Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Mortality of R. nu Caused by Matrine® (Bioassay 1)
2.3. Impact of Matrine® over the Pupae of Trichogramma pretiosum (Bioassay 2)
2.4. Impact of Dry Residue of Matrine® on Adults of Trichogramma pretiosum (Bioassay 3)
2.5. Statistical Analysis
3. Results
3.1. Mortality of R. nu Caused by Matrine® (Bioassay 1)
3.2. Impact of Matrine® over the Pupae of Trichogramma pretiosum (Bioassay 2)
3.3. Impact of Dry Residue of Matrine® on Adults of Trichogramma pretiosum (Bioassay 3)
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbut, J. Révision du genre Rachiplusia Hampson, 1913 (Lepidoptera, Noctuidae, Plusiinae). Bull. Soc. Entomol. Fr. 2008, 113, 445–452. [Google Scholar] [CrossRef]
- Alves, J.S.; Pasqualotto, L.; Soares, V.N.; Souza, M.T.; Souza, M.T.; Rakes, M.; Horikoshi, R.J.; Miraldo, L.L.; Ovejero, R.L.F.; Berger, G.U.; et al. Life table study of Rachiplusia nu (Lepidoptera: Noctuidae) on different food sources and artificial diet. J. Econ. Entomol. 2024, 117, 2135–2142. [Google Scholar] [CrossRef]
- Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Valduga, E.; Gonzatti, F.; Schuh, S.M.; Carneiro, E. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 2019, 19, 8. [Google Scholar] [CrossRef]
- Horikoshi, R.J.; Dourado, P.M.; Berger, G.U.; Fernandes, D.S.; Omoto, C.; Willse, A.; Martinelli, S.; Head, G.P.; Corrêa, A.S. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci. Rep. 2021, 11, 15956. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, R.J.; Bernardi, O.; Godoy, D.N.; Semeão, A.A.; Willse, A.; Corazza, G.O.; Ruthes, E.; Fernandes, D.S.; Sosa-Gómez, D.R.; Bueno, A.F.; et al. Resistance status of lepidopteran soybean pests following large-scale use of MON87701 × MON89788 soybean in Brazil. Sci. Rep. 2021, 11, 21323. [Google Scholar] [CrossRef]
- Reis, A.C.; Steinhaus, E.A.; Godoy, D.N.; Warpechowski, L.F.; Diniz, L.H.M.; Dallanora, A.; Horikoshi, R.J.; Ovejero, R.F.L.; Martinelli, S.; Berger, G.U.; et al. Genetic basis of resistance to Cry1Ac in Rachiplusia nu (Lepidoptera: Noctuidae): Inheritance mode, cross-resistance patterns and fitness cost. Pest Manag. Sci. 2025, 81, 727–735. [Google Scholar] [CrossRef]
- Bueno, A.F.; Braz-Zini, E.C.; Horikoshi, R.J.; Bernardi, O.; Andrade, G.; Sutil, W.P. Over 10 years of Bt soybean in Brazil: Lessons, benefits, and challenges for its use in Integrated Pest Management (IPM). Neotrop. Èntomol. 2025, 54, 61. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, R.; Godoy, C.V.; Hoback, W.W.; Bueno, A.F. Are economic thresholds for IPM decisions the same for low LAI soybean cultivars in Brazil? Pest Manag. Sci. 2020, 77, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Koutroubas, S.D. Botanical Pesticides for Eco-Friendly Pest Management. In Pesticides in Crop Production; Wiley: Hoboken, NJ, USA, 2020; pp. 181–193. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Spochacz, M.; Adamski, Z. The role of botanical treatments used in apiculture to control arthropod pests. Apidologie 2022, 53, 27. