Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,404)

Search Parameters:
Keywords = bearing diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8053 KiB  
Article
Rolling Bearing Fault Diagnosis Based on Fractional Constant Q Non-Stationary Gabor Transform and VMamba-Conv
by Fengyun Xie, Chengjie Song, Yang Wang, Minghua Song, Shengtong Zhou and Yuanwei Xie
Fractal Fract. 2025, 9(8), 515; https://doi.org/10.3390/fractalfract9080515 - 6 Aug 2025
Abstract
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes [...] Read more.
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes a novel method for rolling bearing fault diagnosis based on the fractional constant Q non-stationary Gabor transform (FCO-NSGT) and VMamba-Conv. Firstly, a rolling bearing fault experimental platform is established and the vibration signals of rolling bearings under various working conditions are collected using an acceleration sensor. Secondly, a kurtosis-to-entropy ratio (KER) method and the rotational kernel function of the fractional Fourier transform (FRFT) are proposed and applied to the original CO-NSGT to overcome the limitations of the original CO-NSGT, such as the unsatisfactory time–frequency representation due to manual parameter setting and the energy dispersion problem of frequency-modulated signals that vary with time. A lightweight fault diagnosis model, VMamba-Conv, is proposed, which is a restructured version of VMamba. It integrates an efficient selective scanning mechanism, a state space model, and a convolutional network based on SimAX into a dual-branch architecture and uses inverted residual blocks to achieve a lightweight design while maintaining strong feature extraction capabilities. Finally, the time–frequency graph is inputted into VMamba-Conv to diagnose rolling bearing faults. This approach reduces the number of parameters, as well as the computational complexity, while ensuring high accuracy and excellent noise resistance. The results show that the proposed method has excellent fault diagnosis capabilities, with an average accuracy of 99.81%. By comparing the Adjusted Rand Index, Normalized Mutual Information, F1 Score, and accuracy, it is concluded that the proposed method outperforms other comparison methods, demonstrating its effectiveness and superiority. Full article
Show Figures

Figure 1

24 pages, 13175 KiB  
Article
Fault Diagnosis for CNC Machine Tool Feed Systems Based on Enhanced Multi-Scale Feature Network
by Peng Zhang, Min Huang and Weiwei Sun
Lubricants 2025, 13(8), 350; https://doi.org/10.3390/lubricants13080350 - 5 Aug 2025
Abstract
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) [...] Read more.
Despite advances in Convolutional Neural Networks (CNNs) for intelligent fault diagnosis in CNC machine tools, bearing fault diagnosis in CNC feed systems remains challenging, particularly in multi-scale feature extraction and generalization across operating conditions. This study introduces an enhanced multi-scale feature network (MSFN) that addresses these limitations through three integrated modules designed to extract critical fault features from vibration signals. First, a Soft-Scale Denoising (S2D) module forms the backbone of the MSFN, capturing multi-scale fault features from input signals. Second, a Multi-Scale Adaptive Feature Enhancement (MS-AFE) module based on long-range weighting mechanisms is developed to enhance the extraction of periodic fault features. Third, a Dynamic Sequence–Channel Attention (DSCA) module is incorporated to improve feature representation across channel and sequence dimensions. Experimental results on two datasets demonstrate that the proposed MSFN achieves high diagnostic accuracy and exhibits robust generalization across diverse operating conditions. Moreover, ablation studies validate the effectiveness and contributions of each module. Full article
(This article belongs to the Special Issue Advances in Tool Wear Monitoring 2025)
Show Figures

Figure 1

23 pages, 3087 KiB  
Article
MCMBAN: A Masked and Cascaded Multi-Branch Attention Network for Bearing Fault Diagnosis
by Peng Chen, Haopeng Liang and Alaeldden Abduelhadi
Machines 2025, 13(8), 685; https://doi.org/10.3390/machines13080685 - 4 Aug 2025
Viewed by 83
Abstract
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple [...] Read more.
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple frequency levels, which increases the complexity of extracting important information from them. To address this problem, this paper proposes a Masked and Cascaded Multi-Branch Attention Network (MCMBAN), which combines the Noise Mask Filter Block (NMFB) with the Multi-Branch Cascade Attention Block (MBCAB), and significantly improves the noise immunity of the fault diagnostic model and the efficiency of fault feature extraction. NMFB novelly combines a wide convolutional layer and a top k neighbor self-attention masking mechanism, so as to efficiently filter unnecessary high-frequency noise in the vibration signal. On the other hand, MBCAB strengthens the interaction between different layers by cascading the convolutional layers of different scales, thus improving the recognition of periodic fault signals and greatly enhancing the diagnosis accuracy of the model when processing complex signals. Finally, the time–frequency analysis technique is employed to explore the internal mechanisms of the model in depth, aiming to validate the effectiveness of NMFB and MBCAB in fault feature recognition and to improve the feature interpretability of the proposed modes in fault diagnosis applications. We validate the superior performance of the network model in dealing with high-noise backgrounds by testing it on a standard bearing dataset from Case Western Reserve University and a self-constructed composite bearing fault dataset, and the experimental results show that its performance exceeded six of the top current fault diagnosis techniques. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

