Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution
Abstract
:1. Introduction
1.1. Optimal Power Flow for Bipolar DC Grid Analysis
1.2. Reconfiguration in Microgrids
1.3. Main Contributions
1.4. Paper Organization
2. DC BipolarMicrogrids
3. Proposed Approach
3.1. Mathematical Formulation
- , , and are the current injections at node j for all poles (p, o, and n) by the slack node (if the node is not the slack one, these current injections are null).
- , , and are the current injections at node j for all poles (p, o, and n) by the dispersed generation sources (if the node j does not contain a dispersed unit, these current injections are null). Equation (4) shows how to calculate these currents.
- , , and are the current consumption’s at node j for all poles (p, o, and n) as defined in Equation (5). If node j does not have power loads, these currents are null.
- is the current consumption of bipolar loads connected between positive and negative poles at node j. Equation (5) provides an expression to calculate this current.
- , , and are the branch currents between nodes j and k (branch ), calculated as given in Equation (6). These currents are null in two situations. The first one is in the absence of a connection between the nodes (nodes s and i in Figure 1, for instance). The second one is when nodes are interconnected but the switch is open ().
- is the current drained to the ground if the neutral wire is solidly grounded (as in the slack node in Figure 1). If the neutral wire is assumed to be floating, this current is null.
- , , and denote the current injections in each system node j (poles p, o, and n), with being the number of nodes.
3.2. Binary Variable Treatment
3.3. Individuals’ Structures
3.4. Fitness Function Calculation
3.5. Proposed Framework for Optimal Reconfiguration
4. Bipolar Test Feeders and General Parameters
4.1. System Description and Data
- The one-line diagram is presented in Figure 5, with the open branches in the base case represented by dashed lines.
- Two simulation scenarios are taken into consideration. The first scenario does not consider dispersed generators in the system, which is associated with higher losses. The second scenario considers dispersed generators allocated at different poles and nodes of the bipolar DC microgrid, as discussed in [13]. The dispersed generator’s parameters are presented in Table 4, adjusted in [13] to minimize power losses in the base case (line configuration in Figure 5).
4.2. Limits and Optimization Parameters
5. Results and Discussion
6. Conclusions
- Results for microgrids with 33 and 69 buses confirmed the benefits of the reconfiguration process for loss minimization. Reductions compared to the base case were approximately 48.22% (33-bus microgrid without DG), 2.87% (33-bus microgrid with DG), 50.90% (69-bus microgrid without DG), and 50.50% (69-bus microgrid with DG).
- For the 33-bus microgrid with DG, the reductions were smaller since this simulation considered a base case with dispersed generators whose power was also optimized for power loss minimization [13]. In this case, the gains from the reduction of losses are minimal. However, for the 69-bus with DG, the reduction was around 50.50% since the DG placement has not been carried out by an optimization approach aiming at minimizing power losses.
- The computational burden is feasible. An interesting observation for the 33-bus microgrid is that the scenario with DG converged in 0.47 min, compared to 6.14 min for the scenario without DG. This indicates better convergence of the interior point method when voltages are close to optimal values in the base case.
