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Abstract: This paper presents the development of an airport bipolar DC microgrid and its intercon-
nected operations with the utility grid, electric vehicle (EV), and more electric aircraft (MEA). The
microgrid DC-bus voltage is established by the main sources, photovoltaic (PV) and fuel cell (FC), via
unidirectional three-level (3L) boost converters. The proposed one-cycle control (OCC)-based current
control scheme and quantitative and robust voltage control scheme are proposed to yield satisfactory
responses. Moreover, the PV maximum power point tracking (MPPT) with FC energy-supporting
approach is developed to have improved renewable energy extraction characteristics. The equipped
hybrid energy storage system (HESS) consists of an energy-type battery and a power-type flywheel;
each device is interfaced to the common DC bus via its own 3L bidirectional interface converter.
The energy-coordinated operation is achieved by the proposed droop control. A dump load leg is
added to avoid overvoltage due to an energy surplus. The grid-connected energy complementary
operation is conducted using a neutral point clamped (NPC) 3L three-phase inverter. In addition to
the energy support from grid-to-microgrid (G2M), the reverse mcrogrid-to-grid (M2G) operation is
also conductible. Moreover, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) bidirectional
operations can also be applicable. The droop control is also applied to perform these interconnected
operations. For the grounded aircraft, bidirectional microgrid-to-aircraft (M2A)/aircraft-to-microgrid
(A2M) operations can be performed. The aircraft ground power unit (GPU) function can be preserved
by the developed microgrid. The MEA on-board facilities can be powered by the microgrid, including
the 115 V/400 Hz AC bus, the 270 V DC bus, the switched-reluctance motor (SRM) drive, etc.

Keywords: airport microgrid; EV; MEA; PV; FC; battery; flywheel; droop control; GPU; SRM

1. Introduction

As generally recognized, the use of microgrids [1], EVs [2,3], and more-electric
aircraft (MEA) [4] can effectively reduce fossil energy consumption and thus carbon-
dioxide emissions. All these plants have been gradually promoted and demonstrated
effectiveness. Microgrids [5–11] using renewable sources (RESs) can be independently
operated from the utility grid to reduce the traditional generation burden. Basically, a
DC microgrid can be established using unipolar or bipolar DC bus [10,11]. The latter
possesses some merits, such as having line fault-tolerant capability, a larger transmission
capacity, simpler load converter schematics, etc. The bipolar DC-bus is adopted for the
developed airport microgrid for reliability reasons. Till now, there were many existing
examples of microgrids [12–14].

Airport microgrids employing RES can increase power-support resilience and reliability
and also achieve environmentally friendly purpose. However, less research and existing
airport microgrids have been seen until now. Although some applications of PV and/or energy
storage devices in airports are found [15–17], systematic and complete airport microgrids are
still rare. The slow progress being achieved is perhaps due to reliability concerns, conservative
thinking, more strict requirements, a lack of related regulations and standards to follow [15],
etc. An experimental airport DC microgrid is developed in this paper, and the related key
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technologies of schematic and control schemes are developed. These developed approaches
are unified and can be directly applied to practical large-scale microgrids.

The most commonly used RESs, perhaps, are PV and wind generators. As to the
distributed generators (DGs), FC [18–20] and micro turbine generators are the two typical
ones. For the FC, although cost and maintenance are still the key factors affecting its
popularization progress, the zero-emission new energy source possesses the application
potential in transportation EVs and the future all electric aircraft (AEA) [20]. As far as
the safety issue is concerned, PV combined with FC will be the better choice and will be
adopted in the developed airport microgrid.

For the possible microgrid input sources, the PV output power is unpredictable, unsta-
ble, and even totally elapsed at night. As to the FC, its generated output also fluctuates.
Hence, the equipment of suited energy storage devices [21,22] is indispensable for en-
hancing the power supply quality. The HESS, consisting of an energy-type battery [23,24]
and a power-type FW [25–27], is adopted in the developed microgrid. Moreover, the
grid-connected bidirectional operation is also feasible for further achieving uninterruptable
power supply to airport facilities.

To increase the resilience and reliability of the airport microgrid power system, grid-
connected operation via a bidirectional inverter is needed [11]. As the energy deficiency
occurs, the energy supplementary support can be seamlessly provided from the utility grid.
Conversely, the surplus energy from microgrids can be sent back to the grid for electricity
bill compensation. EVs [28–31] with on-board batteries can be regarded as movable energy
storage plants and arranged to perform grid-to-vehicle (G2V) and V2G operations [32–36],
and vehicle-to-microgrid (V2M)/M2V operations [37]. The whole energy utilization can
be more effectively enhanced. More specifically, the grounded MEA [38–41] can also
conduct its interconnected operation on the airport microgrid to have similar effects. The
interconnected operations of both EV and MEA are presented in this paper. The ground
power unit’s powering functions can be preserved. The MEA electric power architecture
(EPA) with high-voltage common DC-buses developed in [40,41] is employed to conduct
the M2A/A2M operations of the established dedicated airport microgrid to the landed
MEA. The MEA on-board facilities can be powered from the microgrid with the same
functions as the traditional movable GPU.

All harvested sources, loads, energy storage devices, EVs, MEAs, and utility grids
must be interfaced to the microgrid via proper power converters and controls. Some
commonly used converters are surveyed in the literature [42–44]. For the bipolar DC
microgrid, the 3L converters with inherent bipolar output are preferable [45–48]. As to
the AC sources, such as AC motor-driven FW and utility grid, bidirectional inverters are
adopted [49–51]. Except for the schematic and their control schemes, the coordinated
control between the constituted power stages is critical in achieving better energy transfer
and managing characteristics for a microgrid system. The typical control approaches
can be referred to [5–7,52–55]. In the developed microgrid, the droop control method is
applied to the current sharing control between the battery and the flywheel and also to the
M2G/G2M operations.

