Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (636)

Search Parameters:
Keywords = biological insecticide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3620 KiB  
Review
Baculovirus-Based Biocontrol: Synergistic and Antagonistic Interactions of PxGV, PxNPV, SeMNPV, and SfMNPV in Integrative Pest Management
by Alberto Margarito García-Munguía, Carlos Alberto García-Munguía, Paloma Lucía Guerra-Ávila, Estefany Alejandra Sánchez-Mendoza, Fabián Alejandro Rubalcava-Castillo, Argelia García-Munguía, María Reyna Robles-López, Luis Fernando Cisneros-Guzmán, María Guadalupe Martínez-Alba, Ernesto Olvera-Gonzalez, Raúl René Robles-de la Torre and Otilio García-Munguía
Viruses 2025, 17(8), 1077; https://doi.org/10.3390/v17081077 - 2 Aug 2025
Viewed by 306
Abstract
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and [...] Read more.
The use of chemical pesticides in agriculture has led to the development of resistant pest populations, posing a challenge to long-term pest management. This review aims to evaluate the scientific literature on the individual and combined use of baculoviruses with conventional chemical and biological insecticides to combat Plutella xylostella, Spodoptera exigua, and Spodoptera frugiperda in broccoli, tomato, and maize crops. Notable findings include that both individual Plutella xylostella nucleopolyhedrovirus (PxNPV) and the combination of Plutella xylostella granulovirus (PxGV) and azadirachtin at a low dose effectively control Plutella xylostella; both combinations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) with emamectin benzoate and chlorfenapyr reduced resistance in Spodoptera exigua and increased the efficacy of the insecticides; and the combination of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) and spinetoram is effective against Spodoptera frugiperda. Integrating baculoviruses into pest management strategies offers a promising approach to mitigate the adverse effects of chemical pesticides, such as resistance development, health risks, and environmental damage. However, there remains a broad spectrum of research opportunities regarding the use of baculoviruses in agriculture. Full article
Show Figures

Figure 1

14 pages, 1004 KiB  
Article
Transcriptional Analysis of Spodoptera frugiperda Sf9 Cells Infected with Daphnis nerii Cypovirus-23
by Wendong Kuang, Jian Yang, Jinchang Wang, Chenghua Yan, Junhui Chen, Xinsheng Liu, Chunhua Yang, Zhigao Zhan, Limei Guan, Jianghuai Li, Tao Deng, Feiying Yang, Guangqiang Ma and Liang Jin
Int. J. Mol. Sci. 2025, 26(15), 7487; https://doi.org/10.3390/ijms26157487 - 2 Aug 2025
Viewed by 115
Abstract
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. [...] Read more.
Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus that has a lethal effect on many species of Sphingidae pests. DnCPV-23 can replicate in Spodoptera frugiperda Sf9 cells, but the replication characteristics of the virus in this cell line are still unclear. To determine the replication characteristics of DnCPV-23 in Sf9 cells, uninfected Sf9 cells and Sf9 cells at 24 and 72 h after DnCPV-23 infection were collected for transcriptome analysis. Compared to uninfected Sf9 cells, a total of 188 and 595 differentially expressed genes (DEGs) were identified in Sf9 cells collected at 24 hpi and 72 h, respectively. KEGG analyses revealed that 139 common DEGs in two treatment groups were related to nutrition and energy metabolism-related processes, cell membrane integrity and function-related pathways, detoxification-related pathways, growth and development-related pathways, and so on. We speculated that these cellular processes might be manipulated by viruses to promote replication. This study provides an important basis for further in-depth research on the mechanism of interaction between viruses and hosts. It provides additional basic information for the future exploitation of DnCPV-23 as a biological insecticide. Full article
Show Figures

