Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = betaine structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Viewed by 256
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

17 pages, 10093 KB  
Article
Effects of Air-Entraining Agent Type on Air Entrainment and Air-Void Structure of Cement Mortars Under Low Atmospheric Pressure
by Lianxia Ma, Rui He, Yinbo Zhang and Liangliang Li
Processes 2026, 14(1), 61; https://doi.org/10.3390/pr14010061 - 24 Dec 2025
Viewed by 390
Abstract
This study examines the effect of air-entraining agents (AEAs) type on cement-mortar air content and air-void structure under reduced atmospheric pressure. Six representative AEAs—cetyltrimethylammonium bromide (CTAB), triterpenoid saponin (TS), sodium dodecylbenzenesulfonate (SDBS), sodium abietate (SA), cocamidopropyl betaine (CAB), and fatty alcohol polyoxyethylene ether [...] Read more.
This study examines the effect of air-entraining agents (AEAs) type on cement-mortar air content and air-void structure under reduced atmospheric pressure. Six representative AEAs—cetyltrimethylammonium bromide (CTAB), triterpenoid saponin (TS), sodium dodecylbenzenesulfonate (SDBS), sodium abietate (SA), cocamidopropyl betaine (CAB), and fatty alcohol polyoxyethylene ether (AEO-9)—were selected. Their foaming ability and time-dependent foam stability were measured in deionized water and in cement filtrate, and the air content of fresh mortars and the distribution of air-voids in hardened mortars were determined at 100 and 60 kPa. The results show that, at 100 kPa, TS, CAB, and CTAB produced higher initial foam height and better foam stability in deionized water than AEO-9, SA, and SDBS. TS and CAB also maintained a higher number density of bubbles and slower coalescence. In addition, all surfactant systems showed lower initial foam height and stability in cement filtrate than in deionized water, with SDBS, SA, and AEO-9 experiencing the greatest declines. When the pressure decreased from 100 kPa to 60 kPa, the mortar air content dropped by 8–15%, with the smallest reduction for TS (~8%) and the largest for CTAB (~15%). At 60 kPa, air voids with radius < 250 μm decreased markedly in hardened mortars: by 51%, 25%, and 28% for the control, CTAB, and AEO-9 mortars, respectively; but only by 14% for TS, highlighting its superior retention of fine air voids. Overall, amphoteric/saponin-type systems (represented by TS) exhibit better tolerance and stabilization, and are recommended for high-altitude concrete. Full article
Show Figures

Figure 1

14 pages, 2394 KB  
Article
Effective Inactivation of Enterococcus faecalis Biofilms via Singlet Oxygen Induced by Calcination Betaine Hydrochloride Carbon Dots Under Light Irradiation
by Wooil Kim, Franklin Garcia-Godoy, So-Young Park and Hye-Ock Jang
Appl. Sci. 2025, 15(24), 13022; https://doi.org/10.3390/app152413022 - 10 Dec 2025
Viewed by 354
Abstract
This study synthesizes novel photosensitizer calcination betaine hydrochloride carbon dots (CBCDs) to address the critical challenge of Enterococcus faecalis (E. faecalis) biofilms, a major cause of root canal treatment failure. To this end, this study investigates the effective elimination via reactive [...] Read more.
This study synthesizes novel photosensitizer calcination betaine hydrochloride carbon dots (CBCDs) to address the critical challenge of Enterococcus faecalis (E. faecalis) biofilms, a major cause of root canal treatment failure. To this end, this study investigates the effective elimination via reactive oxygen species (ROS) mediated by these CBCDs. CBCDs were prepared by calcining betaine hydrochloride and rigorously characterized for their structural and chemical properties using transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Their optical characteristics were also thoroughly analyzed through UV-Vis and fluorescence spectroscopy. The RNO-ID assay was performed to explicitly confirm ROS production, particularly verifying significant singlet oxygen (1O2) generation. Bactericidal efficacy of the CBCDs was comprehensively evaluated against planktonic E. faecalis and its formed biofilms. Live/dead staining was subsequently performed to observe their state after treatment. As a result, TEM confirmed nanosized CBCDs, and FTIR/XPS analyses identified crucial functional groups. Colony Forming Unit (CFU) assays revealed a dose-dependent reduction in E. faecalis viability, achieving complete eradication at 200 mg/L under light irradiation. Complete cell death and inactivation of the formed biofilms with increasing CBCD concentrations were also strongly evidenced by red fluorescence. The obtained results underscore CBCDs as highly effective photodynamic agents for the robust elimination of E. faecalis biofilms, offering a promising new strategy to combat persistent oral infections. Full article
Show Figures