An experimental airport bipolar DC microgrid is developed in this paper. Its inter-
connected operations with the utility grid, EVs, and MEA are also presented. All the
constituted components are interfaced to the common DC-bus via various 3L converters.
The DC-bus voltage is established by PV and FC with the proposed power distributed
control. The equipped HESS consists of a battery and a flywheel using droop control to
conduct the energy coordinated operation. The interconnected operations of the devel-
oped airport microgrid include: (i) G2M and M2G bidirectional operations; (ii) isolated
bidirectional M2V and V2M operations using a 3L CLLC converter; and (iii) bidirectional
operations between the microgrid and the grounded aircraft. All the established power
stages and operation modes are evaluated by measured results.
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2. System Configuration

Figure 1 shows the system configuration of the developed airport DC microgrid, and
the detailed power circuit is depicted in Figure 2. The major features and functions of the
developed airport microgrid are briefly described as follows:

(1) The DC-bus bipolar-voltage is established by the PV and the FC via unidirectional
3L boost DC-DC converters. PV is more appropriate renewable source for airports
due to the special terrain limitations, while the zero-emission new energy device
FC possesses the future application potential. The coordinated control scheme is
proposed for the renewable PV source with MPPT and the distributed FC source,
providing energy support to yield enhanced power generation characteristics. Well-
regulated bus voltage is preserved by the designed controller. An OCC-based
current control scheme and a robust voltage control scheme are proposed.

(2) In the battery/FW HESS, the two storage devices are respectively connected to the
common DC-bus via a bidirectional 3L boost converter and a bidirectional 3L three-
phase switch-mode rectifier (SMR). The droop control scheme is developed to yield
good current sharing characteristics between the energy-type and the power-type
storage devices.

(3) A chopped dump load is equipped across the DC-bus to prevent overvoltage.
(4) A 3L NPC bidirectional three-phase inverter is used to conduct the G2M and M2G

energy complementary operations. The droop control approach is also proposed to
handle the G2M/M2G operations. The grid-connected airport microgrid can possess
increased resilience and power-supply reliability.

(5) The microgrid-to-vehicle (M2V) and the vehicle-to-microgrid (V2M) operations can
be performed via the off-board DC fast charger or the on-board charger. The gal-
vanic isolation is provided by the 3L CLLC resonant converter. The total energy
utilization is further enhanced by considering the EV as a movable storage facil-
ity. This effectiveness is more obvious in the airport microgrid compared to the
conventional microgrid.

(6) As the aircraft is grounded, its bidirectional operations to microgrid can be conducted.
Taking the more electric aircraft (MEA) electric power architecture (EPA) presented
in [40,41] as an application example, the aircraft on-board facilities can be powered
by the developed microgrid. The functions of a ground power unit are preserved.
The arranged test facilities include the 115 V/400 Hz AC-bus, the 270 V DC-bus,
and the example SRM drive [41]. The aircraft can also provide energy support to
the microgrid.

From Figure 1 and the above descriptions, one can be aware of the obvious differ-
ences between the proposed dedicated airport microgrid and the conventional
microgrid [5–14]. For an academic university laboratory, only the scale-down prototype
system can be established. However, for all constituted power stages, the detailed de-
signs of power circuits, and control schemes are presented. The presented approaches are
unified and can be applied to a large-scale microgrid. Since all the established converters
belong to three-level schematics, they are suited for higher-power applications.
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Figure 1. System configuration of the developed airport DC microgrid.
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Figure 2. The developed airport DC microgrid; (a) experimental setup photo; (b) detailed schematic.

3. The Established PV and FC-Powered Microgrid
3.1. The Adopted PV Array and FC

The employed PV array is emulated using a commercialized power supply (62100H-
600S, 600 V, 17 A, 10 kW, by Chroma, Taoyuan, Taiwan). The emulated PV array P-V curves
under various solar irradiances are shown in Figure 3 with labeled maximum power points
(MPPs). To enhance the power-supply quality of the micro-grid, distributed FC energy
support is added. The commercialized power supply is also used as the emulated FC
source. Figure 4 shows the simulated voltage-current-regulated curve.



Aerospace 2024, 11, 192 6 of 28

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 30 
 

 

(5) As the aircraft is grounded, its bidirectional operations to microgrid can be con-

ducted. Taking the more electric aircraft (MEA) electric power architecture (EPA) pre-

sented in [40,41] as an application example, the aircraft on-board facilities can be 

powered by the developed microgrid. The functions of a ground power unit are pre-

served. The arranged test facilities include the 115 V/400 Hz AC-bus, the 270 V DC-

bus, and the example SRM drive [41]. The aircraft can also provide energy support 

to the microgrid. 

From Figure 1 and the above descriptions, one can be aware of the obvious differ-

ences between the proposed dedicated airport microgrid and the conventional microgrid 

[5–14]. For an academic university laboratory, only the scale-down prototype system can 

be established. However, for all constituted power stages, the detailed designs of power 

circuits, and control schemes are presented. The presented approaches are unified and can 

be applied to a large-scale microgrid. Since all the established converters belong to three-

level schematics, they are suited for higher-power applications. 

3. The Established PV and FC-Powered Microgrid 

3.1. The Adopted PV Array and FC 

The employed PV array is emulated using a commercialized power supply (62100H-

600S, 600 V, 17 A, 10 kW, by Chroma, Taoyuan, Taiwan). The emulated PV array P-V 

curves under various solar irradiances are shown in Figure 3 with labeled maximum 

power points (MPPs). To enhance the power-supply quality of the micro-grid, distributed 

FC energy support is added. The commercialized power supply is also used as the emu-

lated FC source. Figure 4 shows the simulated voltage-current-regulated curve. 

 

Figure 3. Emulated output P-V curves of the employed PV array under various solar irradiances. 

 

Figure 4. The emulated FC module voltage curve. 

3.2. Three-Level Boost Interface Converters 

As shown in Figure 2, both PV and FC employ the uni-directional 3L boost converter 

to naturally establish a bipolar voltage DC bus. For example, the circuit with PV input is 

shown in Figure 5. The coordinated control scheme of the PV and FC systems is depicted 

 

)V(pvv

MPP

)1000(W/m2

)200(W/m2

)400(W/m2

)600(W/m2

)800(W/m2

(72.27, 1177)

(71.01, 945.9)

(69.06, 692)

(67.09,451.5)

(64.46,217)

)
W(

p
v

P

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

 

0 2 4 6 8 10 12 14 16

)A(fcI

)
V(

fc
V

100

105

110

115

120

125

130

135

140

Figure 3. Emulated output P-V curves of the employed PV array under various solar irradiances.

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 30 
 

 

(5) As the aircraft is grounded, its bidirectional operations to microgrid can be con-

ducted. Taking the more electric aircraft (MEA) electric power architecture (EPA) pre-

sented in [40,41] as an application example, the aircraft on-board facilities can be 

powered by the developed microgrid. The functions of a ground power unit are pre-

served. The arranged test facilities include the 115 V/400 Hz AC-bus, the 270 V DC-

bus, and the example SRM drive [41]. The aircraft can also provide energy support 

to the microgrid. 

