo
Math. Comput. Appl. 2025, 30(3), 50; https://doi.org/10.3390/mca30030050 - 6 May 2025
Viewed by 581
Abstract
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both [...] Read more.
This paper presents a comprehensive study on the formulation and solution of the power flow problem in bipolar direct current (DC) distribution networks with unbalanced constant power loads. Using the nodal voltage method, a unified nonlinear model is proposed which accurately captures both monopolar and bipolar load configurations as well as the voltage coupling between conductors. The model assumes a solid grounding of the neutral conductor and known system parameters, ensuring reproducibility and physical consistency. Seven iterative algorithms are developed and compared, including three Newton–Raphson-based formulations and four quasi-Newton methods with constant Jacobian approximations. The proposed techniques are validated on two benchmark networks comprising 21 and 85 buses. Numerical results demonstrate that Newton-based methods exhibit quadratic convergence and high accuracy, while quasi-Newton approaches significantly reduce computational time, making them more suitable for large-scale systems. The findings highlight the trade-offs between convergence speed and computational efficiency, and they provide valuable insights for the planning and operation of modern bipolar DC grids. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

16 pages, 4560 KiB  
Article
Comprehensive Power Regulation of a Novel Shared Energy Storage Considering Demand-Side Response for Multi-Scenario Bipolar DC Microgrid
by Gongqiang Li, Bin Zhao, Xiaoqiang Ma, Xiaofan Ji and Hanqing Yang
Electronics 2025, 14(9), 1866; https://doi.org/10.3390/electronics14091866 - 3 May 2025
Viewed by 309
Abstract
In order to improve the ability to suppress unbalanced voltage in bipolar DC microgrids, a comprehensive power regulation control of a novel shared energy storage system is proposed for a multi-scenario bipolar DC microgrid. The novel shared energy storage system is composed of [...] Read more.
In order to improve the ability to suppress unbalanced voltage in bipolar DC microgrids, a comprehensive power regulation control of a novel shared energy storage system is proposed for a multi-scenario bipolar DC microgrid. The novel shared energy storage system is composed of an electric spring (ES) with a full-bridge DC/DC converter and non-critical load (NCL) in series, considering demand-side response. The proposed comprehensive power regulation control can enable the bipolar DC microgrid to deal with various scenarios. When operating in stand-alone mode, the unbalanced voltage caused by greater unbalanced power can still be suppressed under the proposed control of the shared energy storage. In case of distributed energy storage (DES) failure on the source side, the shared energy storage can realize DC voltage regulation and maintain system operation by reducing NCL power. In grid-connected operation, the shared energy storage can actively cooperate with the power dispatching of the utility grid for storage reduction of DES on the source side. Thus, the reliability and resilience of the bipolar microgrid have been improved. Finally, to verify the effectiveness of the proposed control strategy, hardware-in-the-loop experimental results are presented in this paper. Full article
(This article belongs to the Special Issue Innovations in Intelligent Microgrid Operation and Control)
Show Figures

Figure 1

20 pages, 8152 KiB  
Article
A Real-Time Diagnosis Method of Open-Circuit Faults in Cascaded H-Bridge Rectifiers Based on Voltage Threshold and Current Coefficient of Variation
by Yong Liu, Zhe Guo, Fei Liu, Feiya Guo, Kang Wang, Yongsheng Zhu, Feng Hou and Xiaolei Wang
Electronics 2025, 14(5), 986; https://doi.org/10.3390/electronics14050986 - 28 Feb 2025
Viewed by 656
Abstract
To effectively diagnose open-circuit (OC) faults in the insulated gate bipolar transistor (IGBT) of a cascaded H-bridge rectifier (CHBR) in real-time, this paper uses a single-phase three-cell CHBR as an example. Through mechanism analysis, the variation patterns of the capacitor voltage and grid [...] Read more.
To effectively diagnose open-circuit (OC) faults in the insulated gate bipolar transistor (IGBT) of a cascaded H-bridge rectifier (CHBR) in real-time, this paper uses a single-phase three-cell CHBR as an example. Through mechanism analysis, the variation patterns of the capacitor voltage and grid current due to OC faults are defined. Based on this, the DC capacitor voltage threshold (VT) and the grid current coefficient of variation (CCV) are introduced as fault diagnosis indices, and a real-time OC fault diagnosis method for CHBR is established. The robustness, accuracy, timeliness, and universality of the proposed method are validated through simulations. The results show that the proposed method exhibits strong robustness when the grid voltage fluctuates, either dropping from 3 kV to 2.85 kV or rising from 3 kV to 3.15 kV. Compared to existing diagnostic methods, the proposed approach requires less diagnostic time, with the faulty IGBT being identified in as little as 3.09 ms under optimal conditions. Additionally, the diagnostic performance remains unaffected by changes in control strategies, making it universally applicable for OC fault diagnosis in CHBR under various control strategies (such as dq current decoupling control, PR current control, and transient current control), with comparable diagnosis results and speeds. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

