Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Erigeron acris L.
3.1.1. Compositional Data of Essential Oils (EOs) from Erigeron acris L.
3.1.2. Bioactivity (Anticancer and Antifungal Properties) of E. acris EOs
3.2. Erigeron annuus L.
3.2.1. Compositional data of EOs of Erigeron annuus L.
3.2.2. Bioactivity (Skin Regeneration and Antifungal Properties) and Toxicity (Allelopathic Effects) of EOs of E. annuus (L.)
3.3. Erigeron bonariensis (L.)
3.3.1. Compositional Data of EOs of Erigeron bonariensis L.
3.3.2. Bioactivity and Toxicity of Erigeron bonariensis EOs
3.4. Erigeron breviscapus (Vaniot) Hand.-Mazz.
Compositional Data of EOs of Erigeron breviscapus and Their Bioactivity
3.5. Erigeron canadensis L.
3.5.1. Compositional Data of EOs of Erigeron canadensis L.
3.5.2. Bioactivity and Toxicity of Erigeron canadensis (L.) EOs
3.6. Erigeron floribundus (Kunth) Sch.Bip. (Erigeron sumatrensis)
3.6.1. Compositional Data of EOs of Erigeron floribundus
3.6.2. Bioactivity and Toxicity of Erigeron floribundus (L.) EOs
3.7. Erigeron graveolens L.
3.7.1. Compositional Data of Erigeron graveolens (L.) EOs
3.7.2. Bioactivity and toxicity of E. graveolens (Inula graveolens (L.)) EOs
3.8. Erigeron incanus Vahl (Erigeron leucophyllus (Sch. Bip. ex A. Rich.) Schweinf.)
3.8.1. Compositional Data of EOs of Erigeron incanus Vahl
3.8.2. Bioactivity of EOs of Erigeron incanus
3.9. Erigeron mucronatus DC
3.9.1. Compositional Data of Erigeron mucronatus (Erigeron karvinskianus) EOs
3.9.2. Bioactivity of Erigeron mucronatus (Erigeron karvinskianus) EOs
3.10. Erigeron multiradiatus (Lindl. ex DC.) Benth
Compositional Data of Erigeron multiradiatus EOs and Their Activity
3.11. Erigeron philadelphicus L.
Compositional Data of Erigeron philadelphicus EOs and Their Activity
3.12. Erigeron strigosus Muhl. ex Willd (Erigeron ramosus)
3.12.1. Compositional Data of Erigeron strigosus (Erigeron ramosus) EOs
3.12.2. Biological Activity of Erigeron strigosus (Erigeron ramosus) EOs
3.13. Erigeron speciosus (Lindl) DC.
Compositional Data of Erigeron speciosus EOs and Their Activity
3.14. Erigeron sublyratus Roxb. ex DC.
3.14.1. Compositional Data of Erigeron sublyratus EOs
3.14.2. Biological Activity of Erigeron sublyratus EOs
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Flora Online. WFO Plant List. Available online: https://www.worldfloraonline.org (accessed on 8 May 2025).
- Plants of the World Online. Kew, Royal Botanical Gardens. Available online: https://powo.science.kew.org (accessed on 12 May 2025).
- Nesom, G.L. Classification of Subtribe Conyzinae (Asteraceae: Astereae). Lundellia 2008, 11, 8–38. [Google Scholar] [CrossRef]
- Nesom, G.L. Erigeron (Astereae). In Flora of North America (FNA); Editorial Committee, Ed.; Oxford University Press: New York, NY, USA; Oxford, UK, 2006; Volume 20, pp. 3, 9, 11, 12, 14, 17, 36, 204, 256, 257, 334. Available online: http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=112000 (accessed on 10 July 2025).
- Florentine, S.; Humphries, T.; Chauhan, B.S. Chapter 7-Erigeron bonariensis, Erigeron canadensis, and Erigeron sumatrensis. In Biology and Management of Problematic Crop Weed Species; Chauhan, B.S., Ed.; Academic Press: London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 2021; pp. 131–149. [Google Scholar] [CrossRef]
- Nazaruk, J.; Karna, E.; Wieczorek, P.; Sacha, P.; Tryniszewska, E. In vitro antiproliferative and antifungal activity of essential oils from Erigeron acris L. and Erigeron annuus (L.) Pers. Z. Naturforsch. C 2010, 65, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Nalewajko-Sieliwoniuk, E.; Nazaruk, J.; Antypiuk, E.; Kojło, A. Determination of phenolic compounds and their antioxidant activity in Erigeron acris L. extracts and pharmaceutical formulation by flow injection analysis with inhibited chemiluminescent detection. J. Pharm. Biomed. Anal. 2008, 48, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Fei, D.; Gao, K. Aromadendrane-type sesquiterpene derivatives and other constituents from Erigeron acer. Die Pharm. 2007, 62, 312–315. [Google Scholar] [CrossRef]
- Rana, R.; Pundir, S.; Lal, U.R.; Chauhan, R.; Upadhyay, S.K.; Kumar, D. Phytochemistry and biological activity of Erigeron annuus (L.) Pers. Naunyn-Schmiedeb. Arch. Pharmacol. 2023, 396, 2331–2346. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, F.; Shadab, M.; Akhtar, N.; Parveen, U.; Siddiqui, M.B. Erigeron bonariensis: Phytochemistry, allelopathy, and potential for sustainable pest management and healthcare. Vegetos 2025. [Google Scholar] [CrossRef]
- Sharma, K.S.; Alam, A. Phytochemical characterization, antioxidant and antimicrobial activity of Erigeron bonariensis L.: A therapeutic weed. IJSM 2025, 12, 188–203. [Google Scholar] [CrossRef]
- Ibrahim, W.W.; Sayed, R.H.; Abdelhameed, M.F.; Omara, E.A.; Nassar, M.I.; Abdelkader, N.F.; Farag, M.A.; Elshamy, A.I.; Afifi, S.M. Neuroprotective potential of Erigeron bonariensis ethanolic extract against ovariectomized/D-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using UPLC/MS. Inflammopharmacology 2024, 32, 1091–1112. [Google Scholar] [CrossRef] [PubMed]
- Souza, M.C.; Siani, A.C.; Ramos, M.F.S.; Menezes-de-lima, O.J.; Henriques, M.G.M.O. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 2003, 58, 582–586. [Google Scholar] [PubMed]
- Jo, H.-G.; Baek, C.Y.; Lee, J.; Hwang, Y.; Baek, E.; Hwang, J.H.; Lee, D. Anti-Inflammatory, analgesic, functional improvement, and chondroprotective effects of Erigeron breviscapus (Vant.) Hand.-Mazz. extract in osteoarthritis: An in vivo and in vitro study. Nutrients 2024, 16, 1035. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Lin, P.; Kang, Q.; Zhao, Z.-L.; Wang, J.; Cheng, J.-Y. Metabolism and pharmacological mechanisms of active ingredients in Erigeron breviscapus. Curr. Drug Metab. 2021, 22, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Li, T.S.C. Chinese and related North American herbs. In Phytopharmacology and Therapeutic Values; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar] [CrossRef]
- Yan, M.M.; Li, T.Y.; Zhao, D.Q.; Shao, S.; Bi, S.N. A new derivative of triterpene with anti-melanoma B16 activity from Conyza canadensis. Chin. Chem. Lett. 2010, 21, 834–837. [Google Scholar] [CrossRef]
- Shakirullah, M.; Ahmad, H.; Shah, M.R.; Ahmad, I.; Ishaq, M.; Khan, N.; Badshah, A.; Khan, I. Antimicrobial activities of Conyzolide and Conyzoflavone from Conyza canadensis. J. Enzym. Inhib. Med. Chem. 2011, 26, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.E. Pharmacological and Therapeutic Importance of Erigeron canadensis. Indo Am. J. Pharm. Sci. 2017, 4, 248–256. [Google Scholar]
- Boniface, P.K.; Pal, A. Substantiation of the ethnopharmacological use of Coniza sumatrensis (Retz) E.H. Walker in the treatment of malaria through in-vivo evaluation in Plasmodium berghei infected mice. J. Ethnopharm. 2013, 145, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Asongalem, E.A.; Foyet, H.S.; Ngogang, J.; Folefoc, G.N.; Dimo, T.; Kamtchouing, P. Analgesic and antiinflammatory activities of Erigeron floribundus. J. Ethnopharm. 2004, 91, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Jack, I.R.; Okorosaye-Orubite, K. Phytochemical analysis and antimicrobial activity of the extract of leaves of fleabane (Conyza sumatrensis). J. Appl. Sci. Environ. Manag. 2008, 12, 63–65. Available online: www.bioline.org.br/ja (accessed on 10 July 2025).