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Cianfaglione, K.; Sender, J.; Danuta, U.; Ma´slanko, W.; Canale, A.; Barboni, L.; Petrelli, R.; Zeppa, L.; et al. Ascaridole-rich essential oil from marsh rosemary (Ledum palustre) growing in Poland exerts insecticidal activity on mosquitoes, moths and flies without serious effects on non-target organisms and human cells. Food Chem. Toxicol. 2020, 138, 111184. [Google Scholar] [CrossRef] [PubMed]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Z. Insecticidal activities of Sophora flavescens alt. Towards Red imported fire ants (Solenopsis invicta Buren). Toxins 2023, 15, 105. [Google Scholar] [CrossRef]
- Zanardi, O.Z.; Belegante, F.; Moresco, C.; Zimermann, H.G.; Falchetti, A.; Zanardi, A.M. Toxicity and efficacy of azadirachtin, and oxymatrine-based biopesticides against cabbage aphid and their impacts on predator insects. Crop Prot. 2024, 186, 106931. [Google Scholar] [CrossRef]
- Wu, J.; Li, J.; Zhang, C.; Yu, X.; Cuthbertson, A.G.; Ali, S. Biological impact and enzyme activities of Spodoptera litura (Lepidoptera: Noctuidae) in response to synergistic action of matrine and Beauveria brongniartii. Front. Physiol. 2020, 11, 584405. [Google Scholar] [CrossRef]
- Wink, M.; Schmeller, T.; Latz-Brūning, B. Modes of action of alleochemical alkaloids: Interaction with neuroreceptors, DNA, and other molecular targets. J. Chem. Ecol. 1998, 24, 1881–1937. [Google Scholar] [CrossRef]
- Ali, S.; Zhang, C.; Wang, Z.; Wang, X.M.; Wu, J.H.; Cuthbertson, A.G.; Shao, Z.; Qiu, B.L. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci. Rep. 2017, 7, 46558. [Google Scholar] [CrossRef]
- Isman, M.B. Commercialization and regulation of botanical biopesticides: A global perspective. In Development and Commercialization of Biopesticides; Koul, O., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 25–36. [Google Scholar] [CrossRef]
- Agrofit. Sistema de Agrotóxicos Fitossanitários. Ministério da Agricultura do Governo Federal. Available online: https://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 9 September 2024).
- Foerster, L.A.; Avanci, M.R.F. Egg parasitoids of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) in soybeans. An. Da Soc. Entomológica Do Bras. 1999, 28, 545–548. [Google Scholar] [CrossRef]
- Greene, G.L.; Leppla, N.C.; Dickerson, W.A. Velvetbean caterpillar: A rearing procedure and artificial medium. J. Econ. Entomol. 1976, 69, 487–488. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.B.; Oliveira, E.B.; Moscardi, F. Criação Massal Da Lagarta Da Soja. Londrina Embrapa 23, 1985. Available online: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/445420/1/Doc1.pdf (accessed on 10 December 2024).
- Andrade, K.; Bueno, A.F.; Silva, D.M.; Stecca, C.S.; Pasini, A.; Oliveira, M.C.N. Bioecological characteristics of Chrysodeixis includens (Lepidoptera: Noctuidae) fed on different hosts. Austral Entomol. 2016, 55, 449–454. [Google Scholar] [CrossRef]
- Parra, J.R.P.; Botelho, P.S.M.; Ferreira, C.; Bento, J.M.S. Controle biológico: Uma visão inter e multidisciplinar. In Controle Biológico no Brasil: Parasitóides E Predadores; Parra, J.R.P., Botelho, P.S.M., Ferreira, C., Bento, J.M.S., Eds.; Manole: São Paulo, Brazil, 2002; Volume 8, pp. 125–137. [Google Scholar]