From Figure 1 and the above descriptions, one can be aware of the obvious differ-

ences between the proposed dedicated airport microgrid and the conventional microgrid 

[5–14]. For an academic university laboratory, only the scale-down prototype system can 

be established. However, for all constituted power stages, the detailed designs of power 

circuits, and control schemes are presented. The presented approaches are unified and can 

be applied to a large-scale microgrid. Since all the established converters belong to three-

level schematics, they are suited for higher-power applications. 

3. The Established PV and FC-Powered Microgrid 

3.1. The Adopted PV Array and FC 

The employed PV array is emulated using a commercialized power supply (62100H-

600S, 600 V, 17 A, 10 kW, by Chroma, Taoyuan, Taiwan). The emulated PV array P-V 

curves under various solar irradiances are shown in Figure 3 with labeled maximum 

power points (MPPs). To enhance the power-supply quality of the micro-grid, distributed 

FC energy support is added. The commercialized power supply is also used as the emu-

lated FC source. Figure 4 shows the simulated voltage-current-regulated curve. 

 

Figure 3. Emulated output P-V curves of the employed PV array under various solar irradiances. 

 

Figure 4. The emulated FC module voltage curve. 

3.2. Three-Level Boost Interface Converters 

As shown in Figure 2, both PV and FC employ the uni-directional 3L boost converter 

to naturally establish a bipolar voltage DC bus. For example, the circuit with PV input is 

shown in Figure 5. The coordinated control scheme of the PV and FC systems is depicted 

 

)V(pvv

MPP

)1000(W/m2

)200(W/m2

)400(W/m2

)600(W/m2

)800(W/m2

(72.27, 1177)

(71.01, 945.9)

(69.06, 692)

(67.09,451.5)

(64.46,217)

)
W(

p
v

P

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

 

0 2 4 6 8 10 12 14 16

)A(fcI

)
V(

fc
V

100

105

110

115

120

125

130

135

140

Figure 4. The emulated FC module voltage curve.

3.2. Three-Level Boost Interface Converters

As shown in Figure 2, both PV and FC employ the uni-directional 3L boost converter
to naturally establish a bipolar voltage DC bus. For example, the circuit with PV input is
shown in Figure 5. The coordinated control scheme of the PV and FC systems is depicted
in Figure 6. Its cascade control structure consists of an outer voltage-loop and an inner
current-controlled PWM (CCPWM) scheme using the proposed one-cycle control (OCC)
with PV/FC current sharing. The current commands vpm(i∗pv) and v f m(i∗f c) are yielded by
the outer control loops.
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Figure 5. Power circuit of a 3L boost converter for PV.

In the case of sufficient irradiance, the PV 3LBC adopts constant voltage control, and
the current control v f m for FC is set to be zero without output power. On the contrary, when
the solar power is insufficient, the control signal vpm under MPP tracking is subtracted
from vm to yield the v f m to set the generation from FC. Hence, in the proposed PV/FC
hybrid source system, the PV can conduct MPP tracking to extract maximum solar energy,
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as the irradiance is sufficient. The FC can supply the energy to the microgrid automatically
when the irradiance is deficient.
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Figure 6. The proposed coordinated control scheme for PV and FC systems.

3.2.1. Circuit Components

The energy storage inductor is designed for the worst-case scenario with PV input
under the MPP of 1000 W/m2 irradiance. The CCM operation under all conditions can
be assured. The designed inductor is also employed for the FC-interfaced converter. The
system variables at the chosen operating point are:

• Pdc = 1.2kW, vdc = 400 V;
• vpv = 72.27 V, ipv = 16.28 A, where the unity efficiency is assumed;
• Switching frequency fs = 30 kHz;
• The IGBT module SK30MLI066 by Semikron Corp. is used to form the developed

3LBC.

• Energy storage inductor

The inductor current ripple is set to guarantee the converter is in CCM operation in
most cases, as follows:

∆ipv =

(
0.5Vdc − Vpv

fsLmin

)
(1 − D) ≤ 0.1I pv,max (1)

where I pv,max = 16.28 A. Hence, the minimum inductance is found as Lmin = 472 µH.
An available inductor with L1 = 1.28 mH/30 kHz is employed. Accordingly, the actual
inductor current ripple is calculated as ∆i pv = 0.6 A.

• DC output filtering capacitor

By setting the output voltage ripple ∆vdc ≤ 0.01Vdc = 4 V, the capacitance of the
output filter capacitor is found as follows:

Cdc ≥
Pdc/Vdc

2π f ∆vdc
= 398.14 µF (2)

Accordingly, capacitors are chosen to be Cdc1 = Cdc2 = 2200 µF/450 V, then Cdc =
1100 µF/900 V is yielded.

3.2.2. The Proposed OCC-Based CCPWM Scheme

Taking the PV system as an example, Figure 7 shows the proposed OCC-based
CCPWM scheme. The PWM carrier embedded in the employed DSP is defined as 0 <
vtri1 ≤ (v̂tri1 = 1), where v̂tri1 is the amplitude of tri-angular carrier wave.
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Referring to Figure 5, assuming the driving point resistance of the PV source be Re
one has:

vpv = Reipv (3)

The voltage transfer ratio of boost converter in CCM is:

vdc = vpv/(1 − Da) (4)

From (3) and (4), one can obtain:

ipv = vdc(1 − Da)/Re (5)

Equation (5) is multiplied with the current sensing factor Ki to yield:

i′pv = Kiipv =
vdcKi

Re
(1 − Da)∆ vm(1 − Da) (6)

where vm denotes the current command voltage generated by the outer voltage loop.
Since v̂tri1 = 1, from (6), the control force vc shown in Figure 7 can be expressed as

vc = Da = 1−Kiipv/vm.
Comments: From Figure 7, one can be aware that: (i) compared to the conventional

ramp-comparison CCPWM scheme, the dynamic current feedback controller is not needed
for the proposed control scheme; and (ii) as to the OCC scheme, the resettable integrator
and flip-flop in the traditional mechanism are all not required here.

3.2.3. Bipolar Voltage Balancing Controller

As indicated in Figure 6, the voltage difference between vdc1 and vdc2 is regulated by a
PI controller Gbv(s) to yield the voltage balancing control signal ibc, then ibc is injected into
the PWM control signal vc. The controller is set as:

Gbv(s) = 1.28 +
37
s

(7)

3.2.4. Voltage Control Scheme

With a well-designed OCC scheme, the 3LBC voltage loop dynamic behavior can be
represented by the block diagram shown in Figure 8a. The plant model is characterized by:
(i) Kv(= 0.004 V/V)= voltage sensing factor; (ii) Kpl = load power disturbance constant;
and (iii) the first-order plant dynamic model:

Hpv(s) =
b

s + a
(8)
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Figure 8. The proposed voltage control scheme of 3LBC: (a) block diagram; (b) desired voltage step
regulation responses.