- Ponticelli, M.; Lela, L.; Russo, D.; Faraone, I.; Sinisgalli, C.; Mustapha, M.B.; Esposito, G.; Jannet, H.B.; Costantino, V.; Milella, L. Dittrichia graveolens (L.) Greuter, a rapidly spreading invasive plant: Chemistry and bioactivity. Molecules 2022, 27, 895. [Google Scholar] [CrossRef] [PubMed]
- Zabin, S.A. Antimicrobial, antiradical capacity and chemical analysis of Conyza incana essential oil extracted from aerial parts. J. Essent. Oil-Bear. Plants 2018, 21, 502–510. [Google Scholar] [CrossRef]
- Awen, B.Z.; Unnithan, C.R.; Ravi, S.; Lakshmanan, A.J. GC-MS Analysis, antibacterial activity and genotoxic property of Erigeron mucronatus essential oil. Nat. Prod. Commun. 2010, 5, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, P.; Li, J.; Yi, T.; Wang, J.; An, J.; Zhang, H. Comparison of the anti-inflammatory activities of three medicinal plants known as “meiduoluomi” in Tibetan folk medicine. Yakugaku Zasshi 2008, 128, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L. Chapter 1—Essential Oils: What They Are and How the Terms Are Used and Define. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 3–10. [Google Scholar] [CrossRef]
- Nazaruk, J.; Gudej, J.; Majda, T.; Góra, J. Investigation of the essential oil of Erigeron acris L. herb. J. Essent. Oil Res. 2006, 18, 88–90. [Google Scholar] [CrossRef]
- Nazaruk, J.; Kalemba, D. Chemical composition of the essential oils from the roots of Erigeron acris L. and Erigeron annuus (L.) Pers. Molecules 2009, 14, 2458–2465. [Google Scholar] [CrossRef] [PubMed]
- Pliszko, A.; Łazarski, G.; Kalinowski, P.; Musiał, K. New records on chromosome numbers in non-native Erigeron L. taxa (Asteraceae) from Poland. BioInvasions Rec. 2024, 13, 843–853. [Google Scholar] [CrossRef]
- Magalhães, F.B.I.; Tellis, C.J.M.; Calabrese, K.S.; Abreu-Silva, A.L.; Almeida-Souza, F. Essential oils’ potential in breast cancer treatment: An Overview. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; Oliveira, M.S., Almeida da Costa, W., Silva, S.G., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Lis, A.; Mielczarek, J.; Kalemba, D.; Nazaruk, J. Chemical composition of the essential oil from the herb of Erigeron annuus (L.) Pers. J. Essent. Oil Res. 2008, 20, 229–232. [Google Scholar] [CrossRef]
- Lis, A.; Nazaruk, J.; Mielczarek, J.; Kalemba, D. Comparative study of chemical composition of essential oils from different organs of Erigeron annuus (L.) Pers. J. Essent. Oil-Bear. Plants 2008, 11, 17–21. [Google Scholar] [CrossRef]
- Kumar, V.; Mathela, C.S.; Tewari, G.; Singh, D.; Tewari, A.K.; Bisht, K.S. Chemical composition and antifungal activity of essential oils from three Himalayan Erigeron species. LWT-Food Sci. Technol. 2014, 56, 278–283. [Google Scholar] [CrossRef]
- Kim, D.Y.; Won, K.J.; Hwang, D.I.; Park, S.M.; Kim, H.B.; Lee, H.M. Chemical composition of essential oil from Erigeron annuus (L.) Pers. flower and its effect on migration and proliferation in keratinocyte. J. Essent. Oil-Bear. Plants 2018, 21, 1146–1154. [Google Scholar] [CrossRef]
- Database of Plants of Indian Subcontinent. eFloraofIndia. Available online: https://efloraofindia.com/ (accessed on 8 July 2025).
- Park, J.H.; Choi, Y.-J.; Choi, I.-Y.; Shin, H.-D. First report of powdery mildew caused by Golovinomyces ambrosiae on Erigeron annuus in Korea. Plant Dis. 2023, 107, 2257. [Google Scholar] [CrossRef]
- Iijima, T.; Yaoita, Y.; Kikuchi, M. Five new sesquiterpenoids and a new diterpenoid from Erigeron annuus (L.) PERS., Erigeron philadelphicus L. and Erigeron sumatrensis RETZ. Chem. Pharm. Bull. 2003, 51, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Adande, K.; Eloh, K.; Simalou, O.; Bakaï, M.; Caboni, P. Chemical composition of different extracts of Conyza bonariensis: Insecticidal and nematicidal activities. AJAC 2023, 14, 95–120. [Google Scholar] [CrossRef]
- Wu, H. Conyza bonariensis (L.) Cronquist. The Biology of Australian Weeds. Plant Prot. Q. 2007, 22, 122–131. Available online: https://api.semanticscholar.org/CorpusID:84053843 (accessed on 8 May 2025).
