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Abstract: Electrical power grids are changing with a focus on ensuring energy sustainability and
enhanced power quality for all sectors. Over the last few decades, there has been a change from
a centralized to a decentralized paradigm, which is the consequence of a large-scale incorporation
of new electrical technologies and resultant equipment. Considering the foreseeable continuation
of changes in electrical power grids, a direction rooted in power electronics with a focus on hybrid
AC/DC grids, including the support of solid-state transformers and unified systems, is presented
in this paper. Converging on hybrid AC/DC grids, DC grids (structured as unipolar and bipolar)
and coupled and decoupled AC configurations are analyzed. On the other hand, in the context
of solid-state transformers, feasible structures are analyzed, including the establishment of hybrid
AC/DC grids, and the assessment of gains for boosting power quality is presented. Unified power
electronics systems are also of fundamental importance when contextualized within the framework of
future power grids, presenting higher efficiency, lower power stages, and the possibility of multiple
operations to support the main AC grid. In this paper, such subjects are discussed and contextualized
within the framework of future power grids, encompassing highly important and modern structures
and their associated challenges. Various situations are characterized, revealing a gradual integration
of the cited technologies for future power grids, which are also known as smart grids.

Keywords: future power grids; hybrid AC/DC grids; smart grids; solid-state transformer; power
quality; power electronics

1. Electrical Power Grids

With the aim of ensuring worldwide access to electrical energy, power grids are in a
state of constant evolution in different areas of actuation, including the sectors of produc-
tion, transport, and distribution. This evolution has been more evident over the last few
decades. Despite initial efforts to design distributed power grids, the fact is that centralized
power grids achieved predominance [1]. Since the beginning, and along with the natural
evolution of power grids, real-time stability in the production and consumption stages was
always viewed as a priority. In this sense, during various decades, efforts were focused on
controllability, reliability, reduced costs, and efficiency; however, sophisticated technologies
are emerging for a sustainable and resilient future of power grids [2]. Moreover, various
technologies have appeared and are assuming predominance, promoting a set of pertinent
synergies among diverse areas [3]. A review on multilevel power management systems
for future power grids is presented in [4], wherein benefits, drawbacks, challenges, and
limitations are discussed. A forthcoming concept of power grids that includes a large-scale
integration of distributed energy resources, ensuring autonomy and controllability in the
production and consumption stages, is analyzed in [5]. The importance of blockchains,
machine learning, and deep learning technologies for future power grids is presented in [6–8],
demonstrating the importance of subjects such as security, cyber-physical attacks, and
defense approaches. These concerns are interconnected with power grid management, and
from a certain point of view, should be considered a priority since radical changes concern-
ing the large-scale incorporation of technologies in power grids are sought (concerning,

Energies 2023, 16, 4929. https://doi.org/10.3390/en16134929 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16134929
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6640-8955
https://orcid.org/0000-0001-9195-1239
https://doi.org/10.3390/en16134929
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16134929?type=check_update&version=1


Energies 2023, 16, 4929 2 of 10

e.g., electric mobility, renewables, controllable electronic loads, and storage systems) [9].
Therefore, the transformation of power grids is a dynamic process that is expected to
be heavily invested in over the next few decades to support the growing penetration of
modern technologies. Indeed, the transformation from centralized to decentralized pro-
duction is now underway, which is identified as a new and significant radical change
in power grids [10]. Together with such changes, there is also an ongoing revolution
in terms of power flow, with bidirectional operation being increasing utilized to realize
modern solutions, not only regarding management, but also in terms of power electronics
systems [11,12]. Specifically, a perspective on the use of power electronics to facilitate
the incorporation of renewables is presented in [13]. A review on power grid solutions,
infrastructure, and challenges for the comprehensive integration of renewables in offshore
conditions is presented in [14]. Such topics will be extensively explored in the follow-
ing decades, and highly successful attempts to manage the progress of power electronics
technologies are found in [15–17]. From this scenario of constant evolution to deliver
more intelligent power grids arise the commonly designated “smart grids” and, moreover,
so-called “future smart grids” are also experiencing notoriety. In such a context, final
users are assuming active participation, offering new perspectives for the power grid
in terms of consumption, storage, and supply, which is a paradigm generally classified
as “prosumers” [18].