Figure 1

7 pages, 1031 KB  
Short Note
2-Benzyl-6-carboxy-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidin-1-ium 2,2,2-trifluoroacetate
by Francesco Bavo, Christos Avgerinos, Elena Martino and Bente Frølund
Molbank 2025, 2025(4), M2077; https://doi.org/10.3390/M2077 - 20 Oct 2025
Viewed by 509
Abstract
Cyclic guanidines are valuable scaffolds for the design of compounds acting on GABAergic neurotransmission, owing to their ability to mimic the amino functionality of GABA as bioisosteres. With the aim to obtain a more potent and selective betaine/GABA transporter (BGT1) inhibitor, a basic [...] Read more.
Cyclic guanidines are valuable scaffolds for the design of compounds acting on GABAergic neurotransmission, owing to their ability to mimic the amino functionality of GABA as bioisosteres. With the aim to obtain a more potent and selective betaine/GABA transporter (BGT1) inhibitor, a basic hydrolysis of ethyl (E)-2-(acetylimino)-1-(3-phenylprop-2-yn-1-yl)hexahydropyrimidine-5-carboxylate was attempted. However, we isolated a byproduct, which was identified as the trifluoroacetate salt of 2-benzyl-5,6,7,8-tetrahydroimidazo[1,2-a]pyrimidine-6-carboxylic acid. The structure was confirmed by NMR spectroscopy and LC-MS. Herein we report the preparation, characterization, and spectral data of this fused heterocyclic compound. Full article
(This article belongs to the Collection Molecules from Side Reactions)
Show Figures

Figure 1

15 pages, 7472 KB  
Article
Metabolomic Analysis of Fermented Nori Powders: Divergence of Betaine Structural Analogs Production by Three Types of koji Fungal Fermentation
by Nao Inoue, Konoka Kubo, Keisuke Tsuge, Ryosuke Sasaki, Akira Oikawa, Masatoshi Goto, Teruyoshi Yanagita and Koji Nagao
Molecules 2025, 30(20), 4104; https://doi.org/10.3390/molecules30204104 - 16 Oct 2025
Viewed by 686
Abstract
Fermenting seaweed with koji fungi transforms its chemical composition, generating bioactive compounds absent in the raw material. We previously reported that the fungal fermentation of the edible red alga Pyropia yezoensis (Nori) produces betaine structural analogs (such as betaine, stachydrine, and carnitine), which [...] Read more.
Fermenting seaweed with koji fungi transforms its chemical composition, generating bioactive compounds absent in the raw material. We previously reported that the fungal fermentation of the edible red alga Pyropia yezoensis (Nori) produces betaine structural analogs (such as betaine, stachydrine, and carnitine), which are of particular interest because of their physiological roles and potential health benefits. Using metabolomic profiling, we compared non-fermented Nori with powders fermented by three industrially important fungi: Aspergillus luchuensis mut. kawachii (white koji fungus), Aspergillus oryzae (yellow koji fungus), and Monascus purpureus (red koji fungus). All fermentations enhanced the levels of betaine and carnitine, but stachydrine production was unique to the yellow koji fungus. Precursor patterns revealed distinct metabolic strategies: the yellow koji fungus exhibited an intermediate detectable choline oxidation route and strong proline methylation, the white koji fungus rapidly converted choline without intermediate accumulation, and the red koji fungus favored carnitine and proline but produced little stachydrine. Fermentation also shifted the methylation balance toward a state that supports methyl-dependent pathways. These findings reveal clear species-specific strategies for the production of betaine structural analogs, providing a mechanistic basis for understanding the metabolic divergence among koji fungi and guiding the targeted design of functional seaweed products. Full article
Show Figures