20 pages, 11324 KiB  
Article
Power Quality Improvement with Three-Phase Shunt Active Power Filter Prototype Based on Harmonic Component Separation Method with Low-Pass Filter
by Marian Gaiceanu, Silviu Epure, Razvan Constantin Solea and Razvan Buhosu
Energies 2025, 18(3), 556; https://doi.org/10.3390/en18030556 - 24 Jan 2025
Cited by 2 | Viewed by 1005
Abstract
This work contributes to both Romania’s and the European Union’s energy policies by highlighting the research results obtained within the Dunarea de Jos University of Galati, but also through the technological transfer of this knowledge to the industry. In order to improve the [...] Read more.
This work contributes to both Romania’s and the European Union’s energy policies by highlighting the research results obtained within the Dunarea de Jos University of Galati, but also through the technological transfer of this knowledge to the industry. In order to improve the power quality of the nonlinear loads connected to the electrical grid, a three-phase shunt active power filter prototype based on the Harmonic Component Separation Method with a Low-Pass Filter was used. The active power filter is connected at the Point of Common Coupling to compensate for individual loads or even all of them simultaneously. Therefore, active power filters can be used to compensate for the power factor and reduce the harmonic distortion of power supplies, or for processes subsequently connected to additional nonlinear loads, thus improving the energy efficiency. The shunt active power filter prototype is composed of the power side (three-phase insulated gate bipolar transistor bridge, DC link capacitor precharge system, inductive filter) and the control side (gate drive circuits, control subsystems, signal acquisition system). The filter control strategy is based on the principle of separating harmonic components with a low-pass filter, implemented by the authors on the industrial prototype. In this paper, the main technical features of the industrial shunt active power filter prototype are specified. The authors of this paper involved three cascaded control loops: the DC link voltage control loop, the shunt active power filter current control loop and the phase-locked loop. Both simulation and experimental results for the shunt-type active power filter prototype were obtained. By analyzing the obtained waveforms of the power supply source in two cases (with and without an active power filter), a decrease in the total harmonic distortion was demonstrated, both the voltage harmonic distortion factor THDu and the current harmonic distortion factor THDi in the case of the active power filter connection. By using the Field-Programmed Gate Array processing platform, the powerful computational speed features were exploited to implement the active shunt power filter control on an experimental test bench. Conducting source current harmonics mitigation increased the efficiency of the power system by decreasing the respective harmonic Joule losses. The energy-saving feature led to the increased added value of the parallel active power filter. Through the performed laboratory tests, the authors demonstrated the feasibility of the proposed control solution for the industrial prototype. In accordance with the European Union’s Research and Technological Development Policy, the development of an innovation ecosystem was taken into consideration. The unified and efficient integration of all the specific actors (enterprises, research institutes, universities and entrepreneurs) in innovation was achieved. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 3031 KiB  
Article
An Isolated Modular Multilevel DC Converter with Unipolar-to-Bipolar Conversion
by Haiqing Cai, Jingpeng Yue, Ranran An, Haohan Gu and Zihan Zhang
Electronics 2024, 13(24), 4993; https://doi.org/10.3390/electronics13244993 - 19 Dec 2024
Viewed by 1052
Abstract
Deep-sea offshore wind power generation has gained increasing attention in the past decade. The low cost and high efficiency of the DC grid system make it more competitive when the transmission distance is over 100 km. As the key enabler of the DC [...] Read more.
Deep-sea offshore wind power generation has gained increasing attention in the past decade. The low cost and high efficiency of the DC grid system make it more competitive when the transmission distance is over 100 km. As the key enabler of the DC grids, DC converters are necessitated to interconnect the DC lines with different voltage levels. Instead of using auxiliary circuits, this paper proposes a low-cost isolated modular multilevel DC converter (IMMDC) with unipolar-to-bipolar conversion topology to fit into the DC grids with different configurations. Moreover, the proposed DC-current-injection-based fault-tolerant scheme can maintain around 50% power transmission capability even under single pole open-circuit fault conditions for a certain period, enhancing the power supply continuity. The modularity and scalability of the proposed IMMDC topology can fit into different DC grid systems. The effectiveness and feasibility of the proposed topology and control strategy are verified using a 50 kV/±300 kV/100 MW MATLAB/Simulink 2022b simulation model. Full article
Show Figures