In the proposed control scheme shown in Figure 8a, the feedback controller is aug-
mented with the voltage robust error cancellation controller (VRECC) to yield a quantitative
and robust voltage regulation response against load and input changes.

The experimental dynamic model estimation and the quantitative voltage feedback
controller design are described in detail below. Moreover, a simple, robust control is
proposed to enhance the voltage dynamic response and robustness.

The desired voltage response due to a step load power change is sketched in Figure 8b
with the key features: (i) no overshoot and steady-state error; (ii) having the desired
maximum ∆vdm and restore time tre, where tre is defined as ∆vdc(tre) = 0.1∆vdm; and (iii)
by adding the VRECC, the variation of regulation response can further be reduced.

(a) Voltage feedback controller
For simplicity, the PI voltage controller is chosen:

Gcv(s) = KPv +
KIv

s
(9)

To achieve the specified response, the plant model parameters are first estimated
experimentally. Then the PI controller is designed quantitatively. The closed-loop transfer
functions of ∆vdc to the load power change can be derived from Figure 8a as follows:

Hdv(s) =
∆vdc
∆Pdc

∣∣∣∣
∆v∗dc=0

=
sK plb

s2 + (a + bKvK Pv)s + bKvK Iv
(10)

To obtain the specified regulation response, the controller Gcv(s) must be designed to
let Hdv(s) have two distinct real poles as follows:

Hdv(s) =
β1

s + α1
+

β2

s + α2
, α2 > α1 (11)

where
α1 + α2 = a + bKvKPv , α1α2 = bKvKIv

β1 = −β2 =
bKpl∆Pdc

α1−α2

(12)
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The voltage step response due to a step load power change of ∆Pdc can be found from
(11) and (12) as follows:

∆vdc(t) = β1(e−α1t − e−α2t) =
Kplb∆Pdc

α1 − α2
(e−α1t − e−α2t) (13)

• Dynamic model estimation:

The PV system shown in Figure 5 is operated at (v∗dc = 400 V vpv = 72.3 V, Pdc =
533 W). The PI feedback controller is arbitrarily set as Gcv(s) = 1 + 10/s. The measured vdc
due to a step load change of Pdc = 533 W → 1066 W (Rdc =300 Ω → 150 Ω) is depicted
in Figure 9a. By choosing three response points (−9.5 V, 14 ms), (−18.9 V, 62 ms), and
(−1.9 V, 344 ms) and using the above governing equations, through careful derivation, the
dynamic model parameters can be estimated to be:

a = 11.04 , b = 1.2 × 104 , Kpl = 1.35 × 10−4 (14)
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Figure 9. Voltage responses of the developed 3LBC (v∗dc = 400 V, vpv = 72.3 V, Pdc = 533 W) due to
a step load change of Pdc = 533 W → 1066 W : (a) the arbitrarily chosen controller Gcv(s) = 1 + 10/s
for parameter estimation; (b) the quantitatively designed controller Gcv(s) = 2.69 + 15.2/s.

The simulation results (not shown here) have verified the correctness of the estimated
dynamic model.

• Quantitative controller design:

Under the same operating point, the desired response is specified as (∆vdm = 10 V
and tre = 0.5 s) due to a step power change of ∆Pdc = 533 W. With the known plant model
parameters (a, b, Kpl) listed in (14), one can list the following two nonlinear equations for
the two independent variables α1 and α2:

∆vdm =
Kplb∆Pdc

α1 − α2
(e

−α1
α1−α2

ln α1
α2 − e

−α2
α1−α2

ln α1
α2 ) (15)

∆vdc(tre) = 0.1∆vdm =
Kplb∆Pdc

α1 − α2
(e−α1tre − e−α2tre) (16)

The parameters α1 and α2 are first solved from (15) and (16), then the PI controller
parameters are obtained using (12) as follows:

KPv =
α1 + α2 − a

bKv
= 2.69, KIv =

α1α2

bKv
= 15.2 (17)

The correctness of the quantitatively designed controller has been checked by simula-
tion result (not shown here).
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The measured vdc due to a step load power change ∆Pdc = 533 W by the quanti-
tatively designed controller is shown in Figure 9b, which verifies the correctness of the
designed controller.

(b) Voltage robust error cancellation controller
In the VRECC shown in Figure 8a, the robust control weighting function is expressed

as follows:
Wv(s) =

Wv

1 + τvs
, 0 ≤ Wv < 1 (18)

By adding the VRECC, the tracking error εv by PI control can only be reduced by a fac-
tor of (1 − Wv(s)) ≈ (1 − Wv) as depicted in Figure 8b. Taking into account compromised
considerations in control performance, magnified control effort, and system noise effects,
the weighting factor Wv = 0.6 is set.

3.2.5. MPPT Control Scheme

The perturb and observe (P&O) approach shown in Figure 10 is applied to conduct the
MPPT control. As indicated in Figure 6, the modulation voltage vm is used as the control
variable according to the changes in PV array output power Ppv and PV voltage vpv. The
MPPT algorithms can be divided into five cases: (i) Case 1: If the power Ppv is increased
and the PV voltage vpv is decreased, then ∆vm > 0; (ii) Case 2: If Ppv is decreased and vpv is
decreased, then ∆vm < 0; (iii) Case 3: If Ppv is increased and vpv is increased, then ∆vm < 0;
(iv) Case 4: If Ppv is decreased and vpv is increased, then ∆vm > 0. (v) Case 5: If Ppv is
unchanged, then ∆vm = 0.
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Figure 10. Directionality judgment of ∆vm for the MPPT algorithm.

3.2.6. Measured Results

(a) PV MPPT operations
The switch in Figure 6 is placed at position “M”, and the FC is disabled for testing the

PV MPPT operation. A load resistor Rdc = 150 Ω is connected to the DC microgrid DC-bus.
Let the irradiance be changed from 400 W/m2 to 1000 W/m2 in four steps. The measured
results are shown in Figure 11. The successful MPPT operations with the tracked powers
and voltages being close to the emulated P-V curves depicted in Figure 3 can be observed.
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(b) Robust voltage regulation control
The switch in Figure 6 is placed at position “M”, and the FC is actuated. First, the PV

is operated in MPPT mode under the irradiance of 400 W/m2 with Rdc = 300 Ω. The DC
bus is maintained at Vdc = 400V through FC support. Let the step load resistance change
be applied Rdc = 300 Ω → 150 Ω . The measured results by PI control without (Wv = 0)
and with robust control (Wv = 0.6) are shown in Figure 12. The results indicate that good
voltage regulation responses are obtained, and a better response is obtained by adding
robust control.
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Figure 12. Measured results due to a step load resistance change Rdc = 300 Ω → 150 Ω with and
without robust control.