Graphical abstract

33 pages, 37528 KB  
Article
Synergistic Regulation by FoxO Signaling Pathway and Muscle Remodeling Defines the Adaptive Strategy of Largemouth Bass (Micropterus salmoides) Under Saline–Alkaline Stress
by Guoyang Liu, Di Peng, Biyuan Liu and Qiqun Cheng
Biology 2025, 14(9), 1274; https://doi.org/10.3390/biology14091274 - 16 Sep 2025
Viewed by 971
Abstract
This study investigates the effects of saline, alkaline, and combined saline–alkaline water environments on the growth, muscle quality, gene expression, and metabolic profiles of largemouth bass (Micropterus salmoides). Juvenile fish were exposed to five water conditions for 60 days: freshwater (FW), [...] Read more.
This study investigates the effects of saline, alkaline, and combined saline–alkaline water environments on the growth, muscle quality, gene expression, and metabolic profiles of largemouth bass (Micropterus salmoides). Juvenile fish were exposed to five water conditions for 60 days: freshwater (FW), saline water (SW, 10 ppt), alkaline water (AW, 15 mmol/L), and two saline–alkaline combinations (SAW-1: 4 ppt + 10 mmol/L; SAW-2: 6 ppt + 15 mmol/L). While growth rate was similar across groups, SAW-2 caused a significant decrease in survival rate and induced notable alterations in muscle texture and fiber structure. Transcriptomic analyses revealed group-specific enrichment of stress-responsive pathways. The FoxO signaling pathway acts as a central regulator of muscle maintenance and energy reallocation. The solute carrier gene slc38a4 and glula (glutamine synthetase), both closely associated with ammonia detoxification via glutamine synthesis and transport, were upregulated under saline–alkaline stress, indicating enhanced capacity for nitrogen metabolism. In addition, two key regulators of muscle remodeling, loc119898415 and tbx18, were significantly upregulated, suggesting a potential chromatin–transcription program underlying compensatory myogenesis and muscle fiber adaptation in response to environmental challenges. Metabolomic profiling showed an accumulation of osmoprotectants (betaine, taurine) in SW and SAW-2 groups, suggesting enhanced stress resistance. Multiomics integration further indicated coordinated regulation between lipid metabolism and insulin signaling, potentially mediated by the FoxO pathway. These results offer practical guidance for improving largemouth bass aquaculture under inland saline–alkaline conditions. Full article
Show Figures

Figure 1

23 pages, 3715 KB  
Article
Synthesis of Porous Materials on Hybrid Wormlike Micelles of Zwitterionic and Anionic Surfactants for Efficient Oilfield Wastewater Treatment
by Fei Liu, Zhenzhen Li, Chenye Yang, Ya Wu and Ying Tang
Gels 2025, 11(9), 714; https://doi.org/10.3390/gels11090714 - 5 Sep 2025
Viewed by 613
Abstract
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and [...] Read more.
Addressing the challenge of sulfonated lignite (SL) removal from oilfield wastewater, this study introduces a novel hierarchical MgFe-layered double hydroxide (LDH) adsorbent. The material was fabricated via in situ co-precipitation, utilizing a template formed by the NaCl-induced co-assembly of oleylaminopropyl betaine (OAPB) and sodium dodecyl sulfate (SLS) into zwitterionic, anionic, shear-responsive viscoelastic gels. This gel-templating approach yielded an LDH structure featuring a hierarchical pore network spanning 1–80 nm and a notably high specific surface area of 199.82 m2/g, as characterized by SEM and BET. The resulting MgFe-LDH demonstrated exceptional efficacy, achieving a SL removal efficiency exceeding 96% and a maximum adsorption capacity of 90.68 mg/g at neutral pH. Adsorption kinetics were best described by a pseudo-second-order model (R2 > 0.99), with intra-particle diffusion identified as the rate-determining step. Equilibrium adsorption data conformed to the Langmuir isotherm, signifying monolayer uptake. Thermodynamic analysis confirmed the process was spontaneous (ΔG < 0) and exothermic (ΔH = −20.09 kJ/mol), driven primarily by electrostatic interactions and ion exchange. The adsorbent exhibited robust recyclability, maintaining over 79% of its initial capacity after three adsorption–desorption cycles. This gel-directed synthesis presents a sustainable pathway for developing high-performance adsorbents targeting complex contaminants in oilfield effluents. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