Figure 1

29 pages, 5068 KiB  
Article
Two-Stage Locating and Capacity Optimization Model for the Ultra-High-Voltage DC Receiving End Considering Carbon Emission Trading and Renewable Energy Time-Series Output Reconstruction
by Lang Zhao, Zhidong Wang, Hao Sheng, Yizheng Li, Tianqi Zhang, Yao Wang and Haifeng Yu
Energies 2024, 17(21), 5508; https://doi.org/10.3390/en17215508 - 4 Nov 2024
Viewed by 1047
Abstract
With the load center’s continuous expansion and development of the AC power grid’s scale and construction, the recipient grid under the multi-feed DC environment is facing severe challenges of DC commutation failure and bipolar blocking due to the high strength of AC-DC coupling [...] Read more.
With the load center’s continuous expansion and development of the AC power grid’s scale and construction, the recipient grid under the multi-feed DC environment is facing severe challenges of DC commutation failure and bipolar blocking due to the high strength of AC-DC coupling and the low level of system inertia, which brings many complexities and uncertainties to economic scheduling. In addition, the large-scale grid integration of wind power, photovoltaic, and other intermittent energy sources makes the ultra-high-voltage (UHV) DC channel operation state randomized. The deterministic scenario-based timing power simulation is no longer suitable for the current complex and changeable grid operation state. In this paper, we first start with the description and analysis of the uncertainty in renewable energy (RE) sources, such as wind and solar, and reconstruct the time-sequence power model by using the stochastic differential equation model. Then, a carbon emission trading cost (CET) model is constructed based on the CET mechanism, and the two-stage locating and capacity optimization model for the UHV DC receiving end is proposed under the constraint of dispatch safety and stability. Among them, the first stage starts with the objective of maximizing the carrying capacity of the UHV DC receiving end grid; the second stage checks its dynamic safety under the basic and fault modes according to the results of the first stage and corrects the drop point and capacity of the UHV DC line with the objective of achieving safe and stable UHV DC operation at the lowest economic investment. In addition, the two-stage model innovatively proposes UHV DC relative inertia constraints, peak adjustment margin constraints, transient voltage support constraints under commutation failure conditions, and frequency support constraints under a DC blocking state. In addition, to address the problem that the probabilistic constraints of the scheduling model are difficult to solve, the discrete step-size transformation and convolution sequence operation methods are proposed to transform the chance-constrained planning into mixed-integer linear planning for solving. Finally, the proposed model is validated with a UHV DC channel in 2023, and the results confirm the feasibility and effectiveness of the model. Full article
(This article belongs to the Section F6: High Voltage)
Show Figures