26 pages, 8736 KiB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 - 1 Aug 2025
Viewed by 246
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

13 pages, 2146 KiB  
Article
Radical TTM-DMODPA for Ascorbic Acid Non-Catalytic Visual Detection
by Qingmei Zhong, Huixiang Zong, Xiaohui Xie, Xiaomei Rong and Chuan Yan
Chemosensors 2025, 13(8), 277; https://doi.org/10.3390/chemosensors13080277 - 27 Jul 2025
Viewed by 321
Abstract
Ascorbic acid (AA) plays a multidimensional role in human physiological and pathological processes, and the detection of its urinary concentration facilitates the diagnosis of metabolic or kidney diseases. Visual detection exhibits minimal reliance on instrumentation and is suitable for on-site analysis in routine [...] Read more.
Ascorbic acid (AA) plays a multidimensional role in human physiological and pathological processes, and the detection of its urinary concentration facilitates the diagnosis of metabolic or kidney diseases. Visual detection exhibits minimal reliance on instrumentation and is suitable for on-site analysis in routine settings. Current visual colorimetric detection methods typically rely on enzymatic or nanozyme-based catalysis. Organic neutral radicals bearing unpaired electrons represent a class of materials exhibiting intrinsic responsiveness to redox stimuli. The tris (2,4,6-trichlorophenyl) methyl (TTM) radical has attracted widespread attention for its adjustable optical properties and sensitive response to external redox stimuli. We synthesized a novel radical TTM-DMODPA and applied it for non-catalytic colorimetric detection of AA. It not only enables quantitative AA measurement via UV-vis spectroscopy (linear range: 1.25–75 μmol/L, LOD: 0.288 μmol/L) but also facilitates instrument-free visual detection using smartphone cameras (linear range: 0–65 μmol/L, LOD: 1.46 μmol/L). This method demonstrated satisfactory performance in the measurement of AA in actual urine samples. Recovery rates ranged from 97.8% to 104.1%. Consequently, this work provides a portable and effective method for assessing AA levels in actual urine samples. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

26 pages, 34763 KiB  
Article
A Rolling-Bearing-Fault Diagnosis Method Based on a Dual Multi-Scale Mechanism Applicable to Noisy-Variable Operating Conditions
by Jing Kang, Taiyong Wang, Ye Wei, Usman Haladu Garba and Ying Tian
Sensors 2025, 25(15), 4649; https://doi.org/10.3390/s25154649 - 27 Jul 2025
Viewed by 337
Abstract
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and [...] Read more.
Rolling bearings serve as the most widely utilized general components in drive systems for rotating machinery, and they are susceptible to regular malfunctions. To address the performance degradation encountered by current convolutional neural network-based rolling-bearing-fault diagnosis methods due to significant noise interference and variable working conditions in industrial settings, we propose a rolling-bearing-fault diagnosis method based on dual multi-scale mechanism applicable to noisy-variable operating conditions. The suggested approach begins with the implementation of Variational Mode Decomposition (VMD) on the initial vibration signal. This is succeeded by a denoising process that utilizes the goodness-of-fit test based on the Anderson–Darling (AD) distance for enhanced accuracy. This approach targets the intrinsic mode functions (IMFs), which capture information across multiple scales, to obtain the most precise denoised signal possible. Subsequently, we introduce the Dynamic Weighted Multi-Scale Feature Convolutional Neural Network (DWMFCNN) model, which integrates two structures: multi-scale feature extraction and dynamic weighting of these features. Ultimately, the signal that has been denoised is utilized as input for the DWMFCNN model to recognize different kinds of rolling-bearing faults. Results from the experiments show that the suggested approach shows an improved denoising performance and a greater adaptability to changing working conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