- Marochio, C.A.; Bevilaqua, M.R.R.; Takano, H.K.; Mangolim, C.A.; Oliveira Junior, R.S.; Machado, M.F.P.S. Genetic admixture in species of Conyza (Asteraceae) as revealed by microsatellite markers. Acta Sci. Agron. 2017, 39, 437–445. [Google Scholar] [CrossRef]
- Wang, A.; Wu, H.; Zhu, X.; Lin, J. Species identification of Conyza bonariensis assisted by chloroplast genome sequencing. Front. Genet. 2018, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Balah, M.A.; Al-Andal, A.; Radwan, A.M.; Donia, A.E.M. Unveiling allelopathic dynamics and impacts of invasive Erigeron bonariensis and Bidens pilosa on plant communities and soil parameters. Sci. Rep. 2024, 14, 10159. [Google Scholar] [CrossRef] [PubMed]
- Amaro-Blanco, I.; Fernández-Moreno, P.T.; Osuna-Ruiz, M.D.; Bastida, F.; De Prado, R. Mechanisms of glyphosate resistance and response to alternative herbicide-based management in populations of the three Conyza species introduced in southern Spain. Pest Manag. Sci. 2018, 74, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, M.; Castañeda, L.G.; Torres-Pagan, N.; Llorens-Molina, J.A.; Carrubba, A. Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus essential oils. Molecules 2020, 25, 562. [Google Scholar] [CrossRef] [PubMed]
- Maia, J.G.S.; da Silva, M.H.L.; Zoghbi, M.G.B.; Andrade, E.H.A. Composition of the essential oils of Conyza bonariensis (L.) Cronquist. J. Essent. Oil Res. 2002, 14, 325–326. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Paula, V.F.; Azevedo, A.S.; Silva, E.A.M.; Nascimento, E.A. Essential oil composition from some plant parts of Conyza bonariensis (L.) Cronquist. Flavour Fragr. J. 2005, 20, 39–41. [Google Scholar] [CrossRef]
- Tzakou, O.; Vagias, C.; Gani, A.; Yannitsaros, A. Volatile constituents of essential oils isolated at different growth stages from three Conyza species growing in Greece. Flavour Fragr. J. 2005, 20, 425–428. [Google Scholar] [CrossRef]
- Urdampilleta, J.D.; Amat, A.G.; Bidau, C.J.; Koslobsky, N.K. Biosystematic and chemosystematic studies in five South American species of Conyza (Asteraceae). Bol. Soc. Argent. Bot. 2005, 40, 101–107. Available online: https://www.researchgate.net/publication/262704198_Biosystematic_and_Chemosystematic_studies_in_five_south_american_species_of_Conyza_Asteraceae (accessed on 15 May 2025).
- Mabrouk, S.; Elaissi, A.; Ben Jannet, H.; Harzallah-Skhiri, F. Chemical composition of essential oils from leaves, stems, flower heads and roots of Conyza bonariensis L. from Tunisia. Nat. Prod. Res. 2011, 25, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Benzarti, A.; Hammami, S.; Piras, A.; Falconieri, D.; El Mokni, R.; M’Henni, M.F.; Marongiu, B.; Mighri, Z. Effects of different ecological conditions and extraction techniques on the quality of volatile oils from flaxleaf fleabane (Erigeron bonariensis L.). J. Med. Plant Res. 2013, 7, 3059–3065. [Google Scholar]
- Araujo, L.; Moujir, L.M.; Rojas, J.; Carmona, J.; Rondón, M. Chemical composition and biological activity of Conyza bonariensis essential oil collected in Mérida, Venezuela. Nat. Prod. Commun. 2013, 8, 1175–1178. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Mohan, M.; Singh, P.; Palni, U.T.; Tripathi, N.N. Chemical composition, antibacterial and antioxidant activity of essential oil of Eupatorium adenophorum Spreng. from Eastern Uttar Pradesh, India. Food Biosci. 2014, 7, 80–87. [Google Scholar] [CrossRef]
- Harraz, F.M.; Hammoda, H.M.; El Ghazouly, M.G.; Farag, M.A.; El-Aswad, A.F.; Bassam, S.M. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides. Nat. Prod. Res. 2015, 29, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, P.; Singh, D.; Singh, G.B. Chemical composition of volatile extract of Erigeron bonariensis and its antimicrobial activity. Int. J. Res. Med. Basic Sci. 2016, 2, 1–11. Available online: https://www.researchgate.net/publication/317731557_Chemical_Composition_of_volatile_extract_of_Erigeron_bonariensis_and_its_anti_microbial_activity (accessed on 6 May 2025).
- Musembei, R.; Joyce, K.J. Chemical composition and antibacterial activity of essential oil from Kenyan Conyza bonariensis (L.) Cronquist. Sci. Lett. 2017, 5, 180–185. [Google Scholar]
- do Amaral, W.; Deschamps, C.; Biasi, L.A.; Bizzo, H.R.; Machado, M.P.; da Silva, L.E. Yield and chemical composition of the essential oil of species of the Asteraceae family from Atlantic Forest, South of Brazil. J. Essent. Oil Res. 2018, 30, 278–284. [Google Scholar] [CrossRef]
- Hoi, T.M.; Huong, L.T.; Chinh, H.V.; Hau, D.V.; Satyal, P.; Tai, T.A.; Dai, D.N.; Hung, N.H.; Hien, V.T.; Setzer, W.N. Essential oil compositions of three invasive Conyza species collected in Vietnam and their larvicidal activities against Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Molecules 2020, 25, 4576. [Google Scholar] [CrossRef] [PubMed]
- Elgamal, A.M.; Ahmed, R.F.; Abd-El Gawad, A.M.; El Gendy, A.E.-N.G.; Elshamy, A.I.; Nassar, M.I. Chemical profiles, anticancer, and anti-aging activities of essential oils of Pluchea dioscoridis (L.) DC. and Erigeron bonariensis L. Plants 2021, 10, 667. [Google Scholar] [CrossRef]
- Lundgren, G.A.; Braga, S.D.P.; de Albuquerque, T.M.R.; Árabe Rimá de Oliveira, K.; Tavares, J.F.; Vieira, W.A.D.S.; Câmara, M.P.S.; de Souza, E.L. Antifungal effects of Conyza bonariensis (L.) Cronquist essential oil against pathogenic Colletotrichum musae and its incorporation in gum Arabic coating to reduce anthracnose development in banana during storage. J. Appl. Microbiol. 2022, 132, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.; do Nascimento, Y.M.; de Araújo Loureiro, P.B.; Martins, R.X.; de Souza Maia, M.E.; Farias, D.F.; Tavares, J.F.; Gonçalves, J.C.R.; da Silva, M.S.; Sobral, M.V. Chemical composition, in vitro antitumor effect, and toxicity in Zebrafish of the essential oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023, 13, 1439. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.G.; Haris, A.; Binyameen, M.; Nazir, A.; Mozūratis, R.; Azeem, M. Chemical composition, larvicidal and repellent activities of wild plant essential oils against Aedes aegypti. Biology 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Zapata, B.; Duran, C.; Stashenko, E.; Betancur-Galvis, L.; Mesa-Arango, A.C. Actividad antimicótica y citotoxica de aceites esenciales de plantas de la familia Asteraceae. Rev. Iberoam. Micol. 2010, 2, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Opiyo, S.A.; Njoroge, P.W.; Kuria, K.M. Chemical composition and biological activity of extracts from Conyza species. J. Appl. Chem. (IOSR-JAC) 2023, 16, 61–71. [Google Scholar]
- Mahanur, V.B.; Rajge, R.R.; Pal, R.S.; Chaitanya, M.V.N.L.; Vishwas, S.; Gupta, S.; Gupta, G.; Kumar, D.; Oguntibeju, O.O.; Rehman, Z.; et al. Harnessing unexplored medicinal values of the red listed South African weed Erigeron bonariensis: From ethnobotany to biomedicine. S. Afr. J. Bot. 2023, 160, 535–546. [Google Scholar] [CrossRef]