Figure 1

16 pages, 7290 KiB  
Article
Application of Surge Arrester in Limiting Voltage Stress at Direct Current Breaker
by Mohammadamin Moghbeli, Shahab Mehraeen and Sudipta Sen
Appl. Sci. 2024, 14(18), 8319; https://doi.org/10.3390/app14188319 - 15 Sep 2024
Cited by 2 | Viewed by 1557
Abstract
Hybrid DC circuit breakers combine mechanical switches with a redirecting current path, typically controlled by power electronic devices, to prevent arcing during switch contact separation. The authors’ past work includes a bipolar hybrid DC circuit breaker that effectively redirects the fault current and [...] Read more.
Hybrid DC circuit breakers combine mechanical switches with a redirecting current path, typically controlled by power electronic devices, to prevent arcing during switch contact separation. The authors’ past work includes a bipolar hybrid DC circuit breaker that effectively redirects the fault current and returns it to the source. This reduces arcing between the mechanical breaker’s contacts and prevents large voltage overshoots across them. However, the breaker’s performance declines as the upstream line inductance increases, causing overvoltage. This work introduces a modification to the originally proposed hybrid DC breaker to make it suitable to use anywhere along DC grid lines. By using a switch-controlled surge arrester in parallel with the DC breaker, part of the arc energy is dissipated in the surge arrester, preventing an overvoltage across the mechanical switches. Based on the experimental results, the proposed method can effectively interrupt the fault current with minimal arcing and reduce the voltage stress across the mechanical switches. To address practical fault currents, tests at high fault currents (900 A) and voltage levels (500 V) are conducted and compared with simulation models and analytical studies. Furthermore, the application of the breaker for the protection of DC distribution grids is illustrated through simulations, and the procedure for designing the breaker components is explained. Full article
(This article belongs to the Special Issue Recent Advances in Smart Microgrids)
Show Figures

Figure 1

23 pages, 880 KiB  
Article
Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution
by Wesley Peres and Raphael Paulo Braga Poubel
Energies 2024, 17(17), 4316; https://doi.org/10.3390/en17174316 - 28 Aug 2024
Cited by 2 | Viewed by 904
Abstract
The search for more efficient power grids has led to the concept of microgrids, based on the integration of new-generation technologies and energy storage systems. These devices inherently operate in DC, making DC microgrids a potential solution for improving power system operation. In [...] Read more.
The search for more efficient power grids has led to the concept of microgrids, based on the integration of new-generation technologies and energy storage systems. These devices inherently operate in DC, making DC microgrids a potential solution for improving power system operation. In particular, bipolar DC microgrids offer more flexibility due to their two voltage levels. However, more complex tools, such as optimal power flow (OPF) analysis, are required to analyze these systems. In line with these requirements, this paper proposes an OPF for bipolar DC microgrid reconfiguration aimed at minimizing power losses, considering dispersed generation (DG) and asymmetrical loads. This is a mixed-integer nonlinear optimization problem in which integer variables are associated with the switch statuses, and continuous variables are associated with the nodal voltages in each pole. The problem is formulated based on current injections and is solved by a hybridization of the differential evolution algorithm (to handle the integer variables) and the interior point method-based OPF (to minimize power losses). The results show a reduction in power losses of approximately 48.22% (33-bus microgrid without DG), 2.87% (33-bus microgrid with DG), 50.90% (69-bus microgrid without DG), and 50.50% (69-bus microgrid with DG) compared to the base case. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 11984 KiB  
Article
Stability Analysis via Impedance Modelling of a Real-World Wind Generation System with AC Collector and LCC-Based HVDC Transmission Grid
by Muhammad Arshad, Omid Beik, Muhammad Owais Manzoor and Mahzad Gholamian
Electronics 2024, 13(10), 1917; https://doi.org/10.3390/electronics13101917 - 14 May 2024
Cited by 5 | Viewed by 1625
Abstract
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission [...] Read more.
This paper studies the stability of a real-world wind farm, Bison Wind Generation System (BWGS) in the state of North Dakota in the United States. BWGS uses an AC collector grid rated at 34.5 kV and a symmetrical bipolar high-voltage DC (HVDC) transmission grid rated at ±250 kV. The HVDC line transfers a total power of 0.5 GW, while both the HVDC rectifier and inverter substations use line-commuted converters (LCCs). The LCC-based rectifier adopts constant DC current control to regulate HVDC current, while the inverter operates in constant extinction angle control mode to maintain a fixed HVDC voltage. This paper proposes a frequency scan-based approach to obtain the d–q impedance model of (i) BWGS AC collector grids with Type 4 wind turbines that use permanent magnet synchronous generators (PMSGs) and two fully rated converters, and (ii) an LCC-HVDC system. The impedance frequency response of the BWGS is acquired by exciting the AC collector grid and LCC-HVDC with multi-sine voltage perturbations during its steady-state operation. The resulting voltage and current signals are subjected to a fast Fourier transform (FFT) to extract frequency components. By analyzing the impedance frequency response measurement of BWGS, a linear time–invariant (LTI) representation of its dynamics is obtained using the vector fitting (VF) technique. Finally, a Bode plot is applied, considering the impedance of the BWGS and grid to perform stability analyses. This study examines the influence of the short circuit ratio (SCR) of the grid and the phase lock loop (PLL) frequency bandwidth on the stability of the overall system. The findings provide valuable insights for the design and verification of an AC collector and LCC-based HVDC transmission systems. The findings suggest that the extraction of the impedance model of a real-world wind farm, achieved through frequency scanning and subsequent representation as an LTI system using VF, is regarded as a robust, suitable, and accurate methodology for investigating the dynamics, unstable operating conditions, and control interaction of the wind farm and LCC-HVDC system with the AC grid. Full article
(This article belongs to the Special Issue A Mass Adoption of Power Electronics in Wind Power System)
Show Figures