With the integration of more and more technologies, power grids are moving from
a centralized to a decentralized approach. In this context, microgrids are also gaining
predominance, permitting the incorporation of local distribution systems with production,
storage systems, and controlled loads. Moreover, microgrids also offer the possibility
of operating with a coordinated and controlled approach, so they can operate via being
linked to the main power grid or, on the contrary, they can operate independently, ensuring
fully autonomous operation [19,20]. An analysis concerning microgrids is offered in [21],
highlighting robustness, resilience, and energy efficiency, as well as opportunities and
challenges. A wide-ranging analysis of power electronics algorithms and control plans for
AC/DC microgrids is given in [22]. Based on this perspective, specific control approaches
and synchronization methods also presume a pertinent dominance for various purposes,
including remote microgrid synchronization [23], adaptive methods of synchronization [24],
and sophisticated synchronization controllers among power converters [25]. Thanks to new
power electronics technologies, conventional substations are also changing, along with
upcoming DC power grids. An evaluation of multilevel converters designed for grid-tied
systems is presented in [26], demonstrating the crucial contribution of power electronics.

Figure 1 presents a set of technologies that will be available in future power grids,
highlighting the interface maintained by hybrid AC/DC power grids, which are established
by solid-state transformers (SSTs). The emphasized technologies are categorized into
groups, including renewables (e.g., solar PV panels and wind turbine technologies) in
onshore and offshore conditions, energy storage systems, electric mobility (e.g., on-board
and off-board chargers allowing bidirectional operation controlled by the user and grid
management technology), hydroelectric systems, and factories and homes (conventional
and smart factories and homes). Numerous papers focusing on hybrid AC/DC power
grids, as well as the role of the SST, are available in the current literature; nonetheless, a
comprehensive paper concentrating on the definitive role of future power grids is missing.
The most relevant references available in the literature are appropriately described and
referenced in this paper, wherein a context for future power grids is presented.
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This perspective paper has as its central contribution the depiction of a direction rooted
in power electronics for future power grids, fundamentally concentrating on a direction
supported by hybrid AC/DC grids and SSTs. Throughout the paper, such technologies
are contextualized individually regarding their role in future power grids and concerning
the relationship between them. Section 2 describes the relevance of hybrid AC/DC power
grids, including key challenges and design structures. Section 3 introduces the applicability
of SSTs for establishing hybrid AC/DC power grids, showing their definite value in the
context of future power grids. Section 4 presents the importance and contextualization
of unified power electronics systems with multiple operations for future power grids,
permitting their optimization in terms of functionalities, while reducing the number of
power converters, namely AC-DC. Section 5 summarizes the main conclusions.
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2. Hybrid AC/DC Power Grids

As an alternative to the traditional AC grids, new power grids based on DC are
emerging, presenting important challenges and opportunities. AC grids date back to
the 19th century, as evidenced by the debate between Edison and Tesla/Westinghouse.
Thanks to the use of power transformers, which simplify changes in voltage levels, AC
grids succeeded, facilitating power transmission and distribution. This advantage still
prevails, since most electrical equipment is designed to operate in AC. Nevertheless,
considering the technological innovations in power electronics, and that nowadays several
technologies function in DC, DC grids are expected to continue to gain preponderance.
Technologies such as renewables (mainly supported by solar PV), energy storage systems
(principally supported by batteries), and electric mobility systems require a DC interface;
therefore, DC grids are a viable solution for establishing a direct connection. DC grids are a
feasible solution, mainly due to that fact that (i) solar PV is progressively present in diverse
sectors; (ii) batteries are frequently employed as storage applications; (iii) lighting systems
are generally based on LED technologies; (iv) electric mobility systems use batteries as
storage systems; (v) power quality problems are alleviated; (vi) the power stages based
on power electronics are radically diminished; (vii) passive AC-DC rectifiers are removed;
(viii) control systems are simpler; (ix) DC grids can operate independently of the AC
grid. However, a drastic move from AC to DC grids is not possible; consequently, the
integration of AC and DC grids is welcome. This has been accomplished for various
circumstances, being labeled as “hybrid AC/DC grids”. A review of power electronics
converters committed to meeting the demands of DC grids is provided in [27]. In summary,
the benefits of hybrid AC/DC grids are obvious and indisputable, and they can also
perform an essential role in the residential sector (e.g., smart homes); thus, their role in
future power grids is evident [28]. Worldwide, various projects involving hybrid AC/DC
grids have been completed or are ongoing, indicating the significant attention they will
receive in the coming decades. Notwithstanding the benefits of DC grids and the quick
transformation to a new system, there are still challenges caused by DC grids, mainly due
to their standardization, grid codes, and protection procedures.