Figure 1

12 pages, 1398 KiB  
Article
Flight Phenology of Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) in Its Native Range: A Baseline for Managing an Emerging Invasive Pest
by Claudia Alzate, Eduardo Soares Calixto and Silvana V. Paula-Moraes
Insects 2025, 16(8), 779; https://doi.org/10.3390/insects16080779 - 29 Jul 2025
Viewed by 288
Abstract
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology [...] Read more.
Spodoptera eridania (Stoll, 1781) (Lepidoptera: Noctuidae) is an important pest with a broad host range and growing relevance due to its high dispersal capacity, recent invasions into Africa and Asia, and documented resistance to biological insecticides. Here, we assessed S. eridania flight phenology and seasonal dynamics in the Florida Panhandle, using pheromone trapping data to evaluate population trends and environmental drivers. Moths were collected year-round, showing consistent patterns across six consecutive years, including two distinct annual flight peaks: an early crop season flight around March, and a more prominent flight peak during September–October. Moth abundance followed a negative quadratic relationship with temperature, with peak activity occurring between 15 °C and 26 °C. No significant relationship was found with precipitation or wind. These results underscore the strong influence of abiotic factors, particularly temperature, on seasonal abundance patterns of this species. Our findings offer key insights by identifying predictable periods of high pest pressure and the environmental conditions that drive population increases. Understanding the flight phenology and behavior of this species provides an ultimate contribution to the development of effective IPM and insect resistance management (IRM) programs, promoting the development of forecasting tools for more effective, timely pest management interventions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Graphical abstract

11 pages, 315 KiB  
Article
Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu
by Geraldo Matheus de Lara Alves, Adeney de Freitas Bueno, Gabriel Siqueira Carneiro, Guilherme Julião Zocolo, Taynara Cruz dos Santos, Rafael Stempniak Iasczczaki, Letícia Carolina Chiampi Munhoz, Nicole de Oliveira Vilas Boas and Isabel Roggia
Agronomy 2025, 15(8), 1787; https://doi.org/10.3390/agronomy15081787 - 24 Jul 2025
Viewed by 362
Abstract
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides [...] Read more.
There is a global demand for reducing the adoption of traditional chemical insecticides in agriculture. Among the most promising alternatives, botanical insecticides have been increasingly gaining attention due to their efficacy combined with a more environmentally safe impact. Among the different botanical insecticides commercially available, oxymatrine is an alkaloid found in the roots of Sophora flavescens which exhibits wide insecticide activity. However, their side-effects on non-target organisms have not been extensively evaluated. Therefore, this study aimed to investigate in laboratory conditions the insecticidal potential of a commercial botanical insecticide (Matrine®) based on ethanolic extract of S. flavescens roots at 0.2; 0.6; 1.0; 1.4; 1.8; and 2.2 L of commercial product per hectare to control third-instar larvae of Rachiplusia nu and its selectivity in the egg parasitoid Trichogramma pretiosum. Overall, our results showed that the ethanolic extract of S. flavescens is an efficient tool to control R. nu from 0.6 to 2.2 L/ha, with similar R. nu mortality at 48 and 72 h after spraying (close to 100% mortality) associated with no impact to pupae and minimum impact to adults (slightly harmful) of the egg parasitoid. The botanical insecticide was classified as harmless to the pupae and slightly harmful to the adults of T. pretiosum according to the International Organization for Biological Control (IOBC) protocols. Thus, the use of the ethanolic extract of S. flavescens emerges as a relevant alternative to control R. nu, which needs to be confirmed in future field trials. Full article
(This article belongs to the Section Pest and Disease Management)
18 pages, 1984 KiB  
Review
Progress on 3-Nitropropionic Acid Derivatives
by Meng-Lin Feng, Zheng-Hui Li and Bao-Bao Shi
Biomolecules 2025, 15(8), 1066; https://doi.org/10.3390/biom15081066 - 24 Jul 2025
Viewed by 307
Abstract
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered [...] Read more.
3-Nitropropionic acid (3-NPA) is a deadly neurotoxic nitroalkane found in numerous fungi and leguminous plants. 3-NPA, known as an antimetabolite of succinate, irreversibly inhibits succinate dehydrogenase and disrupts mitochondrial oxidative phosphorylation. Its utility in modeling Huntington’s disease (HD) and oxidative stress has garnered significant research interest. Derivatives of 3-NPA, formed through esterification, have a wide range of biological activities including neurotoxic, antiviral, insecticidal, antimicrobial and antioxidant properties. This review systematically summarizes the structural characteristics, biological activities, and chemical synthesis of 3-NPA-derived compounds, providing valuable insights for further research and therapeutic applications. Full article
(This article belongs to the Special Issue Natural Products and Their Derivatives with Antiviral Activity)
Show Figures