23 pages, 1210 KB  
Review
Advances in the Biosynthetic Regulation and Functional Mechanisms of Glycine Betaine for Enhancing Plant Stress Resilience
by Jiaxu Chen, Jing Zhang, Yihang Liu, Kailu Zhang, Fuyuan Zhu and Yanjie Xie
Int. J. Mol. Sci. 2025, 26(16), 7971; https://doi.org/10.3390/ijms26167971 - 18 Aug 2025
Cited by 3 | Viewed by 3147
Abstract
Plants are frequently exposed to a range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metals, that severely impair their growth and productivity. Among the adaptive mechanisms that plants have evolved, the accumulation of glycine betaine (GB), a naturally occurring, zwitterionic, [...] Read more.
Plants are frequently exposed to a range of abiotic stresses, including drought, salinity, extreme temperatures, and heavy metals, that severely impair their growth and productivity. Among the adaptive mechanisms that plants have evolved, the accumulation of glycine betaine (GB), a naturally occurring, zwitterionic, and chemically stable osmoprotectant, has been widely recognized as a key strategy for stress tolerance. In higher plants, GB is primarily synthesized via the two-step oxidation of choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH). GB contributes to cellular homeostasis by modulating osmotic balance, regulating ion flux, scavenging reactive oxygen species (ROS), enhancing antioxidant defense systems, and stabilizing proteins and membrane structures. Both exogenous application of GB and genetic engineering approaches aimed at enhancing endogenous GB biosynthesis have been shown to significantly improve plant tolerance to a variety of abiotic stresses. In this review, we provide a comprehensive overview of recent advances in the understanding of GB biosynthesis, its regulatory mechanisms, and its multifaceted roles in plant stress responses. We also highlight emerging prospects for leveraging GB-centered strategies to enhance crop resilience in challenging environmental conditions. Full article
(This article belongs to the Collection Advances in Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 5788 KB  
Article
Flow Characteristics and Enhanced Oil Recovery Performance of Anionic and Zwitterionic Viscoelastic Surfactant System
by Chenyue Ling, Yafei Liu, Xuchun Yang, Qi Ye and Desheng Zhou
Gels 2025, 11(8), 627; https://doi.org/10.3390/gels11080627 - 10 Aug 2025
Viewed by 909
Abstract
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and [...] Read more.
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and its EOR potential. Six surfactant solutions with varying concentrations were first screened using an idealized dead-end shaped microchannel in combination with interfacial properties and rheological tests. The results showed that 0.2% SDS and 0.6% OAB-30 produced the highest oil recovery in the dead-end structure. Interfacial tension was reduced to 0.374 mN/m and strong viscoelastic behavior was observed using the optimized surfactant mixture. Wettability of the surface tended to be more hydrophilic after the application of the surfactant mixture as well. Subsequently, the microscale oil displacement process was examined using the optimized surfactant mixture via microfluidic devices with an idealized pore–throat network with permeability contrast and realistic pore–throat structure. The application of the optimal surfactant formula resulted in 28.46% and 49.96% improvement over conventional water flooding in a realistic pore–throat structure and idealized pore–throat network. The critical micelle concentration measurements of the mixture suggested favorable micelle formation, contributing to gel-like properties that improved sweep efficiency by lowering the mobility ratio. In heterogenous pore–throat networks, the emulsification, micellar solubilization, wettability alteration, and viscoelastic properties of the surfactant mixture favored the oil recovery process. This work provides experimental evidence and mechanistic insights for the application of viscoelastic surfactants in EOR in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