Regarding possible structures of DC grids, the two main possibilities are identified
as follows: unipolar and bipolar. The bipolar structure requires three wires and is more
complex, with regard to both control and hardware, but presents the possibility of an oper-
ation based on three voltage levels, which is relevant to the assimilation of DC technologies
natively operating with distinct voltage levels. Additionally, if a malfunction occurs in
one wire, it is possible to maintain the operation; likewise, a unipolar DC grid, since it is
just a part of the grid, will be affected by the malfunction. A comprehensive assessment
of promising technologies linked to bipolar DC grids is given in [29]. However, issues
related to voltage imbalances caused by imbalanced loads can occur in bipolar DC grids,
and therefore, power electronics converters are fundamental for guaranteeing balanced
power consumption, ensuring the bipolar DC grid’s stability.

The configuration of a hybrid AC/DC grid needs to be designed to accomplish crucial
attributes, with consideration of the linked technologies. Figure 2 displays a configuration
of a hybrid AC/DC grid. Concerning the structure of hybrid AC/DC grids, the principal
difference is whether the grid is AC-coupled or AC-decoupled. Considering the example
of a coupled AC, a transformer is used to link the main AC grid to the AC grid internally,
which is performed by the hybrid AC/DC grid. In this case, the utilization of power
electronics converters is imperative for forming the DC grid. Considering the example of
a decoupled AC, at a minimum, a single AC–DC and a single DC–DC power converter
are necessary. In this case, linking the AC to the AC main grid is accomplished through
AC–DC and DC–AC power stages, guaranteeing isolation in both AC and DC grids.
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3. Solid-State Transformer

Low-frequency power transformers originate from AC power grids and are still used
at the transmission and distribution level. Nevertheless, considering the increasing number
of technologies and players linked to power grids, new challenges regarding providing
precise and fast controllability are emerging. In this context, the relevance of power
electronics in consideration of growing technological requirements is obviously recognized,
bearing in mind that the opportunity offered by substituting low-frequency transformers
with SSTs is very significant, as it offers controllability and support for supplementary
services, both at the transmission and distribution levels [30]. Over the last few years,
SSTs have experienced very pertinent growth concerning topologies and applications,
demonstrating that they will form a crucial part of future power grids. Considering the
adaptability offered by the SST, the prospect of hybrid AC/DC grids being supported by
SSTs is additionally recognized in the context of future power grids. The possibility of
using an SST to generate additional features, such as hybrid AC/DC grids, demonstrates
the ability that it has for interacting with technologies based on a native DC operation. An
SST developed for forming hybrid AC/DC grids, which allows synchronized control of
power and voltage, is presented in [31]. A hybrid SST for linking MVDC and LVDC grids
is proposed in [32]. A novel modulation and control strategy for an SST designed with a
modular converter configuration is suggested in [33]. An SST for interfacing renewables
from PV panels through DC interfaces is proposed in [34]. A modular SST specially
built for EV battery-charging stations is proposed in [35]. The deployment of an SST has
been revealed to be an interesting challenge, since it requires numerous power electronics
technologies. The development and management of high-frequency converters based
on SiC power devices for the next generation of SSTs are proposed in [36]. Effective
control methodologies specifically developed for SSTs, using soft-switching approaches,
are proposed in [37]. A novel high-frequency SST design with a decreased quantity of
switching devices is shown in [38]. An SST based on matrix power electronics converters
is proposed in [39]. Regarding SSTs’ purpose in future power grids, the alignment of
relevant industrial players and market growth is highly beneficial, with a special focus on
companies like ABB, Siemens AG, and Schneider Electric SE. Furthermore, the SST market
will achieve further value in the next few decades, considering the ongoing evolution of the
SST. Comprehensive reviews detailing qualitative and quantitative analysis of traditional
solutions and SST solutions are presented in [40,41], and a framework for an SST operating
with virtual synchronous machines functionalities is presented in [42–44]. Figure 3 presents
an SST used to link high-voltage AC (HVAC) and high-voltage DC (HVDC), as well as
low-voltage AC (LVAC) and low-voltage DC (LVDC), permitting hybrid AC/DC grids to
be established.
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4. Unified Power Electronics Systems with Multiple Operations