Graphical abstract

17 pages, 985 KiB  
Review
Advances in Forensic Entomotoxicology for Decomposed Corpses: A Review
by Sen Hou, Zengjia Liu, Jiali Su, Zeyu Yang, Zhongjiang Wang, Xinyi Yao, Zhou Lyu, Yang Xia, Shuguang Zhang, Wen Cui, Yequan Wang and Lipin Ren
Insects 2025, 16(7), 744; https://doi.org/10.3390/insects16070744 - 21 Jul 2025
Viewed by 447
Abstract
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting [...] Read more.
Forensic entomotoxicology is a subdiscipline that utilizes necrophagous insects as bioindicators for detecting drugs and toxicants in decomposed remains, particularly in cases where conventional biological matrices are no longer available. Toxic substances can profoundly alter insect development, physiology, and community succession, potentially impacting the accuracy of postmortem interval (PMI) estimation. This review systematically summarizes the effects of various xenobiotics, including pesticides, illicit drugs, sedatives, heavy metals, and antibiotics on larval growth, physiological traits, and gut microbial composition in forensically relevant flies. However, most studies to date have relied primarily on phenotypic observations, with limited insight into underlying molecular mechanisms. Significant interspecies and dose-dependent variability also exists in the absorption, metabolism, and physiological responses to xenobiotics. We highlight recent advances in multi-omics technologies that facilitate the identification of molecular biomarkers associated with xenobiotic exposure, particularly within the insect detoxification system. Key components such as cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and ATP-binding cassette (ABC) transporters play essential roles in xenobiotic metabolism and insecticide resistance. Additionally, the insect fat body serves as a central hub for detoxification, hormonal regulation, and energy metabolism. It integrates signals related to xenobiotic exposure and modulates larval development, making it a promising model for future mechanistic studies in insect toxicology. Altogether, this review offers a comprehensive and reliable framework for understanding the complex interactions between toxic substance exposure, insect ecology, and decomposition in forensic investigations. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

31 pages, 1386 KiB  
Review
RNAi in Pest Control: Critical Factors Affecting dsRNA Efficacy
by Maribel Mendoza-Alatorre, Brenda Julian-Chávez, Stephanie Solano-Ornelas, Tania Samanta Siqueiros-Cendón, Jorge Ariel Torres-Castillo, Sugey Ramona Sinagawa-García, María Jazmín Abraham-Juárez, Carmen Daniela González-Barriga, Quintín Rascón-Cruz, Luis Ignacio Siañez-Estrada and Edward Alexander Espinoza-Sánchez
Insects 2025, 16(7), 737; https://doi.org/10.3390/insects16070737 - 18 Jul 2025
Viewed by 847
Abstract
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been [...] Read more.
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been proposed as a safer alternative due to its high specificity, adaptability, and low ecological footprint. So far, dsRNA has proven effective in controlling various pest species, either through topical application or via genetically modified plants. Despite advances, large-scale implementation of RNAi remains challenging due to technical and biological hurdles that contribute to inconsistent performance. Key aspects such as dsRNA design, delivery techniques, and cellular uptake mechanisms still require refinement. Additionally, ensuring environmental stability, addressing biosafety concerns, and developing cost-effective production methods are essential for its practical application. In this review, we explore recent advances in the design and implementation of dsRNA, as well as the strategies that could support the successful integration of RNAi technology into pest management programs. Full article
Show Figures