- The differential evolution algorithm is stochastic in nature and its performance is considered suitable when taking into account a set of simulations. However, there is room for further investigation and improvement, such as the application of other metaheuristics.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Alternating current |
BESS | Battery energy storage system |
DC | Direct current |
DE | Differential evolution |
DG | Dispersed generation |
MG | Microgrid |
OPF | Optimal power flow |
PV | Photovoltaic |
Appendix A
References
- Castro, L.M.; Ramírez-Ramos, C.; Sánchez, J.H.; Guillén, D. On the modelling of DC microgrids for steady-state power flow studies. Electr. Power Syst. Res. 2022, 207, 107868. [Google Scholar] [CrossRef]
- Fathima, H.; Prabaharan, N.; Palanisamy, K.; Kalam, A.; Mekhilef, S.; Justo, J.J. Hybrid-Renewable Energy Systems in Microgrids: Integration, Developments and Control; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar] [CrossRef]
- Fotopoulou, M.; Rakopoulos, D.; Trigkas, D.; Stergiopoulos, F.; Blanas, O.; Voutetakis, S. State of the art of low and medium voltage direct current (Dc) microgrids. Energies 2021, 14, 5595. [Google Scholar] [CrossRef]
- Elsayed, A.T.; Mohamed, A.A.; Mohammed, O.A. DC microgrids and distribution systems: An overview. Electr. Power Syst. Res. 2015, 119, 407–417. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Pires, V.F.; Pires, A.; Cordeiro, A. DC microgrids: Benefits, architectures, perspectives and challenges. Energies 2023, 16, 1217. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, E.; Chen, F.; Vasquez, J.C.; Guerrero, J.M.; Burgos, R.; Boroyevich, D. Voltage-level selection of future two-level LVdc distribution grids: A compromise between grid compatibiliy, safety, and efficiency. IEEE Electrif. Mag. 2016, 4, 20–28. [Google Scholar] [CrossRef]
- Akter, A.; Zafir, E.I.; Dana, N.H.; Joysoyal, R.; Sarker, S.K.; Li, L.; Muyeen, S.; Das, S.K.; Kamwa, I. A review on microgrid optimization with meta-heuristic techniques: Scopes, trends and recommendation. Energy Strategy Rev. 2024, 51, 101298. [Google Scholar] [CrossRef]
- Taylor, J.A.; Hover, F.S. Convex models of distribution system reconfiguration. IEEE Trans. Power Syst. 2012, 27, 1407–1413. [Google Scholar] [CrossRef]
- MacKay, L.; Guarnotta, R.; Dimou, A.; Morales-España, G.; Ramirez-Elizondo, L.; Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids. IEEE Access 2018, 6, 5199–5207. [Google Scholar] [CrossRef]
- Lee, J.O.; Kim, Y.S.; Jeon, J.H. Optimal power flow for bipolar DC microgrids. Int. J. Electr. Power Energy Syst. 2022, 142, 108375. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C. A Recursive Conic Approximation for Solving the Optimal Power Flow Problem in Bipolar Direct Current Grids. Energies 2023, 16, 1729. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation. Energies 2023, 16, 589. [Google Scholar] [CrossRef]