- Wu, R.; Liang, Y.; Xu, M.; Ke, F.; Zhang, Y.; Wu, L.; Wang, Z. Advances in chemical constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of Erigeron breviscapus. Front. Pharmacol. 2021, 12, 656335. [Google Scholar] [CrossRef] [PubMed]
- Lis, A.; Góra, J. Essential oil of Conyza canadensis (L.) Cronq. J. Essent. Oil Res. 2000, 12, 781–783. [Google Scholar] [CrossRef]
- Lis, A.; Piggott, J.R.; Góra, J. Chemical composition variability of the essential oil of Conyza canadensis Cronq. Flav. Fragr. J. 2003, 18, 364–367. [Google Scholar] [CrossRef]
- Curini, M.; Bianchi, A.; Epifano, F.; Bruni, R.; Torta, L.; Zambonelli, A. Composition and in vitro antifungal activity of essential oils of Erigeron canadensis and Myrtus communis from France. Chem. Nat. Comp. 2003, 39, 191–194. [Google Scholar] [CrossRef]
- Stoyanova, S.; Georgiev, E.; Kermedchieva, D.; Lis, A.; Góra, J. Changes in the essential oil of Conyza canadensis (L.) Cronquist. during its vegetation. J. Essent. Oil Res. 2003, 15, 44–45. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Azar, P.A.; Moradalizadeh, M.; Masoudi, S.; Ameri, N. Volatile constituents of three Compositae herbs: Anthemis altissima L. var. altissima, Conyza canadensis (L.) Cronq. and Grantina aucheri Boiss. growing wild in Iran. J. Essent. Oil Res. 2004, 16, 579–781. [Google Scholar] [CrossRef]
- Choi, H.-J.; Wang, H.-Y.; Kim, Y.-N.; Heo, S.-J.; Kim, N.-K.; Jeong, M.-S.; Park, Y.-H.; Kim, S. Composition and cytotoxicity of essential oil extracted by steam distillation from horseweed (Erigeron canadensis L.) in Korea. J. Korean Soc. Appl. Biol. Chem. 2008, 51, 55–59. [Google Scholar]
- Liu, Z.M.; Wang, H.G.; Liu, S.S.; Jiang, N.X. Comparative study of volatile components of essential oil from Conyza canadensis between hydrodistillation and steam distillation. Adv. Mat. Res. 2010, 113–116, 1644–1647. [Google Scholar] [CrossRef]
- Liu, Z.M.; Wang, H.Y.; Liu, S.S.; Jiang, N.X.; Li, L. Analysis of active components of essential oil from Conyza canadensis. Biomass Chem. Eng. 2010, 44, 22–26. Available online: https://journals.caf.ac.cn/en/swzhxgc/article/id/swzhxgc_372?viewType=HTML (accessed on 28 May 2025).
- Veres, K.; Csupor-Löffler, B.; Lázár, A.; Hohmann, J. Antifungal activity and composition of essential oils of Conyza canadensis herbs and roots. Sci. World J. 2012, 2012, 489646. [Google Scholar] [CrossRef] [PubMed]
- Kloucek, P.; Smid, J.; Frankova, A.; Kokoska, L.; Valterovaand, I.; Pavela, R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012, 47, 161–165. [Google Scholar] [CrossRef]
- Unnithan, C.R.; Muuz, M.; Woldu, A.; Reddy, D.N.; Gebremariam, G.; Menasbo, B.; Hilawie, M.; Teklu, T. Chemical analysis of the essential oil of Erigeron canadensis. UJPBS 2014, 2, 8–10. Available online: https://www.academia.edu/113976306/Chemical_Analysis_of_the_Essential_Oil_of_Erigeron_Canadensis_L (accessed on 28 May 2025).
- Zeng, D.-Q.; Peng, Y.-H.; Chen, F.-F.; Zhang, Y.; Liu, M. Insecticidal activity of essential oil derived from horseweed Conyza canadensis (L.) Cronq. against two mosquitoes and its volatile components. Acta Entomol. Sin. 2014, 57, 204–211. [Google Scholar]
- Ayaz, F.; Küçükboyaci, N.; Demirci, B. Chemical composition and antimicrobial activity of the essential oil of Conyza canadensis (L.) Cronquist from Turkey. J. Essent. Oil Res. 2017, 29, 336–343. [Google Scholar] [CrossRef]
- Lateef, R.; Bhat, K.A.; Chandra, S.; Banday, G.A. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Conyza canadensis growing wild in Kashmir valley. Am. J. Essent. Oils Nat. Prod. 2018, 6, 35–41. Available online: https://api.semanticscholar.org/CorpusID:55770726 (accessed on 12 June 2025).
- Aragão, L.W.; Fernandes, S.S.L.; Mallmann, V.; Facco, J.T.; Matos, M.d.F.C.; Cabral, M.R.P.; de Carvalho, J.E.; Ruiz, A.L.T.G.; Cardoso, C.A.L.; da Silva, R.C.L.; et al. Chemical composition and evaluation of antitumoral activity of leaf and root essential oils of Conyza canadensis (Asteraceae). Orbital Electron. J. Chem. 2019, 11, 284–291. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- Barhoumi, L.M.; Shakya, A.K.; Al-Fawares, O.; Al-Jaber, H.I. Conyza canadensis from Jordan: Phytochemical profiling, antioxidant, and antimicrobial activity evaluation. Molecules 2024, 29, 2403. [Google Scholar] [CrossRef] [PubMed]
- Si, C.; Ou, Y.; Ma, D.; Hei, L.; Wang, X.; Du, R.; Yang, H.; Liao, Y.; Zhao, J. Cytotoxic effect of the essential oils from Erigeron canadensis L. on human cervical cancer HeLa cells in itro. Chem. Biodivers. 2022, 19, e202200436. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Han, M.; Xiao, C.; Wang, H.; Shen, W.; Yang, L. Biological activities of the volatile oil from Conyza canadensis (L.) Cronq. on fungi, bacteria and plants and its chemical constituents. Nongyao 2010, 49, 801. Available online: https://api.semanticscholar.org/CorpusID:88061422 (accessed on 8 May 2025).
- Tzakou, O.; Gani, A.; Economou, G.; Yannitsaros, A. Chemical composition and allelopathic activity of oil and volatile fractions of Conyza albida Willd. ex Sprengel from Greece. J. Essent. Oil Res. 2004, 16, 425–428. [Google Scholar] [CrossRef]
- Kuiate, J.-R.; Tsona, A.A.; Foko, J.; Bessiere, J.M.; Menut, C.; Zollo, P.-H.A. Chemical composition and in vitro antifungal properties of essential oils from leaves and flowers of Erigeron floribundus (H.B. et K.) Sch. Bip. from Cameroon. J. Essent. Oil Res. 2005, 17, 261–264. [Google Scholar] [CrossRef]
- Boti, J.B.; Koukola, G.; Guessan, T.Y.; Casanova, J. Chemical variablity of Conyza sumatrensis and Microglossa pyrifolia from Côte d’Ivoire. Flavour Fragr. J. 2007, 22, 27–31. [Google Scholar] [CrossRef]
- Joshi, R.K.; Mujawar, M.H.K.; Badakar, V.M.; Khatib, N.A. In vitro antimicrobial activity of the essential oils Erigeron floribundus. IJRAP 2011, 2, 236–238. [Google Scholar]
- Mabrouk, S.; Salah, K.B.H.; Elaissi, A.; Jlaiel, L.; Jannet, H.B.; Aouni, M.; Harzallah-Skhiri, F. Chemical composition and antimicro bial and allelopathic activity of Tunisian Conyza sumatrensis (Retz.) E. Walker essential oils. Chem. Biodivers. 2013, 10, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, R.; Orsomando, G.; Sorci, L.; Maggi, F.; Ranjbarian, F.; Biapa Nya, P.C.; Petrelli, D.; Vitali, L.A.; Lupidi, G.; Quassinti, L.; et al. Biological activities of the essential oil from Erigeron floribundus. Molecules 2016, 21, 1065. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Zaman, T.; Abbasi, A.M.; Abid, M.; Mozuratis, R.; Alwahibif, M.S.; Elshikh, M.S. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arab. J. Chem. 2022, 15, 103482. [Google Scholar] [CrossRef]
- Guetchueng, S.T.; Lontsi, A.T.; Kowa, T.K.; Tchamgoue, J.; Tsabang, N.; Nnanga, E.N. Traditional uses, phytochemistry, pharmacology, and toxicology of Erigeron floribundus (Kunth) Sch. Bip.: A Review. Nat. Prod. J. 2023, 13, 115–121. [Google Scholar] [CrossRef]
- National Library of Medicine. NCBI (National Center for Biotechnology Information). Available online: https://www.ncbi.nlm.nih.gov/Taxonomy (accessed on 10 June 2025).