Figure 1

29 pages, 2840 KiB  
Review
Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species
by Asta Judžentienė
Molecules 2025, 30(14), 2989; https://doi.org/10.3390/molecules30142989 - 16 Jul 2025
Viewed by 339
Abstract
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various [...] Read more.
To date, various species of Erigeron genus have been used both in the ethnopharmacology of numerous nations across the world and in contemporary herbal practices. The objective of this study is to revise the phytochemical data on the essential oils (EOs) of various fleabanes species and to evaluate the variability of their biological activities. Up to June 2025, this review provides an updated overview of 105 literature sources (published during last 25 years) related to 14 Erigeron sp. (native, naturalized, or invasive) which have been investigated extensively and are of the greatest significance. It summarizes the compositional variability of the EOs and their pharmacological and toxic effects, such as anti-inflammatory, anticancer, antiproliferative, skin regeneration, antioxidant, antifungal, antibacterial, insecticidal, larvicidal, repellent, and allelopathic activity. The EOs of each Erigeron species were characterized, and a chemical structure of 43 major constituents is presented herein. The most characteristic and prevalent compounds were found to be limonene, δ-3-carene, matricaria ester, lachnophyllum ester, germacrene D, β-caryophyllene, β-farnesene, α-bergamotene, allo-aromadendrene, etc., in the EOs from the E. acris, E. annuus, E. bonariensis, E. canadensis, E. floribundus E. mucronatus, and E. speciosus plants. Major constituents, such as borneol, bornyl acetate, modhephen-8-β-ol, cis-arteannuic alcohol, β-caryophyllene, and τ-cadinol, were found in the oils of E. graveolens (Inula graveolens). A paucity of data concerning E. incanus EOs was revealed, with the prevalence of 3-hydroxy-4-methoxy cinammic acid and thymol acetate noted in the oils. The EOs from E. multiradiatus and E. sublyratus were comprised mainly of matricaria and lachnophyllum esters. The available data on EOs of E. ramosus is limited, but the main constituents are known to be α-humulene, 1,8-cineole, eugenol, and globulol. The EOs containing appreciable amounts of matricaria and lachnophyllum esters exhibited strong anticancer, anti-inflammatory, antimicrobial, larvicidal, and repellent activities. Repellence is also related to borneol, bornyl acetate, caryophyllene derivatives, τ-cadinol, modhephen-8-β-ol, and cis-arteannuic alcohol. Cytotoxicity was determined due to the presence of limonene, δ-3-carene, α- and β-farnesene, (E)-β-ocimene, ledene oxide, sesquiphellandrene, and dendrolasin in the fleabanes EOs. Skin regeneration and antifungal properties were related to germacrene D; and anti-inflammatory effects were determined due to high amounts of limonene (E)-β-ocimene, lachnophyllum ester, and germacrene D. The antimicrobial properties of the oils were conditioned by appreciable quantities of limonene, β-pinene, 1,8-cineole, carvacrol, thymol acetae, β-eudesmol, 2,6,7,7α-tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde, caryophyllene and its oxide, allo-aromadendrene, α-humulene, farnesene, carvacrol, and eugenol. This review provides a foundation for further studies on volatile secondary metabolites to explore the potential sources of new biologically active compounds in Erigeron sp. Full article
(This article belongs to the Collection Featured Reviews in Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 3641 KiB  
Article
Enhancing Biological Control of Drosophila suzukii: Efficacy of Trichopria drosophilae Releases and Interactions with a Native Parasitoid, Pachycrepoideus vindemiae
by Nuray Baser, Charbel Matar, Luca Rossini, Abir Ibn Amor, Dragana Šunjka, Dragana Bošković, Stefania Gualano and Franco Santoro
Insects 2025, 16(7), 715; https://doi.org/10.3390/insects16070715 - 11 Jul 2025
Viewed by 518
Abstract
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant [...] Read more.
The spotted wing drosophila, Drosophila suzukii is an injurious polyphagous pest threatening worldwide soft fruit production. Its high adaptability to new colonized environments, short life cycle, and wide host range are supporting its rapid spread. The most common techniques to reduce its significant economic damage are based on multiple insecticides applications per season, even prior to the harvest, which reduces agroecosystem biodiversity and affects human and animal health. Environmental concerns and regulatory restrictions on insecticide use are driving the need for studies on alternative biological control strategies. This study aimed to assess the effect of T. drosphilae in controlling D. suzukii infestations and its interaction with P. vindemiae, a secondary parasitoid naturally present in Apulia (South Italy). Field experiments were carried out in organic cherry orchards in Gioia del Colle (Bari, Italy) to test the efficacy and adaptability of T. drosphilae following weekly releases of artificially reared individuals. Additionally, the interaction between P. vindemiae and T. drosphilae was studied under laboratory conditions. Results from field experiments showed that D. suzukii populations were significantly lower when both parasitoids were present. However, T. drosophilae was less prone to adaptation, so its presence and parasitism were limited to the post-release period. Laboratory experiments, instead, confirmed the high reduction of D. suzukii populations when both parasitoids are present. However, the co-existence of the two parasitoids resulted in a reduced parasitism rate and offspring production, notably for T. drosophilae. This competitive disadvantage may explain its poor establishment in field conditions. These findings suggest that the field release of the two natural enemies should be carried out with reference to their natural population abundance to not generate competition effects. Full article
Show Figures