(c) PV MPPT operation with fuel cell energy support
The switch in Figure 6 is at position “M” for PV MPPT operation, and Rdc = 200 Ω

((Pdc = 800 W) > Ppv) and vdc = 400 V are set. Figure 13 shows the measured results due
to a step irradiance change of 400 W/m2 → 600 W/m2 . From the results, it is found that
the PV can always be operated at the maximum power point and the DC bus can be stably
maintained at 400 V by the FC energy support.
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4. Grid-Connected Inverter

As indicated in Figure 2, the microgrid is connected to the utility grid via the 3P3W
NPC inverter. The possible operation modes include microgrid-to-grid (M2G), grid-to-
microgrid (G2M), and microgrid-to-home (M2H). As the PV/FC main sources and the
BESS stored energy are deficient, the microgrid can support energy from the utility grid.
The major system parameters are summarized below.

4.1. Power Circuit

• Output AC line rms voltage: 220 V/60 Hz.
• Switching frequency: fs = 30 kHz.
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• Power devices: The IGBT module SK30MLI066 (600 V, 30 A) by Semikron Corp.,
Nuremberg, Germany.

• Output filter: (i) capacitors: Ca = Cb = Cc = 10 µF; (ii) inductors: measured induc-
tances at 60 Hz are LA = 2.048 mH, LB = 2.093 mH and LC = 2.093 mH.

• Current and voltage sensing factors: Ki = 0.05 V/A. Kv = 0.0025 V/V.

4.2. Control Scheme

The control scheme of the developed 3P3W inverter is shown in Figure 14. It mainly
consists of phase-locked-loop (PLL) mechanism, droop control scheme, voltage-loop, and
current-loop with RC-CCPWM scheme. The inverter is synchronously connected to the
three-phase AC mains via the PLL mechanism. The designed controllers are listed below:

• PLL mechanism:

G pll(s) = 9.72 +
2750

s
(19)

• PI current feedback controller:

Gci(s) = 2.5 +
300

s
(20)

• PI voltage controller in M2H mode:

G cv(s) = 0.5 +
300

s
(21)

• Droop control scheme in M2G/G2M operations: As indicated in Figure 14, the
q-axis current command based on droop control varies from −8 A to 8 A within
380 V ≤ vdc ≤ 420 V.
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Figure 14. Control scheme of the developed 3P3W NPC inverter.

5. Energy Storage System

The equipped hybrid energy storage system shown in Figure 1 consists of a PMSM-
driven flywheel and a battery bank, they are respectively connected to the system DC bus
via a 3L bidirectional NPC inverter and a boost-buck DC-DC converter. The development
of the two storage systems and their coordinated control are introduced below.

5.1. PMSM-Driven Flywheel System
5.1.1. Power Circuit

(a) Flywheel
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The photo and dimensions of the manufactured PMSM-driven flywheel system are
shown in Figure 15. The key components are: (i) Moment of inertia J = 0.9263 kg·m2;
(ii) PMSM: It is rated as: 8-pole, 2000 rpm, 2 kW, 9.8 N·m. The key motor parameters are
Rs = 0.84 Ω, λ′

m = 0.146 Wb, d-axis inductance Ld = 1.25mH, q-axis inductance
Lq = 1.3mH. Hence, it belongs to SPMSM with the assumed average Ls = (Ld + Lq)/2 =
1.28 mH.
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Figure 15. Photo and dimensions of the manufactured PMSM-driven flywheel.

(b) Power devices
The IGBT module SK30MLI066 by Semikron Corp. is employed to form the developed

3L NPC inverter.

5.1.2. Control Schemes

Figure 16a shows the charging and discharging control schemes of the NPC inverter-
fed PMSM-driven flywheel system. In charging mode, the flywheel is accelerated by using
microgrid power through the NPC inverter operated in speed control mode. Conversely,
the flywheel is discharged via the same inverter operated in SMR mode. The proposed
current control scheme with the PMSM dynamic model under charging mode is shown in
Figure 16b. In addition to the feedback controllers Gcq(s) and Gcd(s), the cross-coupling
controllers G f q(s) and G f d(s) are designed to eliminate the inherent back-EMF cross cou-
pling effects of PMSM. By using Ld = Lq = Ls for SPMSM, through careful derivation,
one can find that the ideal decoupling control can be achieved by setting the feedforward
decoupling controllers as:

G f q(s) =
ωrLs

Rs + Lqs
Gcq(s) (22)

G f d(s) =
ωrLs

Rs + Lds
Gcd(s) (23)
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scheme; (b) current control scheme; (c) decoupled q-axis current control scheme.
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Accordingly, the decoupling feedback control can be made on the q- and d-axes. The
q- and d-axis current feedback controllers are set to be identical Gcq(s) = Gcd(s) = Gci(s).
Taking q-axis as a design example, the simplified black diagram is depicted in Figure 16c.
The feedback controller is chosen to be of the PI type:

G ci(s) = K Pi +
K Ii

s
(24)

The PWM conversion constant and current sensing factor are set at KPWM = 200 and
Ki = 0.04 V/A.

The desired closed-loop current tracking response is designed by a first-order process
with a time constant τi ( τi = 1/(2 π2000) s is set here):

Hdi(s) =
1

1 + τis
(25)

From Figure 16c, one can derive the PI controller parameters KPi and KIi to be:

K Pi =
Ls

τiKPWMKi
= 2.011 (26)

KIi =
Rs

τiKPWMKi
= 1319 (27)

The two-level carriers vp
carrier and vn

carrier are used in realizing the NPC inverter
PWM scheme.

5.2. Battery Energy Storage System
5.2.1. Power Circuit

The designed circuit components are listed below:

• Lead-acid battery bank: Vb = 96 V, 14 Ah (1344 wh).
• Energy storage inductor: Lb = 978 µH/30kHz
• Filtering capacitors: Cb = 4700 µF/250 V.
• Switching frequency: fs = 30 kHz.
• Current and voltage sensing factors: Ki = 0.04 V/A, Kv = 0.004 V/V.
• Power devices: The power MOSFET IXFN160N30T (VDSS = 300 V, ID = 130 A) by

IXYS Corporation.