19 pages, 5198 KiB  
Article
Research on a Fault Diagnosis Method for Rolling Bearings Based on the Fusion of PSR-CRP and DenseNet
by Beining Cui, Zhaobin Tan, Yuhang Gao, Xinyu Wang and Lv Xiao
Processes 2025, 13(8), 2372; https://doi.org/10.3390/pr13082372 - 25 Jul 2025
Viewed by 392
Abstract
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms [...] Read more.
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms one-dimensional bearing vibration data into a three-dimensional space. Euclidean distances between phase points are calculated and mapped into a Color Recurrence Plot (CRP) to represent the bearings’ operational state. This approach effectively reduces feature extraction ambiguity compared to RP, GAF, and MTF methods. Fault features are extracted and classified using DenseNet’s densely connected topology. Compared with CNN and ViT models, DenseNet improves diagnostic accuracy by reusing limited features across multiple dimensions. The training set accuracy was 99.82% and 99.90%, while the test set accuracy is 97.03% and 95.08% for the CWRU and JNU datasets under five-fold cross-validation; F1 scores were 0.9739 and 0.9537, respectively. This method achieves highly accurate diagnosis under conditions of non-smooth signals and inconspicuous fault characteristics and is applicable to fault diagnosis scenarios for precision components in aerospace, military systems, robotics, and related fields. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 28897 KiB  
Article
MetaRes-DMT-AS: A Meta-Learning Approach for Few-Shot Fault Diagnosis in Elevator Systems
by Hongming Hu, Shengying Yang, Yulai Zhang, Jianfeng Wu, Liang He and Jingsheng Lei
Sensors 2025, 25(15), 4611; https://doi.org/10.3390/s25154611 - 25 Jul 2025
Viewed by 266
Abstract
Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a fundamental challenge for developing robust [...] Read more.
Recent advancements in deep learning have spurred significant research interest in fault diagnosis for elevator systems. However, conventional approaches typically require substantial labeled datasets that are often impractical to obtain in real-world industrial environments. This limitation poses a fundamental challenge for developing robust diagnostic models capable of performing reliably under data-scarce conditions. To address this critical gap, we propose MetaRes-DMT-AS (Meta-ResNet with Dynamic Meta-Training and Adaptive Scheduling), a novel meta-learning framework for few-shot fault diagnosis. Our methodology employs Gramian Angular Fields to transform 1D raw sensor data into 2D image representations, followed by episodic task construction through stochastic sampling. During meta-training, the system acquires transferable prior knowledge through optimized parameter initialization, while an adaptive scheduling module dynamically configures support/query sets. Subsequent regularization via prototype networks ensures stable feature extraction. Comprehensive validation using the Case Western Reserve University bearing dataset and proprietary elevator acceleration data demonstrates the framework’s superiority: MetaRes-DMT-AS achieves state-of-the-art few-shot classification performance, surpassing benchmark models by 0.94–1.78% in overall accuracy. For critical few-shot fault categories—particularly emergency stops and severe vibrations—the method delivers significant accuracy improvements of 3–16% and 17–29%, respectively. Full article
(This article belongs to the Special Issue Signal Processing and Sensing Technologies for Fault Diagnosis)
Show Figures

Figure 1

22 pages, 12545 KiB  
Article
Denoised Improved Envelope Spectrum for Fault Diagnosis of Aero-Engine Inter-Shaft Bearing
by Danni Li, Longting Chen, Hanbin Zhou, Jinyuan Tang, Xing Zhao and Jingsong Xie
Appl. Sci. 2025, 15(15), 8270; https://doi.org/10.3390/app15158270 - 25 Jul 2025
Viewed by 233
Abstract
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the [...] Read more.
The inter-shaft bearing is an important component of aero-engine rotor systems. It works between a high-pressure rotor and a low-pressure rotor. Effective fault diagnosis of it is significant for an aero-engine. The casing vibration signals can promptly and intuitively reflect changes in the operational health status of an aero-engine’s support system. However, affected by a complex vibration transmission path and vibration of the dual-rotor, the intrinsic vibration information of the inter-shaft bearing is faced with strong noise and a dual-frequency excitation problem. This excitation is caused by the wide span of vibration source frequency distribution that results from the quite different rotational speeds of the high-pressure rotor and low-pressure rotor. Consequently, most existing fault diagnosis methods cannot effectively extract inter-shaft bearing characteristic frequency information from the casing signal. To solve this problem, this paper proposed the denoised improved envelope spectrum (DIES) method. First, an improved envelope spectrum generated by a spectrum subtraction method is proposed. This method is applied to solve the multi-source interference with wide-band distribution problem under dual-frequency excitation. Then, an improved adaptive-thresholding approach is subsequently applied to the resultant subtracted spectrum, so as to eliminate the influence of random noise in the spectrum. An experiment on a public run-to-failure bearing dataset validates that the proposed method can effectively extract an incipient bearing fault characteristic frequency (FCF) from strong background noise. Furthermore, the experiment on the inter-shaft bearing of an aero-engine test platform validates the effectiveness and superiority of the proposed DIES method. The experimental results demonstrate that this proposed method can clearly extract fault-related information from dual-frequency excitation interference. Even amid strong background noise, it precisely reveals the inter-shaft bearing’s fault-related spectral components. Full article
Show Figures