Figure 1

29 pages, 2090 KiB  
Review
Nematode Pheromones as Key Mediators of Behavior, Development, and Ecological Interactions
by Xi Zheng, Junjie Liu and Xin Wang
Biomolecules 2025, 15(7), 981; https://doi.org/10.3390/biom15070981 - 9 Jul 2025
Viewed by 525
Abstract
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode [...] Read more.
Plant parasitic nematodes cause huge economic losses to agriculture and forestry every year, and chemical insecticides destroy the ecological environment. Researching the mechanism by which small-molecule signaling substances regulate nematode behavior and development is important for developing environmentally friendly biological control agents. Nematode pheromones are essential chemicals signaling intraspecies and interspecies communication, regulating development, reproduction, and social behavior. Their structural diversity enables ecological adaptation and cross-kingdom interactions, influencing fungal predation and plant immunity. This review focuses on the classification, function, and regulatory mechanisms of nematode pheromones, interspecific signal transmission, and biosynthesis pathways. We pay special attention to their potential as environmentally friendly biological control agents as well as the challenges currently encountered in their application. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 1343 KiB  
Review
Nano-Enabled Insecticides for Efficient Pest Management: Definition, Classification, Synergistic Mechanism, and Safety Assessment
by Ying Wei, Jingyi Chen, Min Dong, Meizhen Yin, Jie Shen, Le Gao and Shuo Yan
Nanomaterials 2025, 15(13), 1050; https://doi.org/10.3390/nano15131050 - 6 Jul 2025
Viewed by 453
Abstract
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient [...] Read more.
The widespread use of pesticides plays a vital role in safeguarding crop yields and ensuring global food security. However, their improper application has led to serious challenges, including environmental pollution, pesticide residues, and increasing insect resistance. Traditional chemical pesticides are no longer sufficient to meet the demands for sustainable modern agriculture. Recent advances in nanotechnology offer innovative strategies for improving pesticide delivery, bioavailability, and selectivity. This review systematically summarizes the current progress in nano-insecticides, including their definitions, classification, preparation techniques, synergistic mechanisms, insecticidal performance, and safety evaluation. In addition, emerging strategies, such as multi-stimuli responsive systems, co-delivery with multiple agents or genetic materials, and integration with biological control, are discussed. Finally, future perspectives are proposed to guide the design/development of intelligent, efficient, and eco-friendly nano-insecticides for sustainable pest management in modern agriculture. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