- Sepúlveda-García, S.; Montoya, O.D.; Garcés, A. A second-order conic approximation to solving the optimal power flow problem in bipolar DC networks while considering a high penetration of distributed energy resources. Int. J. Electr. Power Energy Syst. 2024, 155, 109516. [Google Scholar] [CrossRef]
- Chew, B.S.H.; Xu, Y.; Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach. IEEE Trans. Power Syst. 2019, 34, 28–39. [Google Scholar] [CrossRef]
- Tavakoli, S.D.; Khajesalehi, J.; Hamzeh, M.; Sheshyekani, K. Decentralised voltage balancing in bipolar dc microgrids equipped with trans-z-source interlinking converter. IET Renew. Power Gener. 2016, 10, 703–712. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Optimal Pole-Swapping in Bipolar DC Networks with Multiple CPLs Using an MIQP Model. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3564–3568. [Google Scholar] [CrossRef]
- Rosseti, G.J.; De Oliveira, E.J.; de Oliveira, L.W.; Silva, I.C., Jr.; Peres, W. Optimal allocation of distributed generation with reconfiguration in electric distribution systems. Electr. Power Syst. Res. 2013, 103, 178–183. [Google Scholar] [CrossRef]
- Thakar, S.; Vijay, A.; Doolla, S. System reconfiguration in microgrids. Sustain. Energy, Grids Netw. 2019, 17, 100191. [Google Scholar] [CrossRef]
- Qiao, Y.; Lu, Z.; Mei, S. Microgrid reconfiguration in catastrophic failure of large power systems. In Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Shariatzadeh, F.; Vellaithurai, C.B.; Biswas, S.S.; Zamora, R.; Srivastava, A.K. Real-time implementation of intelligent reconfiguration algorithm for microgrid. IEEE Trans. Sustain. Energy 2014, 5, 598–607. [Google Scholar] [CrossRef]
- Dall’Anese, E.; Giannakis, G.B. Risk-constrained microgrid reconfiguration using group sparsity. IEEE Trans. Sustain. Energy 2014, 5, 1415–1425. [Google Scholar] [CrossRef]
- Abdelaziz, M.M.A.; Farag, H.E.; El-Saadany, E.F. Optimum reconfiguration of droop-controlled islanded microgrids. IEEE Trans. Power Syst. 2015, 31, 2144–2153. [Google Scholar] [CrossRef]
- Jabbari-Sabet, R.; Moghaddas-Tafreshi, S.M.; Mirhoseini, S.S. Microgrid operation and management using probabilistic reconfiguration and unit commitment. Int. J. Electr. Power Energy Syst. 2016, 75, 328–336. [Google Scholar] [CrossRef]
- Lei, S.; Chen, C.; Song, Y.; Hou, Y. Radiality constraints for resilient reconfiguration of distribution systems: Formulation and application to microgrid formation. IEEE Trans. Smart Grid 2020, 11, 3944–3956. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Granville, S. Optimal reactive dispatch through interior point methods. IEEE Trans. Power Syst. 1994, 9, 136–146. [Google Scholar] [CrossRef]
- Oliveira, L.W.; Seta, F.S. Optimal reconfiguration of distribution systems with representation of uncertainties through interval analysis. Int. J. Electr. Power Energy Syst. 2016, 83, 382–391. [Google Scholar] [CrossRef]
- Youyun, A.; Hongqin, C. Experimental study on differential evolution strategies. In Proceedings of the 2009 WRI Global Congress on Intelligent Systems, Xiamen, China, 19–21 May 2009; Volume 2. [Google Scholar] [CrossRef]
- Baran, M.; Wu, F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734. [Google Scholar] [CrossRef]