17 pages, 916 KB  
Review
Choline—An Essential Nutrient with Health Benefits and a Signaling Molecule
by Brianne C. Burns, Jitendra D. Belani, Hailey N. Wittorf, Eugen Brailoiu and Gabriela C. Brailoiu
Int. J. Mol. Sci. 2025, 26(15), 7159; https://doi.org/10.3390/ijms26157159 - 24 Jul 2025
Cited by 3 | Viewed by 9660
Abstract
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and [...] Read more.
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and physiological states (e.g., pregnancy). By serving as a precursor for acetylcholine and phospholipids, choline is important for cholinergic transmission and the structural integrity of cell membranes. In addition, choline is involved in lipid and cholesterol transport and serves as a methyl donor after oxidation to betaine. Extracellular choline is transported across the cell membrane via various transport systems (high-affinity and low-affinity choline transporters) with distinct features and roles. An adequate dietary intake of choline during pregnancy supports proper fetal development, and throughout life supports brain, liver, and muscle functions, while choline deficiency is linked to disease states like fatty liver. Choline has important roles in neurodevelopment, cognition, liver function, lipid metabolism, and cardiovascular health. While its signaling role has been considered mostly indirect via acetylcholine and phosphatidylcholine which are synthesized from choline, emerging evidence supports a role for choline as an intracellular messenger acting on Sigma-1R, a non-opioid intracellular receptor. These new findings expand the cell signaling repertoire and increase the current understanding of the role of choline while warranting more research to uncover the molecular mechanisms and significance in the context of GPCR signaling, the relevance for physiology and disease states. Full article
Show Figures

Figure 1

17 pages, 3114 KB  
Article
An Efficient Extraction, Characterization and Antioxidant Study of Polysaccharides from Peucedani Decursivi Radix
by Qian Li, Zeyu Li, Chaogui Hu, Chenyue Wang, Feng Yang and Xiaoqin Ding
Plants 2025, 14(14), 2188; https://doi.org/10.3390/plants14142188 - 15 Jul 2025
Viewed by 1175
Abstract
Hot water extraction (HE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted extraction with NADES (UAE-NADES) and ultrasonic-assisted extraction with NADES and enzyme pretreatment (UAE-NADES-E) were employed to extract polysaccharides from Peucedani Decursivi Radix (PDR) and their structures were characterized for the first time. UAE-NADES-E [...] Read more.
Hot water extraction (HE), enzyme-assisted hot water extraction (EAHE), ultrasonic-assisted extraction with NADES (UAE-NADES) and ultrasonic-assisted extraction with NADES and enzyme pretreatment (UAE-NADES-E) were employed to extract polysaccharides from Peucedani Decursivi Radix (PDR) and their structures were characterized for the first time. UAE-NADES-E was found to be the most effective extraction method, and the extraction process was optimized by Box–Behnken design (BBD)-response surface methodology (RSM) experiments. The optimal extraction process was determined by using a NADES system with a molar ratio of betaine to 1,3-butanediol of 1:3, a water content of 30%, a liquid/solid ratio of 40:1 mL/g, an ultrasound time of 30 min, an ultrasound temperature of 45 °C and an alcohol precipitation time of 6 h; the polysaccharide extraction yield reached 19.93%. Further, the structures of polysaccharides from PDR extracted by the above four methods were characterized by FT-IR, SEM, gel and anion-exchange chromatography. Eight monosaccharides were detected in the PDR polysaccharides extracted by the four methods. The PDR polysaccharides extracted by the UAE-NADES-E method had lower molecular weights compared with those extracted by the other methods. Moreover, the PDR polysaccharides exhibited obvious antioxidant activity, as revealed by DPPH, ABTS+ and hydroxyl radical scavenging experiments, meaning they have the potential to be developed as natural antioxidants. Full article
Show Figures