18 pages, 9567 KiB  
Article
Evaluating Entomopathogenic Nematodes as Biocontrol Agents Against Two Major Cockroach Species, Blattella germanica and Periplaneta americana, in Antalya, Türkiye
by Aysegul Cengiz, Burak Polat, Sevval Kahraman Kokten, Ummuhan Aslan Bıckı, Cansu Calıskan, Samed Koc, Emre Oz, Serap Kocaoglu-Cenkci, Ozge Tufan-Cetin and Huseyin Cetin
Pathogens 2025, 14(7), 655; https://doi.org/10.3390/pathogens14070655 - 1 Jul 2025
Viewed by 589
Abstract
Cockroaches, particularly the German cockroach (Blattella germanica Linnaeus, Blattodea: Ectobiidae) and the American cockroach (Periplaneta americana (Linnaeus), Blattodea: Blattidae), are major public health pests due to their ability to transmit pathogens and develop resistance to chemical insecticides, including synthetic pyrethroids, which [...] Read more.
Cockroaches, particularly the German cockroach (Blattella germanica Linnaeus, Blattodea: Ectobiidae) and the American cockroach (Periplaneta americana (Linnaeus), Blattodea: Blattidae), are major public health pests due to their ability to transmit pathogens and develop resistance to chemical insecticides, including synthetic pyrethroids, which are widely used worldwide. Given the increasing resistance, entomopathogenic nematodes (EPNs) have emerged as a potential biological control alternative. This study evaluates the efficacy of three EPN species, Steinernema carpocapsae (Weiser), S. feltiae (Filipjev), and Heterorhabditis bacteriophora Poinar, against B. germanica and P. americana collected from different regions of Antalya, Türkiye. Laboratory bioassays were conducted under controlled conditions, testing five EPN concentrations (100, 250, 500, 750, and 1000 IJs/mL). The results showed that S. carpocapsae was the most effective, causing mortality rates of 46.7% to 100% in adult German cockroaches and 20% to 66.7% in nymphs, while S. feltiae and H. bacteriophora exhibited lower efficacy. American cockroaches showed higher resistance, with S. carpocapsae achieving a maximum mortality of 33.3% at the highest concentration, whereas S. feltiae and H. bacteriophora had no significant lethal effect. These findings suggest that S. carpocapsae could be a promising biological control agent for B. germanica, particularly in pyrethroid-resistant populations. Full article
Show Figures

Graphical abstract

14 pages, 1548 KiB  
Article
Spatial Distribution of Microsporidia MB Along Clinal Gradient and the Impact of Its Infection on Pyrethroid Resistance in Anopheles gambiae s.l. Mosquitoes from Nigeria and Niger Republic
by Lamine M. Moustapha, Muhammad M. Mukhtar, Abdoul-Nasser H. Sanda, Shuaibu Adamu, Yusuf Y. Aliyu, Hadizat K. Einoi, Maryam U. Maigari, Peter C. Okeke, David E. Nwele, Abiodun Obembe, Udoka C. Nwangwu, Jeremy K. Herren and Sulaiman S. Ibrahim
Parasitologia 2025, 5(3), 31; https://doi.org/10.3390/parasitologia5030031 - 28 Jun 2025
Viewed by 294
Abstract
Microsporidia MB (MB), a promising biological control agent, suppresses Plasmodium falciparum transmission in Anopheles mosquitoes. This study examined the spatial distribution of MB infection in natural populations of An. gambiae s.l. mosquitoes collected in Nigeria and Niger Republic, and its association [...] Read more.
Microsporidia MB (MB), a promising biological control agent, suppresses Plasmodium falciparum transmission in Anopheles mosquitoes. This study examined the spatial distribution of MB infection in natural populations of An. gambiae s.l. mosquitoes collected in Nigeria and Niger Republic, and its association with insecticide susceptibility in the mosquitoes. Microsporidia MB has wide geographic distribution across Nigeria and Niger Republic. The overall prevalence of MB in F0 mosquitoes was 12.25% (95% CI: 7.76–16.75%); 25 mosquitoes out of 204 were positive. Geographic variation was observed, with a higher prevalence (5/15 mosquitoes) in Ebonyi State (33.33%, CI: 9.48–57.19%, Fisher’s exact test, p = 0.008). Infection rates were higher in An. coluzzii mosquitoes (21/133 mosquitoes), estimated at 15.79% (CI: 9.59–21.99%) compared to An. gambiae s.s. mosquitoes (4/71), with approximately 5.63% (CI: 0.27–11.00%, χ2 = 4.44; df = 1, p = 0.035). Resistant mosquitoes had a significantly higher prevalence of MB infection than susceptible mosquitos at 28.57% (CI: 16.74–40.40%) with an odds ratio of 3.33 (CI: 1.23–9.03, p = 0.017). These findings suggests that MB can be exploited as an alternative for vector control in Nigeria and Niger, but its possible association with pyrethroid resistance suggests that it should be taken into account as a potential confounder when designing insecticide resistance management strategies. Full article
Show Figures