5.2.2. Control Scheme

The proposed control scheme of BESS with a 3L boost-buck converter is shown
in Figure 17. The plant dynamic model derived using the state-averaging technique is
as follows:

Hp(s) ∆
∆i′b(s)
∆D(s)

= Ki
(RdcCdcs + 1.5)Vdc

2RdcCdcLbs2 + Lbs + (1 − D)2Rdc
(28)
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The current loop in discharging mode is designed as follows: at the operating point
(Vdc = 400 V, D = 0.76, Rdc = 160 Ω), through computer simulation aided design, the PI
current controller Gci(s) is designed to let the closed-loop current tracking transfer function
have the crossover frequency fc = 1.5kHz with phase margin PM = 90◦.

Gci(s) = KPi +
KIi
s

= 1.2 +
100

s
(29)

5.3. Droop Control Scheme and Measured Results
5.3.1. Battery/Flywheel Droop Control Scheme

The droop control method is applied to handle the current sharing problems between
the energy type BESS and the power type FW. The current commands of the BESS i∗b and
the FW system i∗qw are generated based on the algorithms depicted in Figure 18a,b. Taking
BESS as an example, the current command i∗b yielded based on droop control varies from
−5 A to 5 A within 380 V ≤ vdc ≤ 420 V as indicated in Figure 18a.
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5.3.2. Measured Results

Figure 19 shows the measured results of the developed BESS/FW hybrid storage
system operating characteristics. The boundary conditions are arranged as follows: the
test loads are set to be Za = Zb = Zc = 484 Ω (100 W), the PV/FC source system, which is
operated in MPPT mode, and the PV is set at 600 W/m2.
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The preset operating scenario lies in: (1) PV supplies power to the load and charges
to accelerate the flywheel. The surplus PV energy is used to charge the battery through
the droop algorithm; (2) as the PV energy is insufficient, the battery is idled, and the FC
discharges to support energy to supply the load and continuously accelerate the flywheel
until the rated speed is reached; (3) the PV and FC are removed. The flywheel and battery
power the load simultaneously, according to the droop algorithms. As the flywheel stored
energy is exhausted, the battery remains to supply the uninterruptable power to the load.
Normal operation can be determined from the results.

6. Integrated Operation of EVs

The total energy utilization may be further increased by considering the EV as movable
energy storage to conduct its integrated operation on the developed airport microgrid. As
shown in Figure 2, this task is fulfilled by a 3L CLLC resonant converter. The isolated DC
voltage source is converted from the common DC-bus and used to perform EV off-board
DC fast charging or on-board normal charging. In addition to this microgrid-to-vehicle
(M2V) operation, the converse V2M operation is also applicable thanks to the bidirectional
CLLC converter.

Figure 20a shows the related power circuit in this application. The control schemes of
the EV battery system and CLLC converter are depicted in Figure 20b,c.
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Figure 20. System configuration of the developed airport microgrid under M2V operation: (a) power
circuit; (b) control scheme of the EV battery front-end bidirectional DC/DC converter; (c) control
scheme of the CLLC resonant converter.

6.1. EV Battery System
6.1.1. Power Circuit

The available EV power control unit is employed here for an experimental study.
The system components of the battery bank and its bidirectional converter formed by
(Mh, Mg, Lv) are summarized below:

• Battery bank: Veb = 156 V, 2 serially connected cells (UC Battery PS40138, 72 V–30 Ah).
• Bidirectional converter: It is constructed using the IGBT module CM100DY-12H

(VCES = 600 V, 100 A) by Mitsubishi Company, Tokyo, Japan.
• Energy storage inductors: Lv = 1.69 mH/25 kHz .
• Filter capacitor: Ch = Cv = 2200 µF/450 V.
• Switching frequency: fs = 25 kHz.
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6.1.2. Control Scheme

The arranged V2M/M2V control scheme is shown in Figure 20b. The designed
controllers are listed as follows:

(a) Charging mode
The EV battery is initially charged in constant current mode with the command

i∗Lv = 6 A. As the battery voltage reaches 170 V, the floating charging mode is applied. The
PI voltage and current controllers are:

Gcv(s) = 5 +
25
s

, Gci(s) = 0.5 +
30
s

(30)

(b) Discharging mode
The outer voltage loop and inner current controlled PWM scheme control structure

are arranged with the following controllers:

Gcv(s) = 2.5 +
60
s

, Gci(s) = 0.5 +
30
s

(31)

6.2. Three-Level CLLC Resonant Converter

LLC and CLLC resonant converters are commonly used to construct the EV on-board
and off-board isolated chargers. If bidirectional operations are required, the CLLC converter
must be adopted. In the established microgrid, the 3L CLLC converter depicted in Figures
2 and 20a is developed to have a higher voltage rating and less voltage stress.

6.2.1. Power Circuit

In the resonant tank, only Cp and Ce are added externally. The inductances Lm and
(Lp, Le) are the transformer embedded magnetizing inductances and leakage inductances.
All parameters are summarized as follows:

• Lm = 81 µH, Lp = Le = Lr = 10.125 µH.
• Cr = Cp = Ce = 250nF
• Power switches: power MOSFET IPW65R019C7, manufactured by Infineon Company.

6.2.2. Control Scheme

(a) Frequency-modulated switching scheme
The frequency-modulated switching scheme using the controlled oscillator (VCO) is

used. The varied frequency is set as:

fc = fmax − vcont × ∆ f (32)

where fmax = 110kHz, ∆ f = 20kHz and vcont (0 ≤ vcont < 1) is the control signal gener-
ated from the voltage controller.

(a) Voltage controller
The voltage sensing factor is set to be Kv = 0.002 V/V. The voltage feedback con-

trollers of the bidirectional CLLC resonant converter in both directions shown in Figure 20c
are chosen to be identical as follows:

Gcv(s) = KPv +
KIv

s
= 1.5 +

30
s

(33)

6.2.3. Measured Results

The PV system is operated in MPPT mode, and the grid-connected inverter is activated
under droop control. The measured results of the developed airport microgrid under
microgrid-to-vehicle (M2V) are plotted in Figure 21a–c. The operating scenarios are:

1. (i) PV irradiance is 600 W/m2; (ii) the microgrid without exhausting electricity and
sends power to the grid (M2G mode, iqs > 0).
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2. (i) EV battery is start to charge with i∗Lv = 6 A; (ii) the grid and PV in microgrid
provide the charging power (G2M + M2V modes, iqs < 0).