Figure 1

24 pages, 4430 KiB  
Article
Early Bearing Fault Diagnosis in PMSMs Based on HO-VMD and Weighted Evidence Fusion of Current–Vibration Signals
by Xianwu He, Xuhui Liu, Cheng Lin, Minjie Fu, Jiajin Wang and Jian Zhang
Sensors 2025, 25(15), 4591; https://doi.org/10.3390/s25154591 - 24 Jul 2025
Viewed by 321
Abstract
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper [...] Read more.
To address the challenges posed by weak early fault signal features, strong noise interference, low diagnostic accuracy, poor reliability when using single information sources, and the limited availability of high-quality samples in practical applications for permanent magnet synchronous motor (PMSM) bearings, this paper proposes an early bearing fault diagnosis method based on Hippopotamus Optimization Variational Mode Decomposition (HO-VMD) and weighted evidence fusion of current–vibration signals. The HO algorithm is employed to optimize the parameters of VMD for adaptive modal decomposition of current and vibration signals, resulting in the generation of intrinsic mode functions (IMFs). These IMFs are then selected and reconstructed based on their kurtosis to suppress noise and harmonic interference. Subsequently, the reconstructed signals are demodulated using the Teager–Kaiser Energy Operator (TKEO), and both time-domain and energy spectrum features are extracted. The reliability of these features is utilized to adaptively weight the basic probability assignment (BPA) functions. Finally, a weighted modified Dempster–Shafer evidence theory (WMDST) is applied to fuse multi-source feature information, enabling an accurate assessment of the PMSM bearing health status. The experimental results demonstrate that the proposed method significantly enhances the signal-to-noise ratio (SNR) and enables precise diagnosis of early bearing faults even in scenarios with limited sample sizes. Full article
Show Figures

Figure 1

29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 208
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

24 pages, 3474 KiB  
Article
Research on Unsupervised Domain Adaptive Bearing Fault Diagnosis Method Based on Migration Learning Using MSACNN-IJMMD-DANN
by Xiaoxu Li, Jiahao Wang, Jianqiang Wang, Jixuan Wang, Qinghua Li, Xuelian Yu and Jiaming Chen
Machines 2025, 13(7), 618; https://doi.org/10.3390/machines13070618 - 17 Jul 2025
Viewed by 305
Abstract
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional [...] Read more.
To address the problems of feature extraction, cost of obtaining labeled samples, and large differences in domain distribution in bearing fault diagnosis on variable operating conditions, an unsupervised domain-adaptive bearing fault diagnosis method based on migration learning using MSACNN-IJMMD-DANN (multi-scale and attention-based convolutional neural network, MSACNN, improved joint maximum mean discrepancy, IJMMD, domain adversarial neural network, DANN) is proposed. Firstly, in order to extract fault-type features from the source domain and target domain, this paper establishes a MSACNN based on multi-scale and attention mechanisms. Secondly, to reduce the feature distribution difference between the source and target domains and address the issue of domain distribution differences, the joint maximum mean discrepancy and correlation alignment approaches are used to create the metric criterion. Then, the adversarial loss mechanism in DANN is introduced to reduce the interference of weakly correlated domain features for better fault diagnosis and identification. Finally, the method is validated using bearing datasets from Case Western Reserve University, Jiangnan University, and our laboratory. The experimental results demonstrated that the method achieved higher accuracy across different migration tasks, providing an effective solution for bearing fault diagnosis in industrial environments with varying operating conditions. Full article
Show Figures