- Hassan, S.A.; Bigler, F.; Blaisinger, P.; Bogenschütz, H.; Brun, J.; Chiverton, P.; Dickler, E.; Easterbrook, M.A.; Edwards, P.J.; Englert, W.D.; et al. Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group ‘Pesticides and Beneficial Organisms’. EPPO Bull. 1985, 15, 214–255. [Google Scholar] [CrossRef]
- Hassan, S.A. Guideline for the evaluation of side-effects of plant protection product on Trichogramma cacoeciae. In Guidelines for Testing the Effects of Pesticides on Beneficial Organisms: Description of Test Methods; Hassan, S.A., Ed.; IOBC/WPRS Bulletin: Pisa, Italy, 1992; Volume 15, pp. 18–39. [Google Scholar]
- Manzoni, C.; Grützmacher, A.; Giolo, F.; Härter, W.; Castilhos, R.; Paschoal, M. Seletividade de agroquímicos utilizados na produção integrada de maçã aos parasitóides Trichogramma pretiosum Riley e Trichogramma atopovirilia Oatman & Platner (Hymenoptera: Trichogrammatidae). BioAssay 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Cônsoli, F.L.; Rossi, M.M.; Parra, J.R.P. Developmental time and characteristics of the immature stages of Trichogramma galloi and T. pretiosum (Hymenoptera, Trichogrammatidae). Rev. Bras. Entomol. 1999, 43, 271–275. [Google Scholar]
- Carmo, E.L.; Bueno, A.F.; Bueno, R.C.O.F. Pesticide selectivity for the insect egg parasitoid Telenomus remus. BioControl 2010, 55, 455–464. [Google Scholar] [CrossRef]
- Gharib, A.M.; Gad, H.A.; Mohamed, H.A. Insecticidal activity of botanical insecticide, oxymatrine against Musca domestica (Diptera: Muscidae). Int. J. Trop. Insect Sci. 2025, 45, 649–655. [Google Scholar] [CrossRef]
- Zanardi, O.Z.; do Ribeiro, L.P.; Ansante, T.F.; Santos, M.S.; Bordini, G.P.; Yamamoto, P.T.; Vendramim, J.D. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Prot. 2015, 67, 160–167. [Google Scholar] [CrossRef]
- AL-Khazraji, H.I.; Gaym, N.N.; Resan, A.M. Effect of oxymatrine 2.4% in some biological aspects of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Arid. Int. J. Sci. Technol. 2019, 2, 61–71. [Google Scholar] [CrossRef]
- Bloomquist, J.R.; Jiang, S.; Taylor-Wells, J.; Yang, L.; Li, Y.-X. Insecticidal activity and physiological actions of matrine, a plant natural product. ACS Symp. Ser. 2018, 1289, 175–186. [Google Scholar] [CrossRef]
- Gadallah, A.; Mohammed, H.; El-Metwally, M.; Abdel-Rahman, A. The effect of teflubenzuron and oxymatrine on some biological aspects of Sesamia critica Led. (Lepidoptera: Noctuidae). J. Plant Prot. Pathol. 2014, 5, 837–847. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Gad, H.A.; Oraby, H.K. Field larvicidal and pupicidal efficacy of the natural insecticide, oxymatrine against Culex species in Beni Suef Governorate, Egypt. J. Nat. Pestic. Res. 2023, 4, 100030. [Google Scholar] [CrossRef]
- Gad, H.A.; Al-Ayat, A.A.; Mohamed, H.A.; Abdelgaleil, S.A. Long term efficacy of three chitin synthesis inhibitors and oxymatrine as cowpea seed protectants against Callosobruchus maculatus and Callosobruchus chinensis. J. Stored Prod. Res. 2023, 105, 102243. [Google Scholar] [CrossRef]