Figure 1

28 pages, 11596 KiB  
Article
Airport Microgrid and Its Incorporated Operations
by Chang-Ming Liaw, Chen-Wei Yang and Pin-Hong Jhou
Aerospace 2024, 11(3), 192; https://doi.org/10.3390/aerospace11030192 - 28 Feb 2024
Cited by 2 | Viewed by 2003
Abstract
This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), [...] Read more.
This paper presents the development of an airport bipolar DC microgrid and its interconnected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), via unidirectional three-level (3L) boost converters. The proposed one-cycle control (OCC)-based current control scheme and quantitative and robust voltage control scheme are proposed to yield satisfactory responses. Moreover, the PV maximum power point tracking (MPPT) with FC energy-supporting approach is developed to have improved renewable energy extraction characteristics. The equipped hybrid energy storage system (HESS) consists of an energy-type battery and a power-type flywheel; each device is interfaced to the common DC bus via its own 3L bidirectional interface converter. The energy-coordinated operation is achieved by the proposed droop control. A dump load leg is added to avoid overvoltage due to an energy surplus. The grid-connected energy complementary operation is conducted using a neutral point clamped (NPC) 3L three-phase inverter. In addition to the energy support from grid-to-microgrid (G2M), the reverse mcrogrid-to-grid (M2G) operation is also conductible. Moreover, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) bidirectional operations can also be applicable. The droop control is also applied to perform these interconnected operations. For the grounded aircraft, bidirectional microgrid-to-aircraft (M2A)/aircraft-to-microgrid (A2M) operations can be performed. The aircraft ground power unit (GPU) function can be preserved by the developed microgrid. The MEA on-board facilities can be powered by the microgrid, including the 115 V/400 Hz AC bus, the 270 V DC bus, the switched-reluctance motor (SRM) drive, etc. Full article
(This article belongs to the Special Issue Electric Power Systems and Components for All-Electric Aircraft)
Show Figures