- Mustapha, M.B.; Algethami, F.K.; Elamin, M.R.; Abdulkhair, B.Y.; Chaieb, I.; Jannet, H.B. Chemical composition, toxicity and repellency of Inula graveolens essential oils from roots and aerial parts against stored-product beetle Tribolium castaneum (Herbst). Chem. Biodivers. 2023, 20, e202200978. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Chemical constituents and pharmacological effect of Inula graveolens (syn: Dittrichia graveolens): A review. Indo Am. J. Pharm. Sci. (IAJPS) 2018, 5, 2183–2190. [Google Scholar] [CrossRef]
- Al-Zubiri, A.S.; Al-Mamary, M.A.; Al-Ghassani, E.A. The antibacterial, antifungal and antioxidant activities of essential oil from different aromatic plants. Glob. Adv. Res. J. Med. Sci. 2017, 6, 224–233. Available online: http://garj.org/garjmms (accessed on 8 July 2025).
- Al-Mamary, M.; Abdelwahab, S.I.; Al-Ghalibi, S.; Al-Ghasani, E. The antioxidant and tyrosinase inhibitory activities of some essential oils obtained from aromatic plants grown and used in Yemen. Scien. Res. Essays (SRE) 2011, 6, 6840–6845. [Google Scholar]
- Chandra Pandey, S.; Dhami, D.S.; Jha, A.; Chandra Shah, G.; Kumar, A.; Samant, M. Identification of trans-2-cis-8-Matricaria-ester from the essential oil of Erigeron multiradiatus and evaluation of its antileishmanial potential by in vitro and in silico approaches. ACS Omega 2019, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Plant Database of Lady B. Jonson Wildflower Center. Available online: https://www.wildflower.org/plants/index.php (accessed on 9 July 2025).
- Yaoita, Y.; Kikuchi, M.; Machida, K. Terpenoids and related compounds from plants of the family Compositae (Asteraceae). Nat. Prod. Commun. 2012, 7, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Regarding the Amendment of the Minister of the Environment of the Republic of Lithuania “Regarding the Approval of the List of Species of Invasive Organisms in Lithuania and the Recognition of Some Orders of the Minister of the Environment as Having Lost Their Validity”. Available online: https://e-seimas.lrs.lt/portal/legalAct/lt/TAD/TAIS.239692/asr (accessed on 8 June 2025).
- Rahman, A.; Kang, S.C. Inhibition of foodborne pathogens and spoiling bacteria by essential oil and extracts of Erigeron ramosus (WALT.) B.S.P. J. Food Saf. 2009, 29, 176–189. [Google Scholar] [CrossRef]
- Meepagala, K.M.; Sturtz, G.; Wise, D.; Wedge, D.E. Molluscicidal and antifungal activity of Erigeron speciosus steam distillate. Pest Manag. Sci. 2002, 58, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Giang An, N.T.; Duc Giang, L.; Tran Trung, H.; Xuan Duc, D.; Thi Thu, N.; Thu Hien, N.T.; Xuan Ha, N.; Khoa Nguyen, D.; Sy Vo, V. Chemical constituents, biological activities and molecular docking studies of root and aerial part essential oils from Erigeron sublyratus Roxb. ex DC. (Asteraceae). Chem. Biodivers. 2025, 22, e202401356. [Google Scholar] [CrossRef] [PubMed]
Origin of Plant Material | Method of EO Preparation *, Yield | Main Constituents in EOs, % | Literature |
---|---|---|---|
Herb material was collected near Białystok, Poland. | HD for 3 h in a Deryng apparatus; 0.3% (per weight of dried plant material). | Limonene 38.8; β-pinene + sabinene 15.6; (E)-β-ocimene 13.5; (E,Z)-matricaria ester + α-murolene 6.0. | [28] |
Roots collected in the vicinity of Białystok, Poland. | HD for 3 h of dried material, using a glass Clevenger-type apparatus, 1.0%. | (Z,Z)-Matricaria ester 49.4; (Z)-lachnophyllum ester 37.2. | [29] |
Origin of Plant Material | Method of EO Preparation *, Yield | Main Constituents in EOs, % | Literature |
---|---|---|---|
Aerial parts collected at four different ontogenesis phases: before bud formation, budding, beginning of flowering, full flowering from natural population in Poland. | HD in a glass apparatus for 3 h; 0.08% in fresh herb, 0.13–0.20% in air-dried material. | Germacrene D 42.7–63.7; β-caryophyllene 9.0–15.9; (Z)-lachnophyllum ester 6.2–8.3. | [32] |
Plants harvested at the flowering stage from natural habitat in Poland. | HD of various air-dried plant parts in a glass apparatus for 3 h, 0.47% in flowers and 0.26% in leaves. | Flowers: germacrene D 47.2; (Z)-lachnophyllum ester 10.2; matricaria ester 9.5. Leaves: germacrene D 55.6; β-caryophyllene 9.4. Stems: germacrene D 44.5; β-caryophyllene 13.4; caryophyllene oxide 5.3. Roots: matricaria ester 59.9; (Z)-lachnophyllum ester 34.9. | [33] |
Roots harvested at the plant full bloom period in the vicinity of Białystok, Poland. | HD of dried plant material by Clevenger-type apparatus for 3h, 0.05% | (Z,Z)-matricaria ester 45.9; (Z)-lachnophyllum ester 27.5; (Z,Z)-matricaria lactone 7.2. | [29] |
Plants at flowering stage collected from sub-alpine Himalayan region of Uttarakhand (7000–10,000 ft elevation), India. | Steam distillation of fresh aerial parts. The distillate was extracted with n-hexane and organic phase separated was extracted once more time with dichloromethane. Both extracts were combined, 0.10–0.20% v/w. | cis-Lachnophyllum ester 68.1; germacrene-D 10.4. | [34] |
Plants were collected from cultivated farm at the Department of Cosmetic Science, Hoseo University, Asan, Korea. | Flower blossoms were harvested and air-dried for 24 h. Steam distillation of semi-dried material. From 18 kg of semi-dried flowers was obtained 15 mL of EO. | Germacrene-D 71.0; trans-caryophyllene 6.3. | [35] |
Origin of Plant Material | Method of EO Preparation *, Yield | Major Constituents in EOs, % | Literature |
---|---|---|---|
Collected in five places in the Amazon region (Mato Grosso, Pará and Amapá states). | HD of air-dried (for 7 days) herbs in a Clevenger-type apparatus for 4 h, 0.1–0.5%. | Limonene ≤ 58.4; (E)-β-farnesene ≤ 30.9; germacrene D ≤ 15.3; (E)-caryophyllene ≤ 14.4; trans-α-bergamotene ≤ 8.1; bicyclogermacrene ≤ 8.3; spathulenol ≤7.6. | [46] |