- Chen, M.H.; Gu, Y.Y.; Zhang, A.L.; Sze, D.M.Y.; Mo, S.L.; May, B.H. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer. Pharmacol. Res. 2021, 171, 105778. [Google Scholar] [CrossRef]
- Bueno, A.F.; Colmenarez, Y.C.; Carnevalli, R.A.; Sutil, W.P. Benefits and perspectives of adopting soybean-IPM: The success of a Brazilian programme. Plant Health Cases 2023, phcs20230006, 1–16. [Google Scholar] [CrossRef]
- Umpiérrez, M.L.; Paullier, J.; Porrini, M.; Garrido, M.; Santos, E.; Rossini, C. Potential botanical pesticides from Asteraceae essential oils for tomato production: Activity against whiteflies, plants and bees. Ind. Crops Prod. 2017, 109, 686–692. [Google Scholar] [CrossRef]
- Samy, M.S.; Alotaibi, S.S.; Gaber, N.; Elarrnaouty, S.A. Evaluation of five medicinal plant extracts on Aphis craccivora (Hemiptera: Aphididae) and its predator, Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. Insects 2020, 11, 398. [Google Scholar] [CrossRef]
- Bueno, A.F.; Carvalho, G.A.; Santos, A.C.; Sosa-Gomez, D.R.; Silva, D.M. Pesticide selectivity to natural enemies: Challenges and constraints for research and field recommendation. Cienc. Rural 2017, 47, e20160829. [Google Scholar] [CrossRef]
- Stecca, C.S.; Bueno, A.F.; Pasini, A.; Silva, D.M.; Andrade, K.; Filho, D.M.Z. Side-effects of glyphosate to the parasitoid Telenomus remus Nixon (Hymenoptera: Platygastridae). Neotrop. Èntomol. 2016, 45, 192–200. [Google Scholar] [CrossRef]
- Bortolotto, O.C.; Pomari-Fernandes, A.; Bueno, R.G.O.F.; Bueno, A.F.; Kruz, Y.K.S.; Queiroz, A.P.; Sanzovo, A.; Ferreira, R.B. The use of soybean integrated pest management in Brazil: A review. Agron. Sci. Biotechnol. 2015, 1, 25–32. [Google Scholar] [CrossRef]
- Torres, J.B.; Bueno, A.F. Conservation biological control using selective insecticides: A valuable tool for IPM. Biol. Control. 2018, 126, 53–64. [Google Scholar] [CrossRef]
- Bueno, A.F.; Panizzi, A.R.; Hunt, T.E.; Dourado, P.M.; Pitta, R.M.; Gonçalves, J. Challenges for Adoption of Integrated Pest Management (Ipm): The Soybean Example. Neotrop. Entomol. 2021, 50, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Lengai, G.M.; Muthomi, J.W. Biopesticides and their role in sustainable agricultural production. J. Biosci. Med. 2018, 6, 7–41. [Google Scholar] [CrossRef]
- Campos, E.V.; Proença, P.L.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 2019, 105, 483–495. [Google Scholar] [CrossRef]
- Raheem, S.S.; Al-Dossary, M.A.; Al-Saad, H.T. Laboratory study for biodegradation of oxymatrine insecticide by single and mixed cultures of fungi isolated from agriculture soils in Basrah Governorate. Iraq. Baghdad Sci. 2019, 16, 10–17. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef]
- Carvalho, G.A.; Reis, P.R.; Grützmacher, A.D.; Degrande, P.E.; Yamamoto, P.T.; Bueno, A.F. Seletividade de produtos fitossanitários: Uma estratégia viável para a agricultura sustentável. In Controle Biológico Com Parasitoides E Predadores Na Agricultura Brasileiraparra; Para, J.R.P., Pinto, A.S., Nava, D.E., Oliveira, R.C., Diniz, A.J.F., Eds.; FEALQ: Piracicaba, Brazil, 2021; pp. 481–510. [Google Scholar]