Graphical abstract

17 pages, 2732 KB  
Article
Influence of Cellulose Nanocrystals and Surfactants on Catastrophic Phase Inversion and Stability of Emulsions
by Daniel Kim and Rajinder Pal
Colloids Interfaces 2025, 9(4), 46; https://doi.org/10.3390/colloids9040046 - 11 Jul 2025
Viewed by 1233
Abstract
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), [...] Read more.
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), nonionic (C12–14 alcohol ethoxylate referred to as Alfonic), and zwitterionic (cetyl betaine referred to as Amphosol). By using conductivity measurements under controlled mixing and pendant drop tensiometry, this study shows that NCC markedly delays catastrophic phase inversion through interfacial jamming, whereas surfactant-stabilized systems exhibit concentration-dependent inversion driven by interfacial saturation. Specifically, NCC-stabilized emulsions exhibited a nonlinear increase in the critical aqueous phase volume fraction required for inversion, ranging from 0.253 (0 wt% NCC) to 0.545 (1.5 wt% NCC), consistent with enhanced resistance to inversion typically associated with the formation of rigid interfacial layers in Pickering emulsions. In contrast, surfactant-stabilized systems exhibited a concentration-dependent inversion trend with opposing effects. At low concentrations, limited interfacial coverage delayed inversion, while at higher concentrations, increased surfactant availability and interfacial saturation promoted earlier inversion and favored the formation of oil-in-water structures. Pendant drop tensiometry confirmed negligible surface activity for NCC, while all surfactants significantly lowered interfacial tension. Despite its weak surface activity, NCC imparted strong coalescence resistance above 0.2 wt%, attributed to steric stabilization. These findings establish distinct mechanisms for governing phase inversion in particle- versus surfactant-stabilized systems. To our knowledge, this is the first study to quantitively characterize the catastrophic phase inversion behavior of water-in-oil emulsions using NCC. This work supports the use of NCC as an effective stabilizer for emulsions with high internal phase volume. Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces: 2nd Edition)
Show Figures

Figure 1

14 pages, 4370 KB  
Article
Fabrication of Zwitterionized Nanocellulose/Polyvinyl Alcohol Composite Hydrogels Derived from Camellia Oleifera Shells for High-Performance Flexible Sensing
by Jingnan Li, Weikang Peng, Zhendong Lei, Jialin Jian, Jie Cong, Chenyang Zhao, Yuming Wu, Jiaqi Su and Shuaiyuan Han
Polymers 2025, 17(14), 1901; https://doi.org/10.3390/polym17141901 - 9 Jul 2025
Cited by 1 | Viewed by 975
Abstract
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia [...] Read more.
To address the growing demand for environmentally friendly flexible sensors, here, a composite hydrogel of nanocellulose (NC) and polyvinyl alcohol (PVA) was designed and fabricated using Camellia oleifera shells as a sustainable alternative to petroleum-based raw materials. Firstly, NC was extracted from Camellia oleifera shells and modified with 2-chloropropyl chloride to obtain a nanocellulose-based initiator (Init-NC) for atomic transfer radical polymerization (ATRP). Subsequently, sulfonyl betaine methacrylate (SBMA) was polymerized by Init-NC initiating to yield zwitterion-functionalized nanocellulose (NC-PSBMA). Finally, the NC-PSBMA/PVA hydrogel was fabricated by blending NC-PSBMA with PVA. A Fourier transform infrared spectrometer (FT-IR), proton nuclear magnetic resonance spectrometer (1H-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), universal mechanical testing machine, and digital source-meter were used to characterize the chemical structure, surface microstructure, and sensing performance. The results indicated that: (1) FT-IR and 1H NMR confirmed the successful synthesis of NC-PSBMA; (2) SEM, TEM, and alternating current (AC) impedance spectroscopy verified that the NC-PSBMA/PVA hydrogel exhibits a uniform porous structure (pore diameter was 1.1737 μm), resulting in significantly better porosity (15.75%) and ionic conductivity (2.652 S·m−1) compared to the pure PVA hydrogel; and (3) mechanical testing combined with source meter testing showed that the tensile strength of the composite hydrogel increased by 6.4 times compared to the pure PVA hydrogel; meanwhile, it showed a high sensitivity (GF = 1.40, strain range 0–5%; GF = 1.67, strain range 5–20%) and rapid response time (<0.05 s). This study presents a novel approach to developing bio-based, flexible sensing materials. Full article
(This article belongs to the Special Issue Polysaccharide-Based Materials: Developments and Properties)
Show Figures