Aerial parts collected in Rio de Janeiro, Brazil. | Distillation of fresh aerial by a modified Clevenger-type apparatus for 8 h, 0.16%. | Limonene 45.0; (E)-β-ocimene 13.0; (E)-β-farnesene 6.6; germacrene D 6.4. | [13] |
Seeds were cultivated in a greenhouse. Different plat organs (inflorescences (F), leaves (L), stems (S) and roots (R)) collected in Minas Gerais State, Brazil. | Steam distillation of different plant parts in a Clevenger-type apparatus for 90 min; 0.04–0.32%. | F: carvone 21.1. L: Limonene 29.6; trans-α-bergamotene 10.3; matricaria methyl ester 8.3; β-copaen-4α-ol 7.4. S: manool 25.3. R: matricaria methyl ester 74.4. | [47] |
Aerial parts (at the flowering stage) gathered from Athens, Greece. | HD, 0.30%. | (Z)-Lachnophyllum ester 10.8–21.2; (E)-β-ocimene 11.5–18.9; matricaria ester 9.4–17.6; limonene 8.3–15.1; (E)-β-farnesene 8.1. | [48] |
Aerial parts collected from urban and suburban areas of Southwestern Misiones Province, Argentina | HD of fresh aerial for 2 h in a Clevenger-type apparatus. | Germacrene D 14.6; limonene 13.5; (E)-β-ocimene 13.3, bicyclogermacrene 6.6; p-mentha-1,3,8-triene 5.2. | [49] |
Aerial and underground parts at the flowering stage collected in spring, summer and autumn in Monastir, Tunisia. | HD of fresh material for 4 h, using a Clevenger-type apparatus.; yields ranged from 0.02% ± 0.1% to 1.23% ± 0.2% (w/v, based on fresh plant material). | Spring samples: matricaria ester ≤ 67.3; (Z)-nerolidol ≤ 19.9; caryophyllene oxide ≤ 14.3. Summer: matricaria ester ≤ 76.4; (E)-β-farnesene ≤ 22.7; caryophyllene oxide ≤ 22.6. Autumn samples: matricaria ester ≤ 63.5; geranyl acetone ≤ 25.3; trans-α-bergamotene ≤ 24.3; limonene ≤ 15.3. | [50] |
Aerial parts collected from wastelands in Cagliari, Sardinia, Italy. | HD of dried plant material for 4 h in circularly Clevenger-type apparatus; 0.15%. | cis-Lanchnophyllum ester 14.2; (E)-β-farnesene 12.0, spathulenol 11.4; caryophyllene oxide 10.0; γ-muurolene 9.7; limonene 6.5. | [51] |
Aerial parts collected from two different localities: from roadsides and more or less anthropized wastelands in Monastir region, Tunisia. | HD of dried plant material for 4 h in a Clevenger-type apparatus; 0.19%. Supercritical CO2 extraction (SFE) performed in a laboratory apparatus; 1.9 × 10−2%. | By HD: caryophyllene oxide 18.7; spathulenol 18.6; α-curcumene 10.2; carvacrol 9.8; neophytadiene 6.1; limonene 5.1. By SFE: neophytadiene 53.2; carvacrol 12.9; (E)-β-farnesene 7.3; spathulenol 7.2; α-curcumene 6.8. | [51] |
Leaves collected in Sector Chama, Mérida State, Venezuela. | HD of fresh leaves for 4 h using a Clevenger-type apparatus; 0.04% (v/w) (on a dry weight of the plant material). | (E)-β-Farnesene 37.8; trans-β-ocimene 20.7; β-sesquiphellandrene 9.8; α-farnesene 5.6; limonene 5.1; (Z)-β-ocimene 5.1. | [52] |
Plants collected from forests and adjoining areas of Gorakhpur Division (about 91m above sea level) in Eastern Uttar Pradesh, India. | HD of twigs using a Clevenger apparatus (for 4 h at 90 ± 2 °C); 0.06% (on fresh weight basis). | Not indicated. | [53] |
Material (under name C. linifolia) collected during flowering stage from Nubaria, Alexandria, Egypt. | HD of dried powdered aerial parts by a Clevenger-type apparatus at 50 °C for 3 h. | Bergamotene 27.4; D-limonene 22.6; carvone 5.9; β-farnesene 5.7. | [54] |
Plant material was collected from Dineshpur, Udham Singh Nagar district, India. | SD of fresh aerial parts, then distillates were extracted with n-hexane and dichloromethane; 0.75% (v/w). | β-Eudesmol 40.6; caryophyllene oxide 34.1; carvacrol 8.9. | [55] |
Leaves gathered in Kabianga location, Kericho, Kenya. | HD of fresh leaves for 4 h using a Clevenger-type apparatus; 0.04% (on dry weight). | 2,6,7,7a-Tetrahydro-1,5-dimethyl-1H-indene-3-carboxaldehyde 49.1; limonene 8.3; β-pinene 5.4. | [56] |
Aerial parts collected in the Atlantic Forest, in Parana State, Brazil. | HD for 4 h and 30 min in a Clevenger-type apparatus, using fresh or dried plant material; 1.23% (fresh samples) and 0.86% (dried material). | Limonene 66.3; 2-heptyl acetate 6.9. | [57] |
Aerial parts collected from Bach Ma National Park, Thue Thien, Hue province, Vietnam. | HD of fresh aerial parts (leaves, stems, and flowers) for 4 h using a Clevenger-type apparatus; 1.10%. | allo-Aromadendrene 41.2; β-caryophyllene 13.3; caryophyllene oxide 12.2; α-humulene 5.4. | [58] |
Plants collected from two populations along the Cairo–Alexandria desert road, Egypt. | HD of air-dried powder of the above-ground parts in a Clevenger-type apparatus for 3 h; 0.049%. | trans-α-Farnesene 25.0; o-ocimene 12.6; ledene oxide 10.9; dendrolasin 8.4; α-maaliene 6.6. | [59] |
Branches and leaves of Conyza bonariensis (L.) collected from the Medicinal Plant Garden, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil. | HD in a Clevenger-type apparatus. | Sesquicineole 48.5; sesquisabinene 10.9; limonene 9.6; thymol 6.2. | [60] |
Whole plants collected in Dagni Koudzragan, Togo. | SD using a Clevenger-type apparatus for to 4 h; 0.12% of fresh material; 0.3% from flowers, 0.01% from roots. | Whole plant: methyl cis-lachnophyllum ester 58.0; limonene 11.7; β-ocimene 8.3, β-farnesene 6.2. Leaves: β-caryophyllene 16.2, β-farnesene 15.5; limonene 12.8, methyl cis-lachnophyllum ester 9.8; germacrene-D 6.8; β-ocimene 5.8; γ-cadinene 5.3. Flowers: β-caryophyllene 21.1; β-farnesene 12.9; γ-cadinene 5.7; allo-aromadendrene 5.7; limonene 5.6. Roots: methyl cis-lachnophyllum ester 50.6; β-farnesene 25.7. | [39] |
Plants from the Medicinal Plant Garden, UFPB, João Pessoa, Paraíba, Brazil. | HD of branches and leaves in a Clevenger-type apparatus for 2 h; 1.3% (w/w). | (Z)-2-Lachnophyllum ester 57.2; limonene 14.3. | [61] |