Graphical abstract

36 pages, 1423 KiB  
Review
Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview
by Maider Martínez-Balerdi, Javier Caballero, Eduardo Aguirre, Primitivo Caballero and Inés Beperet
Viruses 2025, 17(7), 917; https://doi.org/10.3390/v17070917 - 27 Jun 2025
Cited by 1 | Viewed by 615
Abstract
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents [...] Read more.
Baculoviruses represent a promising group of microbial insecticides for the biological control of agricultural pests, particularly those within the order Lepidoptera. Their high host specificity and environmental safety make them ideal candidates for inclusion in integrated pest management (IPM) programs. This review presents a comprehensive overview of baculovirus biology, highlighting their infection mechanisms, selectivity, and ecological compatibility. Special attention is given to advances in mass production systems—both in vivo and in vitro—and formulation technologies that improve field efficacy and environmental persistence, including UV protectants and microencapsulation. Regulatory aspects are also discussed, comparing international approval pathways and highlighting the disparity between regions with supportive policies (e.g., Latin America, Asia) and those with more restrictive frameworks (e.g., the European Union). Additionally, the current global market landscape for baculovirus-based products is examined, with emphasis on recent growth, commercialized formulations, and challenges such as host resistance and the limited spectrum of action. By synthesizing findings from the scientific literature and industry reports, this review underscores the role of baculoviruses as effective, sustainable alternatives or complements to chemical insecticides in modern agriculture, contributing to the reduction in pesticide residues and environmental impact. Full article
(This article belongs to the Special Issue Insect Viruses and Pest Management, the Third Edition)
Show Figures

Figure 1

13 pages, 1283 KiB  
Article
Susceptibility of Spodoptera frugiperda to Commercial Entomopathogenic Fungi Formulations in South Africa
by Simoné Louw, Vongai M. Paradza, Johnnie van den Berg and Hannalene du Plessis
Insects 2025, 16(7), 656; https://doi.org/10.3390/insects16070656 - 24 Jun 2025
Viewed by 657
Abstract
Chemical control using synthetic insecticides is the most widely used method for controlling the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Sub-Saharan Africa (SSA). However, the application of insecticides is not a long-term or sustainable solution. Biological control is an [...] Read more.
Chemical control using synthetic insecticides is the most widely used method for controlling the fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in Sub-Saharan Africa (SSA). However, the application of insecticides is not a long-term or sustainable solution. Biological control is an important pillar of integrated pest management, and entomopathogenic fungi (EPFs) are becoming increasingly important as biocontrol agents. However, no EPF biopesticides have been registered in South Africa for the control of S. frugiperda. Few studies have been conducted on the efficacy of commercial formulations of biopesticides against all S. frugiperda life stages. The objective of this study was, therefore, to assess the potential of two Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Clavicipitaceae) and two Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) based commercial biopesticides registered in South Africa against other pests, for their efficacy against S. frugiperda. The effects of these EPF formulations were evaluated on larval and prepupal mortality, moth emergence, fecundity, and longevity of the emerged moths. The results indicated that S. frugiperda second- and sixth-instar larvae were not susceptible to the biopesticides. Moth emergence, fecundity, and longevity were not significantly affected. However, prepupae were susceptible to both Metarhizium formulations, with Metarhizium anisopliae ICIPE 78 resulting in the highest mortality (56.7%). This biopesticide holds potential for the management of S. frugiperda when applied to the soil for the control of pupating larvae. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

Back to TopTop