3. (i) PV irradiance is changed from 600 W/m2 to 800 W/m2; (ii) the power supplied
from the grid is reduced (G2M + M2V modes).

Normal operation and good performance of the developed microgrid in M2V mode
can be verified from the results.
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Figure 21. Measured results of the airport microgrid under M2G, G2M, and M2V operations:
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7. Integrated Operation of MEA

The landed aircraft can perform its integrated bidirectional operations on the airport
microgrid. As indicated in Figures 2 and 22 [40,41], the microgrid can be the alternative to
the airport ground power unit (GPU) to power the MEA on-board facilities at the common
DC-bus. The on-board common 400 Vdc bus is established by the airport microgrid using
the PV and FC sources, the energy storage systems, and the utility grid. The MEA power
architecture of 115 Vac/400 Hz AC-bus and 270 Vdc DC-bus is respectively established by
the three-phase inverter and the DC-DC converter. In addition, a high-performance SRM
drive with an asymmetrical bridge converter is powered by the 400 V common DC-bus.

The power circuits and control schemes of these three power stages are introduced
below.

7.1. 270 Vdc Converter
7.1.1. Power Circuit

• Input voltage: Vdc = 400 V.
• Output voltage: Vd = 270 V.
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• Switching frequency: fs = 50 kHz.
• Energy storage inductor: Ld = 859.70 µH/50 kHz.
• Output filtering capacitor: Cd = 1000 µF/400 V.

Aerospace 2024, 11, x FOR PEER REVIEW 21 of 30 
 

 

 

Figure 22. System configuration of the developed airport microgrid under MEA interconnected 

M2A operation. 

The power circuits and control schemes of these three power stages are introduced 

below. 

7.1. 270 Vdc Converter 

7.1.1. Power Circuit 

• Input voltage: 400VdcV = . 

• Output voltage: 270VdV = . 

• Switching frequency: 50kHzsf = . 

• Energy storage inductor: 859.70μH/50kHz dL = . 

• Output filtering capacitor: 1000μF/400V dC = . 

7.1.2. Control Scheme 

The control scheme depicted in Figure 23a consists of a feedback controller and a 

command feedforward controller. The designed controllers are: 

(a) PI voltage feedback controller 

ss

K
KsG Iv

Pvcv
25

1)( +=+=  (34) 

(b) Voltage command feedforward controller 

The feedforward control signal cfv  is generated as: 

*)
1

( d
PWMvd

cf v
KK

v =  (35) 

where the voltage sensing-gain is V/V0033.0=vdK  and .400=PWMK  

 

dcv

dT
dD

dLLdi

atv

btv

ctv

115Vac
400Hz

dC

270Vdc

dv

400Vdc 400Hz inverterSMR

r

dcv

28Vdc

DC

DC

HVDC
loads

Battery

DC-DC converter

DC

DC

LVDC
loads

N 

a

b

Nav 

LP
LR

LR

LR

N

c

abtv

nC

bti

cti

ati

bctv

boi

coi

aoi

Load

nL

Aircraft power
architecture 

Gas turbine

nL

nL

nC nC

1Q

2Q

3Q

4Q

5Q

6Q

Microgrid
DC-bus

AC

DCSG

SMR

r

Gas turbine

AC

DCSG

dR

di

1D
1Q 7Q5Q

2Q

3Q

4Q 8Q
6Q

SRM

AL BL CL DL

Flywheel

3D 5D 7D

8D6D4D2D

SRM drive

Ai Bi Ci Di

BESS

Load

LR

r
ZBA ,,

EC

gP

PMSG

LP

Figure 22. System configuration of the developed airport microgrid under MEA interconnected
M2A operation.

7.1.2. Control Scheme

The control scheme depicted in Figure 23a consists of a feedback controller and a
command feedforward controller. The designed controllers are:

(a) PI voltage feedback controller

Gcv(s) = KPv +
KIv

s
= 1 +

25
s

(34)

(b) Voltage command feedforward controller
The feedforward control signal vc f is generated as:

vc f = (
1

KvdKPWM
)v∗d (35)

where the voltage sensing-gain is Kvd = 0.0033 V/V and KPWM = 400.

7.2. 115 V/400 Hz High-Frequency Inverter
7.2.1. Power Circuit

The inverter system parameters are listed as follows:

• Three-phase HFAC bus voltage: Phase rms voltage VaN = 115 V/400 Hz.
• PWM switching frequency: fs = 20 kHz.
• Current and voltage sensing factors: Ki = 0.02 V/A. Kv = 0.002 V/V.
• Output filters: Ln = 2.75 mH and Cn = 3.3 µF.
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Figure 23. Control schemes of the developed airport microgrid under MEA interconnected M2A
GPU operation: (a) 270 Vdc converter; (b) 115 V/400 Hz high-frequency inverter.

7.2.2. Control Schemes

In the control scheme shown in Figure 23b, to provide the three-phase 115 V/400 Hz
output AC voltage, the d-q voltage commands (v∗qe = 115

√
2 = 162.64 V, v∗de = 0) and the

argument θinv = 2π400t of sinewave are set. The designed controllers are listed below:
(a) PI current control scheme

Gcbi(s) = KPi +
KIi
s

= 2.5 +
62.5

s
(36)

(b) PI voltage control scheme

Gcbv(s) = KPv +
KIv

s
= 2 +

10
s

(37)

7.3. Switched-Reluctance Motor Drive
7.3.1. Power Circuit

The constituent components of the established SRM drive are summarized below:

• SRM: four-phase, 8/6 teeth, 400 V, 4 kW, 1500 rpm (TASC Drives Ltd., UK). The
measured winding inductance profile and the arranged commutation mechanisms are
shown in Figure 24.

• PMSG: three-phase, 24 A, 4.5 kW, 2000 rpm.
• Dynamic load: rectifier with load resistance RL.
• Flywheel: J = 0.018451 kg · m2.
• Asymmetrical bridge converter: It is constructed by two IGBT modules, CM100RL-

12NF (Mitsubishi).

7.3.2. Control Scheme

Figure 24 shows the control scheme of the developed the SRM drive. It possesses an
outer speed loop and an inner current loop [40]. In addition, the commutation scheme with
proper shifts for motor and generator modes is also arranged. The designed controllers are
described below.