Leaves and stems collected from the Bio-Park at Bahauddin Zakaria University, Multan; and from a hilly area of Abbottabad, Pakistan. | SD for 4 h of fresh parts on the same day of their gathering. The distillate was extracted in n-hexane; 0.21% (w/w, on fresh plant material). | Matricaria ester 43.1; cis-lachnophyllum ester 24.9; trans-β-farnesene 10.2. | [62] |
Origin of Plant Material | Method of EO Preparation *, Yield | Major Constituents in EOs, % | Literature |
---|---|---|---|
Wild-growing plants collected at the flowering stage near Lodz, Poland. | HD of air-dried material in a glass apparatus for 5 h, 0.8% | Limonene 70.0; trans-α-bergamotene 7.0. | [67] |
From different parts (herb, leaves, flowers, stems, roots) at various ontogenesis phases; plants collected in Łódź, Poland; Alps, France; Rome, Italy; Seville, Spain; Belgium; Plovdiv, Bulgaria; Vilnius, Lithuania and Israel. | HD; EO yield of herb was the highest at early flowering phases; ≤0.8%. | R-(+)-limonene 51.4–87.9, trans-α-bergamotene 5.4–11.9; germacrene D 7.3; (Z,Z)-matricaria ester ≤7.7; (Z)-β-farnesene ≤6.3; (E)-β-ocimene 5.1–13.4. | [68] |
Plant material collected in France. | Limonene 76.03 ± 0.07; α-santalene 5.84 ± 0.04. | [69] | |
Harvested at six different phases of vegetation (from before budding until the phase of full deflorate) near Plovdiv, Bulgaria. | HD in a modified laboratory glass apparatus for 2 h The oil content increased until the budding phase (0.25%), and remained the same until the phase of blossom fall with seed development and then, in the phase of full defloration, it reduced by half. | Limonene 77.7–89.4, β-pinene ≤ 6.6. | [70] |
Aerial parts harvested at flowering stage around Kerman, Kerman Province, Iran. | HD using a Clevenger-type apparatus for 3 h, 0.5% (w/w). | (E)-β-Farnesene 14.6; spathulenol 14.1; limonene 12.3; myrcene 8.9; ar-curcumene 7.8; iso-spathulenol 7.7; phytol 7.3; zingiberene 5.5. | [71] |
Plant material collected at vegetative, flowering and flowering–fruiting stages in Athens, Greece. | HD using a Clevenger-type apparatus. | Limonene 50.0–70.3; β-pinene ≤9.5; matricaria ester ≤14.4; (E)-β-ocimene ≤7.5. | [48] |
Plant material collected in Korea. | SD. | D, L-limonene 68.3; δ-3-carene 15.9. | [72] |
Fresh aerial parts by HD and SD. | Obtained by HD: limonene 68.9. | [73] | |
SD | Limonene, α-bergamotene, (E)-β-farnesene, (Z)-β-farnesene, 2,3-dimethyl-4(3H)-quinazolinone. | [74] | |
Herb and roots collected in Szeged and Jakabszállás, Hungary. | HD of dried flowering shoots and roots for 2 h; from herbs 0.72%, in roots 0.20% (on the basis of the dry weight). | Aerial parts: limonene 79.2. Roots: 2Z,8Z-matricaria ester ≤93.9. | [75] |
Commercial EO purchased from Essential Oil University, Charlestown, IN, USA. | Limonene 48.2. | [76] | |
Aerial parts were collected from Mekelle, Ethiopia. | HD of dried aerial parts in a Clevenger apparatus for 3 h; 0.69% (w/fresh weight). | Limonene 57.2; caryophyllene 6.7. | [77] |
Plants were collected in China. | Limonene 14.8; epi-bicyclosesquiphellandrene 11.0. | [78] | |
Plants in Gorakhpur Division, Eastern Uttar Pradesh, India. | HD of twigs using Clevenger’s apparatus for 4 h at 90 ± 2 C; 0.1% on a fresh weight basis. | Not indicated. | [53] |
The aerial parts (during the flowering period) and roots were collected from Manavgat, Antalya, Turkey. | HD of fresh aerial parts and roots for 3 h, using a Clevenger-type apparatus; 0.17% in aerial parts and traces in roots. | Aerial parts: limonene 28.1; spathulenol 16.3; β-pinene 9.7. Roots: cis-lachnophyllum ester 86.5. | [79] |
Aerial parts of C. canadensis growing wild in Kashmir valley, India. | HD | Limonene 23.8; (Z)-lachnophyllum ester 21.3; (E)-β-ocimene 16.0; β-pinene 11.8; (E)-β-farnesene 7.8. | [80] |
The plants were collected (leaves and roots) in two hours of the day, 6 a.m. and 4 p.m.; gathering was carried out in a rural area in the municipality of Naviraí, Mato Grosso do Sul, in the center-west region of Brazil. | HD in a Clevenger modified apparatus for 4 h; EOs yields varied in leaves from 1.2 ± 0.3 to 0.7 ± 0.2; in roots from 0.6±0.2 to 0.4 ± 0.1 during collection at 6 a. m. and 4 p.m. | Leaves: limonene 61.0 and 38.0; caryophyllene oxide 12.5 and 22.3; spathulenol 5.4 and 10.7 at 6 a.m. and 4 p.m., respectively. Roots: lachnophyllum methyl ester 93.7 and 91.6; matricaria methyl ester 5.2 and 6.7, when the plants collected 6 a. m. and 4 p.m., respectively. | [81] |
Fresh aerial parts of wild grown plants collected from the suburbs of District Abbottabad, Pakistan. | SD of fresh aerial parts in a stainless-steel distiller. The distillate was collected in a separating funnel for 3 h, 0.22%. | Limonene 41.3; germacrene D 10.3; matricaria ester 10,3; trans-β-ocimene 8.2; cis-lachnophyllum ester 6,5; (3E,5E)-2,6-dimethyl-1,3,5,7-octatetraene 6.9. | [82] |
Aerial parts (leaves, stems, and flowers) collected from Bach Ma National Park, Thue Thien Hue province, Vietnam. | HD of fresh aerial parts for 4 h, using a Clevenger-type apparatus; 1.37%. | Limonene 41.5; β-pinene 8.8; (Z)-lachnophyllum ester 5.5. | [58] |
Leaves and stems collected from the Bio-Park at Bahauddin Zakaria University, Multan; and from a hilly area of Abbottabad, Pakistan. | SD for 4 h of fresh parts of plants on the same day as their collection. The distillate was extracted in n-hexane, 0.21% (w/w on fresh plant material). | Matricaria ester 31.7; limonene 28.4; cis-lachnophyllum ester 16.3; germacrene D 6.4; trans-β-ocimene 5.0. | [62] |
The aerial parts of wild plants collected from the Al Mansour neighborhood, Al-Jubeiha, Amman governorate, Jordan. | HD of fresh organs (inflorescence heads (Inf), leaves (L) and stems (St)) for 3 h in a Clevenger-type apparatus. Inf: 0.38%, L: 1.71%, St: 0.023%. | (2E,8Z)-Matricaria ester: 60.7 (L), 31.6 (St), 15.4 (Inf). | [83] |
Origin of Plant Material | Method of EO Preparation *, Yield | Main Constituents in EOs, % | Literature |