- Foroutan, V.B.; Moradi, M.H.; Abedini, M. Optimal operation of autonomous microgrid including wind turbines. Renew. Energy 2016, 99, 315–324. [Google Scholar] [CrossRef]
System | Monopolar Positive Pole | Monopolar Negative Pole | Bipolar |
---|---|---|---|
33-bus | 2615 | 2185 | 2350 |
69-bus | 1485.4 | 1215.7 | 1101.1 |
Node j | Node k | () | (kW) | (kW) | (kW) | Switch |
---|---|---|---|---|---|---|
1 | 2 | 0.0922 | 100 | 150 | 0 | |
2 | 3 | 0.4930 | 90 | 75 | 0 | |
3 | 4 | 0.3660 | 120 | 100 | 0 | |
4 | 5 | 0.3811 | 60 | 90 | 0 | |
5 | 6 | 0.8190 | 60 | 0 | 200 | |
6 | 7 | 0.1872 | 100 | 50 | 150 | |
7 | 8 | 1.7114 | 100 | 0 | 0 | |
8 | 9 | 1.0300 | 60 | 70 | 100 | |
9 | 10 | 1.0400 | 60 | 80 | 25 | |
10 | 11 | 0.1966 | 45 | 0 | 0 | |
11 | 12 | 0.3744 | 60 | 90 | 0 | |
12 | 13 | 1.4680 | 60 | 60 | 100 | |
13 | 14 | 0.5416 | 120 | 100 | 200 | |
14 | 15 | 0.5910 | 60 | 30 | 50 | |
15 | 16 | 0.7463 | 110 | 0 | 350 | |
16 | 17 | 1.2890 | 60 | 90 | 0 | |
17 | 18 | 0.7320 | 90 | 45 | 0 | |
2 | 19 | 0.1640 | 90 | 150 | 0 | |
19 | 20 | 1.5042 | 150 | 50 | 115 | |
20 | 21 | 0.4095 | 0 | 90 | 0 | |
21 | 22 | 0.7089 | 0 | 90 | 145 | |
3 | 23 | 0.4512 | 90 | 110 | 35 | |
23 | 24 | 0.8980 | 120 | 0 | 40 | |
24 | 25 | 0.8960 | 150 | 100 | 100 | |
6 | 26 | 0.2030 | 60 | 80 | 0 | |
26 | 27 | 0.2842 | 60 | 0 | 225 | |
27 | 28 | 1.0590 | 0 | 0 | 130 | |
28 | 29 | 0.8042 | 120 | 75 | 65 | |
29 | 30 | 0.5075 | 100 | 100 | 0 | |
30 | 31 | 0.9744 | 50 | 150 | 125 | |
31 | 32 | 0.3105 | 175 | 100 | 75 | |
32 | 33 | 0.3410 | 95 | 60 | 120 |
Node j | Node k | () | Switch |
---|---|---|---|
21 | 8 | 2 | |
9 | 15 | 2 | |
22 | 12 | 2 | |
18 | 33 | 0.5000 | |
25 | 29 | 0.5000 |
Node | Generation Positive Pole (kW) | Generation Negative Pole (kW) |
---|---|---|
10 | 555.9692 | - |
12 | - | 500.8079 |
15 | 835.0393 | 623.0057 |
30 | 1013.3334 | - |
32 | - | 803.9153 |
Node j | Node k | () | (kW) | (kW) | (kW) | Switch |
---|---|---|---|---|---|---|
1 | 2 | 0.0005 | 0 | 0 | 0 | |
2 | 3 | 0.0005 | 0 | 0 | 0 | |
3 | 4 | 0.0015 | 0 | 0 | 0 | |
4 | 5 | 0.0251 | 0 | 0 | 0 | |
5 | 6 | 0.3660 | 1.3 | 1.3 | 0 | |
6 | 7 | 0.3811 | 20.2 | 20.2 | 0 | |
7 | 8 | 0.0922 | 37.5 | 37.5 | 0 | |
8 | 9 | 0.0493 | 30 | 0 | 0 | |
9 | 10 | 0.8190 | 0 | 28 | 0 | |
10 | 11 | 0.1872 | 0 | 0 | 145 | |
11 | 12 | 0.7114 | 0 | 0 | 145 | |
12 | 13 | 1.0300 | 8 | 0 | 0 | |
13 | 14 | 1.0440 | 0 | 8 | 0 | |
14 | 15 | 1.0580 | 0 | 0 | 0 | |
15 | 16 | 0.1966 | 0 | 0 | 45.5 | |
16 | 17 | 0.3744 | 60 | 0 | 0 | |
17 | 18 | 0.0047 | 0 | 60 | 0 | |
18 | 19 | 0.3276 | 0 | 0 | 0 | |
19 | 20 | 0.2106 | 1 | 0 | 0 | |
20 | 21 | 0.3416 | 57 | 57 | 0 | |
21 | 22 | 0.0140 | 0 | 5.3 | 0 | |
22 | 23 | 0.1591 | 0 | 0 | 0 | |
23 | 24 | 0.3463 | 0 | 0 | 28 | |
24 | 25 | 0.7488 | 0 | 0 | 0 | |
25 | 26 | 0.3089 | 14 | 0 | 0 | |
26 | 27 | 0.1732 | 0 | 14 | 0 | |
3 | 28 | 0.0044 | 26 | 0 | 0 | |
28 | 29 | 0.0640 | 0 | 26 | 0 | |
29 | 30 | 0.3978 | 0 | 0 | 0 | |
30 | 31 | 0.0702 | 0 | 0 | 0 | |
31 | 32 | 0.3510 | 0 | 0 | 0 | |
32 | 33 | 0.8390 | 14 | 0 | 0 | |