Graphical abstract

26 pages, 6855 KB  
Article
Hydrogel Microarray for Bioanalytical Applications: Preliminary Study on Material Properties
by Weronika Kieres, Sonia Kudłacik-Kramarczyk, Joanna Marczyk, Celina Ziejewska, Anna Drabczyk, Robert P. Socha and Marcel Krzan
Materials 2025, 18(13), 3118; https://doi.org/10.3390/ma18133118 - 1 Jul 2025
Cited by 1 | Viewed by 1067
Abstract
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior [...] Read more.
The aim of this study was to develop and characterize UV-crosslinked hydrogel matrices based on polyethylene glycol diacrylate (PEGDA), gum arabic, betaine, and sodium alginate for potential bioanalytical applications. Various physicochemical analyses were performed, including pre-polymerization emulsion stability (Multiscan), FT-IR spectroscopy, swelling behavior in physiological buffers, pH monitoring, contact angle measurements, and morphological assessment via SEM and optical microscopy. The results demonstrated that both alginate content and UV exposure time significantly influence the structural and functional properties of the hydrogels. The highest swelling ratio (2.32 g/g) was observed for the formulation containing 5% sodium alginate polymerized for 5 min (5SA_5), though this sample showed mechanical fragmentation during incubation. In contrast, the most balanced performance was achieved for the 10SA_15 formulation, which maintained structural integrity and exhibited a swelling ratio of 1.92 g/g after 9 days. The contact angle analysis revealed a surface hydrophilicity range from 50° to 100°, with the lowest angle (50°) recorded for 10SA_5, indicating high surface wettability. These findings confirm the suitability of such hydrogels for biomedical applications, particularly as absorbent, stable platforms for drug delivery or wound healing. Full article
Show Figures

Figure 1

25 pages, 3964 KB  
Article
Development of Liposome-Based Hydrogel Patches Incorporating Essential Oils of African Plants and Deep Eutectic Solvents
by Wanhang Jiang, Sara Toufouki, Subhan Mahmood, Ali Ahmad, Alula Yohannes, Yang Xiang and Shun Yao
Gels 2025, 11(5), 364; https://doi.org/10.3390/gels11050364 - 15 May 2025
Viewed by 2148
Abstract
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel [...] Read more.
A nanoliposome-integrated polymeric hydrogel was developed for the controlled release of essential oils (Argania spinosa, Passiflora edulis). A deep eutectic solvent (DES) composed of betaine and phytic acid enhanced the solubility and stability of essential oils, facilitating uniform encapsulation within nanoliposomes. The hydrogel exhibited a swelling capacity of 100% and retained 51.7% of water after 7 h, ensuring prolonged hydration. Structural analysis confirmed a homogeneous dispersion of nanoliposomes, contributing to the gradual release of bioactive components. Additionally, the hydrogel demonstrated high mechanical strength (7.5 MPa), ensuring flexibility and durability. The polymeric network, formed by acrylamide, sodium alginate, and bentonite, provided a stable and elastic matrix, optimizing water retention and mechanical performance. The controlled diffusion mechanism of the nanoliposomes was validated through in vitro release studies, indicating Fickian-controlled release behavior. These findings highlight the potential of this polymeric hydrogel system as a functional material for skincare formulations, offering enhanced hydration and sustained bioactive delivery. Full article
Show Figures

Graphical abstract

Back to TopTop