Figure 1

27 pages, 3817 KiB  
Article
A Deep Learning-Based Diagnostic Framework for Shaft Earthing Brush Faults in Large Turbine Generators
by Katudi Oupa Mailula and Akshay Kumar Saha
Energies 2025, 18(14), 3793; https://doi.org/10.3390/en18143793 - 17 Jul 2025
Viewed by 250
Abstract
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. [...] Read more.
Large turbine generators rely on shaft earthing brushes to safely divert harmful shaft currents to ground, protecting bearings from electrical damage. This paper presents a novel deep learning-based diagnostic framework to detect and classify faults in shaft earthing brushes of large turbine generators. A key innovation lies in the use of FFT-derived spectrograms from both voltage and current waveforms as dual-channel inputs to the CNN, enabling automatic feature extraction of time–frequency patterns associated with different SEB fault types. The proposed framework combines advanced signal processing and convolutional neural networks (CNNs) to automatically recognize fault-related patterns in shaft grounding current and voltage signals. In the approach, raw time-domain signals are converted into informative time–frequency representations, which serve as input to a CNN model trained to distinguish normal and faulty conditions. The framework was evaluated using data from a fleet of large-scale generators under various brush fault scenarios (e.g., increased brush contact resistance, loss of brush contact, worn out brushes, and brush contamination). Experimental results demonstrate high fault detection accuracy (exceeding 98%) and the reliable identification of different fault types, outperforming conventional threshold-based monitoring techniques. The proposed deep learning framework offers a novel intelligent monitoring solution for predictive maintenance of turbine generators. The contributions include the following: (1) the development of a specialized deep learning model for shaft earthing brush fault diagnosis, (2) a systematic methodology for feature extraction from shaft current signals, and (3) the validation of the framework on real-world fault data. This work enables the early detection of brush degradation, thereby reducing unplanned downtime and maintenance costs in power generation facilities. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

24 pages, 6266 KiB  
Article
KACFormer: A Novel Domain Generalization Model for Cross-Individual Bearing Fault Diagnosis
by Shimin Shu, Muchen Xu, Peifeng Liu, Peize Yang, Tianyi Wu and Jie Yang
Appl. Sci. 2025, 15(14), 7932; https://doi.org/10.3390/app15147932 - 16 Jul 2025
Viewed by 223
Abstract
Fault diagnosis methods based on deep learning have been widely applied to bearing fault diagnosis. However, current methods usually diagnose on the same individual device, which cannot guarantee reliability in real industrial scenarios, especially for new individual devices. This article explores a practical [...] Read more.
Fault diagnosis methods based on deep learning have been widely applied to bearing fault diagnosis. However, current methods usually diagnose on the same individual device, which cannot guarantee reliability in real industrial scenarios, especially for new individual devices. This article explores a practical cross-individual scenario and proposes a Kolmogorov–Arnold enhanced convolutional transformer (KACFormer) model to improve both general feature representation and cross-individual capabilities. Specifically, the Kolmogorov–Arnold representation theorem is embedded into convolution and multi-head attention mechanisms to develop novel Kolmogorov–Arnold enhanced convolution (KAConv) and Kolmogorov–Arnold enhanced attention (KAA). The adaptive activation function enhances its nonlinear modeling ability. Comprehensive experiments are performed on two public datasets, demonstrating the superior generalization of the proposed KACFormer model with a higher accuracy of 95.73% and 91.58% compared to existing advanced models. Full article
Show Figures

Figure 1

24 pages, 6089 KiB  
Article
An Optimized 1-D CNN-LSTM Approach for Fault Diagnosis of Rolling Bearings Considering Epistemic Uncertainty
by Onur Can Kalay
Machines 2025, 13(7), 612; https://doi.org/10.3390/machines13070612 - 16 Jul 2025
Viewed by 284
Abstract
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and [...] Read more.
Rolling bearings are indispensable but also the most fault-prone components of rotating machinery, typically used in fields such as industrial aircraft, production workshops, and manufacturing. They encounter diverse mechanical stresses, such as vibration and friction during operation, which may lead to wear and fatigue cracks. From this standpoint, the present study combined a 1-D convolutional neural network (1-D CNN) with a long short-term memory (LSTM) algorithm for classifying different ball-bearing health conditions. A physics-guided method that adopts fault characteristics frequencies was used to calculate an optimal input size (sample length). Moreover, grid search was utilized to optimize (1) the number of epochs, (2) batch size, and (3) dropout ratio and further enhance the efficacy of the proposed 1-D CNN-LSTM network. Therefore, an attempt was made to reduce epistemic uncertainty that arises due to not knowing the best possible hyper-parameter configuration. Ultimately, the effectiveness of the physics-guided optimized 1-D CNN-LSTM was tested by comparing its performance with other state-of-the-art models. The findings revealed that the average accuracies could be enhanced by up to 20.717% with the help of the proposed approach after testing it on two benchmark datasets. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

Back to TopTop