- Brilinger, D.; Fiedler, M.; Arioli, C.J.; Werner, S.S.; Wertheim, B.; Boff, M.I.C. Exploring Matrine and Oxymatrine as Potential Bioinsecticide to Control Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Èntomol. 2025, 54, 14. [Google Scholar] [CrossRef]
Treatment | (g) a.i./ha | Commercial Product (cp) (L of cp/ha) |
---|---|---|
Water (control) | - | Distilled water |
Matrine® | 419.1 | 2.2 |
Matrine® | 342.9 | 1.8 |
Matrine® | 266.7 | 1.4 |
Matrine® | 190.5 | 1.0 |
Matrine® | 114.3 | 0.6 |
Matrine® | 38.1 | 0.2 |
Treatment (L of cp/150 L H2O) | Number of de R. nu Larvae (Mortality%) | |||
---|---|---|---|---|
24 h | 48 h | 72 h | ||
Water (control) | 0.7 ± 0.8 c (2.9%) | 2.3 ± 0.8 c (9.6%) | 2.3 ± 0.0 c (9.6%) | |
Matrine® 2.2 | 23.0 ± 4.2 a (95.8%) | 23.3 ± 1.6 a (97.1%) | 24.0 ± 0.0 a (100%) | |
Matrine® 1.8 | 24.0 ± 0.0 a (100%) | 24.0 ± 0.0 a (100%) | 24.0 ± 0.0 a (100%) | |
Matrine® 1.4 | 15.6 ± 2.1 b (65.0%) | 21.3 ± 0.8 a (88.8%) | 24.0 ± 0.0 a (100%) | |
Matrine® 1.0 | 22.3 ± 2.1 a (92.9%) | 22.6 ± 1.6 a (92.9%) | 23.6 ± 0.8 a (98.3%) | |
Matrine® 0.6 | 19.3 ± 3.4 ab (84.4%) | 22.0 ± 2.4 a (91.7%) | 23.6 ± 0.8 a (98.3%) | |
Matrine® 0.2 | 8.6 ± 5.7 c (35.8%) | 15.3 ± 2.1 b (63.8) | 21.3 ± 2.8 b (88.8%) | |
Statistics | F | 95.52 | 110.9 | 331.7 |
p-value | <2 × 10−16 | <2 × 10−16 | <2 × 10−16 | |
DFresidue | 7 | 7 | 7 |
Treatment (L of cp/150 L H2O) | Bioassays with Pupae (Bioassay 2) | Bioassays with Adults (Bioassay 3) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sprayed Pupae | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||||||||
EP a | C b | E b | C c | E b | C c | E b | C c | E b | C c | E b | C c | E b | C c | |
Matrine® 2.2 | 0.36 | 1 | 8.7 | 1 | 22.1 | 1 | 55.2 | 2 | 27.3 | 1 | 32.3 | 2 | 100.0 | 4 |
Matrine® 1.8 | 2.45 | 1 | 2.5 | 1 | 11.0 | 1 | 63.5 | 2 | 70.6 | 2 | 92.3 | 3 | 97.0 | 3 |
Matrine® 1.4 | 0 | 1 | 0 | 1 | 8.3 | 1 | 0 | 1 | 30.1 | 2 | 48.3 | 2 | 93.4 | 3 |
Matrine® 1.0 | 9.83 | 1 | 0 | 1 | 3.7 | 1 | 0 | 1 | 26.2 | 1 | 41.4 | 2 | 73.3 | 2 |
Matrine® 0.6 | 0.84 | 1 | 0 | 1 | 11.9 | 1 | 36.8 | 2 | 31.5 | 2 | 31.3 | 2 | 86.5 | 3 |
Matrine® 0.2 | 4.23 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 17.4 | 1 | 27.6 | 1 | 91.2 | 3 |
Treatment | Sprayed Pupae | 24 h | 48 h | 72 h | |||
---|---|---|---|---|---|---|---|
(mL/150 L H2O) | Adult Emergence (%) (Kruskal–Wallis) | Parasitism (%) (ANOVA) | Progeny Viability (%) (Kruskal–Wallis) | Parasitism (%) (ANOVA) | Progeny Viability (%) (Kruskal–Wallis) | Parasitism (%) (Kruskal–Wallis) | Progeny Viability (%) (Kruskal–Wallis) |
Water (control) | 89.2 ± 1.5 a | 79.3 ± 5.6 a | 70.2 ± 8.3 a | 78.7 ± 2.9 a | 75.3 ± 5.6 a | 59.6 ± 12.3 a | 98.0 ± 0.9 a |
Matrine® 2.2 | 90.7 ± 2.0 a | 72.4 ± 4.9 a | 94.5 ± 0.6 a | 61.3 ± 6.6 a | 78.6 ± 6.3 a | 25.7 ± 13.1 a | 87.2 ± 1.79 a |
Matrine® 1.8 | 87.0 ± 5.8 a | 77.3 ± 4.0 a | 92.0 ± 0.9 a | 70.0 ± 11.9 a | 91.6 ± 1.1 a | 21.7 ± 4.0 a | 85.0 ± 6.7 a |
Matrine® 1.4 | 72.4 ± 18.3 a | 82.6 ± 5.9 a | 87.2 ± 1.4 a | 72.2 ± 5.9 a | 91.7 ± 1.6 a | 69.1 ± 12.0 a | 88.3 ± 2.2 a |