33 | 34 | 1.7081 | 0 | 19.5 | 0 | |
34 | 35 | 1.4740 | 6 | 0 | 0 |
Node j | Node k | () | (kW) | (kW) | (kW) | Switch |
---|---|---|---|---|---|---|
3 | 36 | 0.0044 | 26 | 0 | 0 | |
36 | 37 | 0.0640 | 0 | 26 | 0 | |
37 | 38 | 0.1053 | 0 | 0 | 0 | |
38 | 39 | 0.0304 | 24 | 0 | 0 | |
39 | 40 | 0.0018 | 0 | 24 | 0 | |
40 | 41 | 0.7283 | 1.2 | 0 | 0 | |
41 | 42 | 0.3100 | 0 | 0 | 0 | |
42 | 43 | 0.0410 | 6 | 0 | 0 | |
43 | 44 | 0.0092 | 0 | 0 | 0 | |
44 | 45 | 0.1089 | 39.22 | 0 | 0 | |
45 | 46 | 0.0009 | 0 | 39.22 | 0 | |
4 | 47 | 0.0034 | 0 | 0 | 0 | |
47 | 48 | 0.0851 | 79 | 0 | 0 | |
48 | 49 | 0.2898 | 384.7 | 0 | 0 | |
49 | 50 | 0.0822 | 0 | 384.7 | 0 | |
8 | 51 | 0.0928 | 40.5 | 0 | 0 | |
51 | 52 | 0.3319 | 3.6 | 0 | 0 | |
9 | 53 | 0.1740 | 0 | 4.35 | 0 | |
53 | 54 | 0.2030 | 0 | 0 | 26.4 | |
55 | 56 | 0.2813 | 0 | 0 | 0 | |
56 | 57 | 1.5900 | 0 | 0 | 0 | |
57 | 58 | 0.7837 | 0 | 0 | 0 | |
58 | 59 | 0.3042 | 0 | 0 | 100 | |
59 | 60 | 0.3861 | 0 | 0 | 0 | |
60 | 61 | 0.5075 | 414.67 | 414.67 | 414.67 | |
61 | 62 | 0.0974 | 32 | 0 | 0 | |
62 | 63 | 0.1450 | 0 | 0 | 0 | |
63 | 64 | 0.7105 | 113.5 | 0 | 113.5 | |
64 | 65 | 1.0410 | 0 | 0 | 59 | |
11 | 66 | 0.2012 | 18 | 0 | 0 | |
66 | 67 | 0.0047 | 0 | 18 | 0 | |
12 | 68 | 0.7394 | 28 | 0 | 0 | |
68 | 69 | 0.0047 | 0 | 28 | 0 |
Node j | Node k | () | Switch |
---|---|---|---|
11 | 43 | 0.5 | |
13 | 21 | 0.5 | |
15 | 46 | 1 | |
50 | 59 | 2 | |
27 | 65 | 1 |
Node | Generation Positive Pole (kW) | Generation Negative Pole (kW) |
---|---|---|
11 | 500 | - |
20 | - | 500 |
61 | 500 | 500 |
33-Bus (Scenario 01) | 33-Bus (Scenario 02) | 69-Bus (Scenario 01) | 69-Bus (Scenario 02) |
---|---|---|---|
6.14 | 0.47 | 4.29 | 0.90 |
33-Bus (Scenario 01) | 33-Bus (Scenario 02) | 69-Bus (Scenario 01) | 69-Bus (Scenario 02) | |
---|---|---|---|---|
Quartile 1 | 183.9619 | 28.0374 | 34.6140 | 11.1281 |
Quartile 2 | 199.7020 | 28.8781 | 35.3977 | 11.4715 |
Quartile 3 | 206.5961 | 29.8194 | 37.4434 | 12.3247 |
Bipolar DC Microgrid | Optimal Solution Open Switches (Losses) | Base Case Open Switches (Losses) |
---|---|---|
33-bus (scenario 01) | , , , , 178.3846 kW | , , , , 344.4797 kW |
33-bus (scenario 02) [13] | , , , , 27.6775 kW | , , , , 28.4942 kW |
69-bus (scenario 01) | , , , , 33.9455 kW | , , , , 69.1413 kW |
69-bus (scenario 02) | , , , , 10.7298 kW | , , , , 21.6746 kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peres, W.; Poubel, R.P.B. Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution. Energies 2024, 17, 4316. https://doi.org/10.3390/en17174316
Peres W, Poubel RPB. Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution. Energies. 2024; 17(17):4316. https://doi.org/10.3390/en17174316
Chicago/Turabian StylePeres, Wesley, and Raphael Paulo Braga Poubel. 2024. "Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution" Energies 17, no. 17: 4316. https://doi.org/10.3390/en17174316
APA StylePeres, W., & Poubel, R. P. B. (2024). Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution. Energies, 17(17), 4316. https://doi.org/10.3390/en17174316