---|---|---|---|
Young plants (identified as Conyza albida Willd. ex Sprengel) collected from a natural population in the University of Athens Campus, Greece. | HD of fresh aerial parts (rosette) for 3 h, using a modified Clevenger-type apparatus; 0.25%. | cis-Lachnophyllum ester 30.0; germacrene D 12.9; (E)-β-farnesene 12.5; limonene 11.2; (E)-β-ocimene 8.4; lachnophyllumlactone 7.1 | [86] |
Plant material (identified as C. albida) from Greece. | HD. | cis-Lachnophyllum ester 8.8–36.5; germacrene D 10.5–20.2; limonene 10.0–21.1. | [48] |
C. sumatrensis (Retz.) E. Walker var. sumatrensis and C. sumatrensis (Retz.) E. Walker var. floribunda (Kunth) J. B. Marshall collected from urban and suburban areas of Southwestern Misiones Province, Argentina. | HD of fresh aerial parts for 2 h. in a Clevenger-type apparatus. | Limonene ≤ 63.1; (E)-β-ocimene ≤ 8.7; germacrene D 7.5; β-pinene ≤ 6.3; bicyclogermacrene 5.3. | [49] |
Leaves and flowers of the plants (identified as Erigeron floribundus (H.B. et K.) Sch. Bip.) collected in Yaoundé (Centre province), and Bafoussam and Dschang (Western province), Cameroon. | HD for 3 h, using a Clevenger-type apparatus; 0.2% from leaves and 0.3% from flowers. | Fower EO: (E)-β-farnesene 22.3–24.1; β-caryophyllene 17.3–20.1; germacrene D 10.1–11.0. Leaf EO: (Z)-2-lachnophyllum ester 23.7–26.2; (E)-β-farnesene 14.6–16.4; β-caryophyllene 14.7–16.6; limonene 9.5–11.4. | [87] |
leaves, flowers and root bark of the plants (identified as Conyza sumatrensis Retz E. K. Walker) collected in Côte d’Ivoire. | HD. | Leaf and flower EOs: limonene 13.0–25.5; (E)-β-farnesene 7.8–17.5; (E)-β-caryophyllene 9.1–15.8; germacrene D ≤13.6. Root bark oil: (Z)-lachnophyllum acid methyl ester 75.0. | [88] |
The aerial parts of E. floribundus collected from the campus of Regional Medical Research Centre (RMRC), (ICMR), Belgaum (at a height of 800 m.), Karnataka, India. | SD using copper still fitted with spiral glass condensers for 3 h, then extracted with n-hexane and dichloromethane, 0.01% (v/w). | Not presented | [89] |
Conyza sumatrensis (Retz.) E. Walker collected at the flowering stage in the area of Monastir, Tunisia. | HD of different parts (flower heads, leaves, stems, and roots). | Leaf EO: caryophyllene oxide 20.5; spathulenol 13.8; matricaria ester 7.5. Root EO: matricaria ester 74.3. | [90] |
Aerial parts harvested in Dschang, West Province of Cameroon (1450 m a.s.l.). | HD of dry aerial parts in a Clevenger-type apparatus for 4 h, 0.2% (n = 3) (w/w), on a dry-weight basis. | Caryophyllene oxide 12.4; spathulenol 12.2; limonene 8.8; (E)-β-farnesene 5.5. | [91] |
Conyza sumatrensis (Retz.) collected from two different areas of Abbottabad, Pakistan. | SD of fresh aerial parts in a stainless-steel distillation apparatus for 4 h; 0.25%. | cis-Lachnophyllum ester 37.7; limonene 21.6; germacreneD 13.4; trans-β-farnesene 6.6; trans-β-ocimene 5.7; elixene 5.3. | [92] |
Origin of Plant Material | Main Constituents in EOs, % | Literature |
---|---|---|
Aerial parts of Inula graveolens. EOs obtained by HD. | EO from aerial parts: borneol 28.8; caryophylla-4(14),8(15)-dien-6-ol 11.5; caryophyllene oxide 10.9; τ-cadinol 10.5; bornyl acetate 9.4. Root EO: modhephen-8-β-ol 24.7; cis-arteannuic alcohol 14.8; neryl isovalerate 10.6; thymol isobutyrate 8.5. | [95] |
Origin of Plant Material | Method of EO Preparation *, Yield | Main Constituents in EOs, % | Literature |
---|---|---|---|
The aerial parts were collected from Sana’a city, Yemen. | HD of fresh aerial parts for 4 h, using a Clevenger-type apparatus, 1.8%, (w/w) (on dry weight). | 3-hydroxy-4-methoxy Cinammic acid 72.6; thymol acetate 11.3. | [24] |
Origin of Plant Material | Method of EO Preparation *, Yield | Main Constituents in EOs, % | Literature |
---|---|---|---|
Stems, leaves, flowers and roots of the plants, growing wild in rocky areas of the Nilgiri Hills, India. | HD of leaves in a Clevenger apparatus for 2 h; 0.5%. The yield varied from 0.49 to 0.58%, being highest during the rainy season. | (E,E)-Matricaria ester 13.7; caryophyllenes 11.4; limonene 10.3; cis-methyl lachnophyllum ester 8.7; germacrene-D 6.3. | [25] |
Plants (identified as E. mucronatus DC. E. karwinskianus DC.) collected from sub-alpine Himalayan region of Uttarakhand (7000–10,000 ft elevation) at flowering stage. | SD, extraction in n-hexane and dichloromethane, 0.1% (v/w) in E. mucronatus and 0.2% (v/w) for E. karwinskianus. | E. karwinskianus DC: trans-2-cis-8-Matricaria ester 25.4; germacrene-D 13.1; α-muurolene 6.4; β-(E)-ocimene 6.0; β-elemene 6.0. E. mucronatus: trans-2-cis-8-matricaria ester 62.1; cis-lachnophyllum ester 21.2. | [34] |
Origin of Plant Material | Main Constituents in EOs, % | Literature |
---|---|---|
Korea (E. ramosus is an alien species in Korea) | β-Caryophyllene 24.0; α-humulene 14.5; 1,8-cineole 9.0; eugenol 7.2; globulol 7.1; caryophyllene oxide 5.2. | [103] |
Main Constituents in EOs, % | Literature |
---|---|
Lachnophyllum ester 53.4–64.2; germacrene D 5.6–8.6; trans-β-ocimene ≤ 7.5; β-caryophyllene ≤ 6.8; β-myrcene ≤ 6.3 ; (E)-β-farnesene ≤ 5.0 . | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judžentienė, A. Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species. Molecules 2025, 30, 2989. https://doi.org/10.3390/molecules30142989
Judžentienė A. Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species. Molecules. 2025; 30(14):2989. https://doi.org/10.3390/molecules30142989
Chicago/Turabian StyleJudžentienė, Asta. 2025. "Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species" Molecules 30, no. 14: 2989. https://doi.org/10.3390/molecules30142989
APA StyleJudžentienė, A. (2025). Compositional Variability of Essential Oils and Their Bioactivity in Native and Invasive Erigeron Species. Molecules, 30(14), 2989. https://doi.org/10.3390/molecules30142989