Matrine® 1.0 | 80.5 ± 3.0 a | 85.9 ± 4.3 a | 89.1 ± 1.7 a | 75.8 ± 3.2 a | 92.3 ± 1.6 a | 58.9 ± 11.4 a | 90.1 ± 2.5 a |
Matrine® 0.6 | 88.5 ± 2.1 a | 82.4 ± 5.2 a | 88.9 ± 0.7 a | 69.3 ± 11.1 a | 89.3 ± 1.2 a | 37.6 ± 17.4 a | 91.0 ± 2.1 a |
Matrine® 0.2 | 85.5 ± 3.3 a | 85.9 ± 6.2 a | 86.5 ± 1.6 a | 83.4 ± 5.0 a | 83.8 ± 1.6 a | 67.1 ± 12.2 a | 81.3 ± 3.4 a |
* F/χ2 | 6.67 (K) | 0.89 (A) | 16.29 (K) | 2.03 (A) | 6.74 (K) | 2.34 (K) | 5.77 (K) |
p-value | 0.46 | 0.51 | 0.0001 | 0.08 | 0.4 | 0.05 | 0.56 |
DFresidue | 7 | 129.8 | 7 | 619.1 | 7 | 1842.4 | 7 |
Treatment (L of cp/150 L H2O) | 24 h | 48 h | 72 h | ||||
---|---|---|---|---|---|---|---|
Parasitism (%) (Kruskal–Wallis) | Progeny Viability (%) (Kruskal–Wallis) | Parasitism (%) (Kruskal–Wallis) | Progeny Viability (%) (ANOVA) | Parasitism (%) (Kruskal–Wallis) | Progeny Viability (%) (Kruskal–Wallis) | ||
Water (control) | 74.8 ± 2.5 a | 93.7 ± 0.9 a | 66.1 ± 1.2 a | 87.4 ± 2.1 a | 26.4 ± 11.0 a | 75.2 ± 6.12 a | |
Matrine® 2.2 | 54.3 ± 0.8 b | 83.0 ± 2.3 a | 44.7 ± 1.7 b | 79.09 ± 1.2 a | 0.0 ± 0.0 c | No existent | |
Matrine® 1.8 | 21.9 ± 14.8 b | 50.4 ± 9.6 b | 5.0 ± 3.1 d | 32.5 ± 9.3 b | 0.7 ± 0.7 b | 20.0 ± 8.9 a | |
Matrine® 1.4 | 52.2 ± 5.5 b | 63.4 ± 3.0 b | 34.1 ± 8.9 c | 56.2 ± 8.3 a | 1.7 ± 1.7 b | 56.0 ± 10.4 a | |
Matrine® 1.0 | 55.1 ± 4.6 b | 84.96 ± 1.5 a | 35.1 ± 9.4 c | 56.06 ± 10.4 a | 7.0 ± 7.0 b | 10.0 ± 4.5 b | |
Matrine® 0.6 | 51.1 ± 5.1 b | 87.4 ± 0.7 a | 45.4 ± 8.1 b | 28.57 ± 8.8 b | 3.5 ± 2.8 b | 28.6 ± 8.8 a | |
Matrine® 0.2 | 61.7 ± 2.1 a | 83.8 ± 1.3 a | 47.8 ± 5.1 b | 20 ± 8.9 b | 2.3 ± 1.7 b | 40.0 ± 11.0 a | |
Statistics | * F/χ2 | 19.56 (K) | 18.26 (K) | 24.9 (K) | 3.02 (A) | 16.5 (K) | 29.7 (K) |
p-value | 0.006 | 0.01 | 0.0007 | 0.04 | 0.02 | 0.002 | |
DFresidue | 7 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, G.M.d.L.; Bueno, A.d.F.; Carneiro, G.S.; Zocolo, G.J.; Santos, T.C.d.; Iasczczaki, R.S.; Munhoz, L.C.C.; Vilas Boas, N.d.O.; Roggia, I. Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu. Agronomy 2025, 15, 1787. https://doi.org/10.3390/agronomy15081787
Alves GMdL, Bueno AdF, Carneiro GS, Zocolo GJ, Santos TCd, Iasczczaki RS, Munhoz LCC, Vilas Boas NdO, Roggia I. Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu. Agronomy. 2025; 15(8):1787. https://doi.org/10.3390/agronomy15081787
Chicago/Turabian StyleAlves, Geraldo Matheus de Lara, Adeney de Freitas Bueno, Gabriel Siqueira Carneiro, Guilherme Julião Zocolo, Taynara Cruz dos Santos, Rafael Stempniak Iasczczaki, Letícia Carolina Chiampi Munhoz, Nicole de Oliveira Vilas Boas, and Isabel Roggia. 2025. "Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu" Agronomy 15, no. 8: 1787. https://doi.org/10.3390/agronomy15081787
APA StyleAlves, G. M. d. L., Bueno, A. d. F., Carneiro, G. S., Zocolo, G. J., Santos, T. C. d., Iasczczaki, R. S., Munhoz, L. C. C., Vilas Boas, N. d. O., & Roggia, I. (2025). Potential Benefits and Side Effects of Sophora flavescens to Control Rachiplusia nu. Agronomy, 15(8), 1787. https://doi.org/10.3390/agronomy15081787