(a) Current control scheme
The current feedback controller is chosen as the PI-type. In the design process [37],

the upper limit of P-gain is first estimated using the large-signal stability criterion. Then, a
suitable value of P-gain is chosen, and the I-gain is set to yield:

Gci(s) = KPi +
KIi
s

= 2.5 +
4000

s
(38)
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The robust current tracking error cancellation controller (RCECC) presented in [37] is
modified to let the winding current tracking response be enhanced at higher speeds. The
speed-dependent robust control weighting function is set as:

Wi(s) =
Wi(ωr)
1+τis

, τi = (2π × 1600)−1

0 < Wi(ωr) ≤ 0.6 forωr = 500 ∼ 1500rpm
(39)

(b) Commutation shifting scheme
In motoring mode, the commutation advanced shift with an equivalent field-weakening

effect is made to improve current tracking performance. The dynamic commutation tuning
(DCT) scheme [37,41] as shown in Figure 24, is applied to conduct the commutation shift.

In conducting the regenerative braking, as shown in Figure 24, the commutation angle
is shifted backward by βg = −22.4◦ to let the phase winding current be placed under the
negative inductance slope region.

(c) Speed control scheme
The PI feedback speed controller is designed as:

Gcω(s) = 13.06 +
27.83

s
(40)

In addition, the robust speed tracking error cancellation controller (RSECC) is added.
The robust control weighting function Wω(s) = 0.3 is set.
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7.4. Measured Results
7.4.1. MEA Major AC Bus and DC Bus

The following conditions are set for the experimental test: (i) the microgrid fuel cell is
operated in constant voltage (400 V) mode, and the output maximum power is limited to
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1.6 kW; (ii) the microgrid grid-connected inverter is operated under G2M mode with droop
control (iqs < 0); (iii) the MEA inverter generates a three-phase 115 V/400 Hz output AC
voltage under RL = 33 Ω; (iv) the MEA DC/DC buck converter generates vd = 270 V, and
its step load change is set to be Rd = 100 Ω → 50 Ω . The measured results are plotted in
Figure 25. From the results, one can observe the following facts: (i) In accordance with the
load power changes, as the output power of the fuel cell is limited, insufficient power can
be supplied from the utility grid via a grid-connected inverter; (ii) the 270 V DC-bus and
the 115 V/400 Hz AC-bus are well regulated against the load changes.
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7.4.2. SRM Drive

(a) Regenerative braking operation
The SRM drive is stably operated at (Vdc = 400 V, RL = ∞, ωr = 1500 rpm), the

PV system is operated in MPPT mode (800 W/m2), and the BESS is activated in constant
voltage mode. Figure 26 shows the measured vdc, ω′

r, iA, (vb, ib), (vpv, ipv) due to a ramp
speed command change with a deceleration rate of 3500 rpm/s. The voltage rise in vdc, the
negative value of ib, and the increased battery voltage verify the successful regenerative
braking operation.
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Figure 26. Measured results of the SRM drive when (ωr = 1500rpm, RL = ∞) operated in regenera-
tive braking mode with a braking rate of 3500 rpm/s.

(b) SRM driving with an energy buffer
In order to evaluate the effects of the energy storage buffer on the SRM drive, the motor

is operated with an 0 → 1500 rpm → −1500 rpm → 0 with acceleration/deceleration rate
of 500 rpms/s at RL = 31 Ω. In addition, the measured (vdc, ω′

r, iA, (vb, ib), (vpv, ipv)) of
the developed SRM drive with energy storage buffer are plotted in Figure 27. The operating
scenarios are:

1. (i) The SRM drive does not work; (ii) PV irradiance is 800 W/m2; (iii) the microgrid
does not exhaust electricity and sends power to the BESS (ib < 0).

2. (i) The SRM drive is operated from 0 → 1500rpm; (ii) the BESS (ib > 0) and PV
(800 W/m2) in the microgrid provide the power to the SRM drive.

3. (i) The SRM drive is operated from 1500 rpm →0; (ii) the BESS (ib > 0) and PV
(800 W/m2) in the microgrid continuously provide power to the SRM drive.

Reversible operation: The SRM drive is operated from 0→−1500rpm→0. The scenario
descriptions made above are repeated.
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r, iA, (vb, ib), (vpv, ipv)) of the SRM drive at (v∗dc = 400 V, RL = 31 Ω)

due to ramp speed command change of ωr = 0 → 1500 rpm → −1500 rpm → 0 with both rising
rate and falling rate of 500 rpm/s.

8. Conclusions

This paper presents an experimental airport bipolar DC microgrid powered by the
main sources of PV and fuel cells. Due to the terrain limitations and safety reasons,
renewable PV is chosen. Its unstable generation is supplemented by the zero-emission
potential of the new energy source, FC. In addition, the bipolar DC-bus is adopted owing
to its fault-tolerant capability. Each DC source is interfaced to the common DC bus via a 3L
boost converter. Good current and voltage dynamic responses are obtained, respectively,
by the developed OCC and robust control approaches. Satisfactory power sharing control
is achieved by the PV MPPT with FC energy support approach.

A hybrid energy storage system consisting of an energy-type battery and a power-type
flywheel with 3L bidirectional interface converters has been established. The proposed
droop control is applied to yield good current-sharing characteristics between the two
different types of energy storage devices. A dump load is equipped at the DC-link to
avoid overvoltage.

For grid-connected operation and local load powering, a 3L NPC inverter is estab-
lished. The grid-connected airport microgrid can further ensure its power supply reliability
as the energy supply is deficient. The extensive measured results have verified that success-
fully coordinated operations between the microgrid input sources and the utility grid are
achieved with satisfactory performance by the developed droop approach.

In addition, the innovative integrated operations of EV and MEA on the microgrid
were conducted and evaluated experimentally. The movable energy storage application
of EVs with M2V/V2M functions is achieved. The total energy utilization can be further
enhanced. As to the landed aircraft, the developed microgrid possesses the GPU functions
to power the MEA on-board facilities. The operating characteristics of the 270 V DC-
bus, the 115 V/400 Hz AC-bus, and the SRM drive powered by the established airport
microgrid have been demonstrated experimentally employing an available MEA power
architecture. The incorporation of EV and MEA into the developed airport microgrid
expresses its uniqueness, which is different from the conventional microgrid and can be
a reference under development. Although the presented experimental airport microgrid
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is a scale-down prototype established in an academic research laboratory, the presented
design procedures for power circuits and control schemes are unified. All the three-level
converters adopted are suited for constructing large power microgrids. The improved
coordinated controls between multiple sources, energy storage devices, the utility grid,
EVs, and MEA are suggested to be further explored.
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