Figure 1

18 pages, 13068 KiB  
Article
Experimental Validation of 40 kW EV Charger Based on Vienna Rectifier and Series-Resonant Dual Active Bridge
by Grzegorz Wrona, Mariusz Zdanowski, Przemysław Trochimiuk, Jacek Rąbkowski and Radosław Sobieski
Energies 2023, 16(15), 5797; https://doi.org/10.3390/en16155797 - 4 Aug 2023
Cited by 5 | Viewed by 3118
Abstract
This work presents the experimental validation of a 40 kW electric vehicle (EV) charger. The proposed system comprises two 20 kW modules connected in parallel at the input and output. Each module has two stages—as a grid converter Vienna Rectifier (VR) was chosen, [...] Read more.
This work presents the experimental validation of a 40 kW electric vehicle (EV) charger. The proposed system comprises two 20 kW modules connected in parallel at the input and output. Each module has two stages—as a grid converter Vienna Rectifier (VR) was chosen, and as an isolated DC/DC stage, two Series-Resonant Dual-Active-Bridges (SRDABs) in input-series-output-parallel (ISOP) configurations were applied. The AC/DC and DC/DC stages were enclosed in 2U rack standard housing. A bipolar DC-link with ±400 V DC voltage was employed to connect both stages of the charger module while the charger’s output is dedicated to serving 800 V batteries. VRs operated at 66 kHz switching frequency and the SRDABs operated at 100 kHz. The converters used in the charger structure were based on silicon carbide (SiC) power devices. The description and parameters of the built hardware prototypes of both—AC/DC and DC/DC—converters are provided. Moreover, the experimental validation of each stage and the whole charging system, including oscilloscope waveforms and power analyzer measurements at nominal power, are included. Such a configuration enables energy conversion with high efficiency without a negative impact on the grid and high-quality grid waveforms. Full article
Show Figures

Figure 1

18 pages, 349 KiB  
Article
Solving the Power Flow Problem in Bipolar DC Asymmetric Distribution Networks Using Broyden’s Method
by Oscar Danilo Montoya, Ángeles Medina-Quesada and Walter Gil-González
Sensors 2023, 23(15), 6704; https://doi.org/10.3390/s23156704 - 26 Jul 2023
Cited by 1 | Viewed by 1288
Abstract
This research addresses the power flow analysis in bipolar asymmetric direct current (DC) networks by applying Broyden’s numerical method. This general successive approximations method allows for a simple Newton-based recursive formula to reach the roots of multiple nonlinear equations. The main advantage of [...] Read more.
This research addresses the power flow analysis in bipolar asymmetric direct current (DC) networks by applying Broyden’s numerical method. This general successive approximations method allows for a simple Newton-based recursive formula to reach the roots of multiple nonlinear equations. The main advantage of Broyden’s approach is its simple but efficient structure which can be applied to real complex nonlinear equations.The power flow problem in bipolar DC networks is still challenging, as multiple operating options must be considered, e.g., the possibility of having a solidly grounded or floating neutral wire. The main goal of this research is to contribute with a generalization of Broyden’s method for the power flow solution in bipolar DC networks, with the main advantage that, under well-defined conditions, this is a numerical method equivalent to the matricial backward/forward power flow, which is equivalent to the successive approximations power flow method. Numerical results in the 21-, 33-, and 85-bus grids while considering two connections for the neutral wire (i.e., solidly grounded at any node or floating) show the effectiveness of Broyden’s method in the power flow solution for bipolar asymmetric DC networks. All numerical simulations were carried out in the MATLAB programming environment. Full article
Show Figures

Figure 1

19 pages, 2253 KiB  
Article
Optimal Configuration of Battery Energy Storage for AC/DC Hybrid System Based on Improved Power Flow Exceeding Risk Index
by Yanming Tu, Libo Jiang, Bo Zhou, Xinwei Sun, Tianwen Zheng, Yunyang Xu and Shengwei Mei
Electronics 2023, 12(14), 3169; https://doi.org/10.3390/electronics12143169 - 21 Jul 2023
Cited by 1 | Viewed by 1486
Abstract
After the fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, when the battery energy storage system (BESS) near the fault location is used to eliminate the power transfer, some sensitive and vulnerable transmission lines still have the problem of power flow [...] Read more.
After the fault disturbance (DC bi-polar blocking) in the AC/DC hybrid system, when the battery energy storage system (BESS) near the fault location is used to eliminate the power transfer, some sensitive and vulnerable transmission lines still have the problem of power flow exceeding the limit value. Therefore, an optimal configuration of BESS for AC/DC hybrid systems based on power flow exceeding risk index is proposed, which is used to eliminate the impact of power transfer on transmission lines. Firstly, considering the line outage distribution factor, the power flow exceeding risk index is established, which is used to judge the sensitive and vulnerable transmission lines on the shortest path power flow after the fault in the AC/DC hybrid system. The shortest path power flow is found by using the Dijkstra algorithm; the transmission lines nodes of the shortest path power flow are selected as candidate nodes for BESS configuration. Secondly, considering the safe and stable operation capability of the transmission lines, a multi-objective optimal mathematical model of BESS configuration for the AC/DC hybrid system is established, which minimizes the annual investment cost of BESS and maximizes the sum of the power flow exceeding risk index. Finally, the CEPRI36V7 power grid model in Power System Analysis Software Package (PSASP) is used for simulation analysis to verify the effectiveness of the proposed method. Full article
(This article belongs to the Topic Advances in Renewable Energy and Energy Storage)
Show Figures