As stated earlier, power grids are shifting toward the integration of more controlled
technologies, but other technologies can also be considered, such as power conditioners.
Thus, unified control strategies for power electronics are essential to diminish disturbances
in the power grid [45]. The mutual support among electric mobility systems and renewables
facilitates revolutionary circumstances in terms of power management, where using the
batteries of electric vehicles for controlled energy storage, and the use of such energy
when it is convenient for the grid and for the user, is recognized to be significant for
power grid sustainability and stabilization [46]. Therefore, focused control approaches
dedicated to both electric mobility and renewables are of the utmost importance, with
regard to various power profiles, the costs, and the power quality impact. Such points
of view are notorious, but on the other hand, the role of power electronics cannot be
negated, since new radical practices can be implemented in terms of hardware structure,
without jeopardizing the individual operation of electric mobility systems or renewables,
and providing new opportunities for the power grid. Hence, technologies for integrating
battery chargers and renewables specifically dedicated to such interfaces have already been
identified, allowing the integration of storage technologies and decreasing the number
of power stages in AC and DC conversion, with inherent advantages, such as reducing
costs and increasing efficiency [47,48]. In examining these vectors, we find relationships
between the AC-DC converters, allowing for the evolution of power converters toward
unified power electronics topologies with natural attributes including increased efficiency,
and reduced costs, weight, and volume. The focus on unified power electronics topologies
with multiple operation interfaces is an important topic of research for future power
grids, involving power quality enhancement [49], a direct interface of renewables to the
DC link without power converters [50], and a unified topology with multiple power
converters for optimizing each interface and compensating for all power quality problems
related with current [51]. Thus, with the focus on the future of power grids, it is expected
that unified power electronics with multiple operations will ensure a single interface
of power grids, in single-phase or three-phase connections, involving technologies of
electric mobility, renewables, and features of power quality; four-quadrant active/reactive
power operation on the AC side; unidirectional/bidirectional power operation on the
DC side, even without the AC interface (e.g., direct connection from the renewables to
the electric mobility); and power grid support through voltage/frequency services. A
diagram showing unified power electronics with multiple operations for future power
grids is illustrated in Figure 4, where Figure 4a demonstrates the shared operation of power
grids, electric vehicles, and renewables, allowing or prohibiting the improvement in power
quality; Figure 4b demonstrates the direct linkage of power grids and electric vehicles,
allowing, or prohibiting, the improvement in power quality; Figure 4c demonstrates the
direct linkage of power grids and renewables, allowing or prohibiting the improvement in
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power quality; Figure 4d demonstrates the direct linkage of electric vehicles and renewables;
Figure 4e demonstrates power quality improvement based solely on the unified system,
i.e., excluding the linkage of electric vehicles or renewables.
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5. Conclusions

New perspectives are arising as alternatives to conventional power grids gain trac-
tion, proposing attractive opportunities supported by technological innovations in power
electronics. The integration of hybrid AC/DC grids is a forthcoming contribution able to
improve flexibility and efficiency in the context of future electrical power grids, particularly
with regard to the technologies natively operating in DC. Coupling and decoupling struc-
tures in hybrid AC/DC power grids are introduced as well in this paper, demonstrating
viable alternatives to the traditional solutions, as well as the possibility of having unipolar
or bipolar DC power grids, which are solutions, respectively, based on two-wire or three-
wire systems. Additionally, considering the advances in power electronics, and aiming to
address the emergent challenges of power grids, an SST is also presented, which is a viable
solution for replacing low-frequency power transformers. SSTs can support technologies
with various benefits concerning controllability on both sides (primary and secondary), but
with additional demanding hardware and control. The contextualization of SSTs within the
framework of hybrid AC/DC grids is also presented in this paper, including perspectives
of SSTs’ ability to offer additional services, such as collaboration to produce reactive power
or selective current harmonics. As presented throughout the paper, technologies based on
unified power electronics systems will represent an asset for future power grids, offering a
reduced number of power converters and thus improving efficiency, and adding multiple
operations to strengthen the main AC grid management. Summarizing, it is feasible to
reveal the evolution of power grids toward hybrid AC/DC grids supported by an SST.
Notwithstanding the advantages, various issues should be solved for the widespread imple-
mentation of such future power grids. It cannot be foreseen when the whole transformation
will occur; however, the vital contribution of power electronics in terms of new power
devices, topologies, and control algorithms is ongoing.
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