Figure 1

10 pages, 1694 KiB  
Perspective
The Future of Electrical Power Grids: A Direction Rooted in Power Electronics
by Vitor Monteiro and Joao L. Afonso
Energies 2023, 16(13), 4929; https://doi.org/10.3390/en16134929 - 25 Jun 2023
Cited by 4 | Viewed by 3690
Abstract
Electrical power grids are changing with a focus on ensuring energy sustainability and enhanced power quality for all sectors. Over the last few decades, there has been a change from a centralized to a decentralized paradigm, which is the consequence of a large-scale [...] Read more.
Electrical power grids are changing with a focus on ensuring energy sustainability and enhanced power quality for all sectors. Over the last few decades, there has been a change from a centralized to a decentralized paradigm, which is the consequence of a large-scale incorporation of new electrical technologies and resultant equipment. Considering the foreseeable continuation of changes in electrical power grids, a direction rooted in power electronics with a focus on hybrid AC/DC grids, including the support of solid-state transformers and unified systems, is presented in this paper. Converging on hybrid AC/DC grids, DC grids (structured as unipolar and bipolar) and coupled and decoupled AC configurations are analyzed. On the other hand, in the context of solid-state transformers, feasible structures are analyzed, including the establishment of hybrid AC/DC grids, and the assessment of gains for boosting power quality is presented. Unified power electronics systems are also of fundamental importance when contextualized within the framework of future power grids, presenting higher efficiency, lower power stages, and the possibility of multiple operations to support the main AC grid. In this paper, such subjects are discussed and contextualized within the framework of future power grids, encompassing highly important and modern structures and their associated challenges. Various situations are characterized, revealing a gradual integration of the cited technologies for future power grids, which are also known as smart grids. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

14 pages, 2186 KiB  
Article
Coordinate Fault Ride-Through Strategy for Connection of Offshore Wind Farms Using Voltage Source-Converter-Based High-Voltage Direct-Current Transmission under Single Polar Fault
by Huiying Zhou, Siyang Ge and Liang Qin
Sensors 2023, 23(12), 5760; https://doi.org/10.3390/s23125760 - 20 Jun 2023
Cited by 4 | Viewed by 1729
Abstract
In a system where wind farms are connected to the grid via a bipolar flexible DC transmission, the occurrence of a short-time fault at one of the poles results in the active power emitted by the wind farm being transmitted through the non-faulty [...] Read more.
In a system where wind farms are connected to the grid via a bipolar flexible DC transmission, the occurrence of a short-time fault at one of the poles results in the active power emitted by the wind farm being transmitted through the non-faulty pole. This condition leads to an overcurrent in the DC system, thereby causing the wind turbine to disconnect from the grid. Addressing this issue, this paper presents a novel coordinated fault ride-through strategy for flexible DC transmission systems and wind farms, which eliminates the need for additional communication equipment. The proposed strategy leverages the power characteristics of the doubly fed induction generator (DFIG) under different terminal voltage conditions. By considering the safety constraints of both the wind turbine and the DC system, as well as optimizing the active power output during wind farm faults, the strategy establishes guidelines for the wind farm bus voltage and the crowbar switch signal. Moreover, it harnesses the power regulation capability of the DFIG rotor-side crowbar circuit to enable fault ride-through in the presence of single-pole short-time faults in the DC system. Simulation results demonstrate that the proposed coordinated control strategy effectively mitigates overcurrent in the non-faulty pole of flexible DC transmission during fault conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop