Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
Abstract
1. Introduction
2. Engineering Background
3. Physical and Mechanical Testing of Compound Roof Strata
3.1. Mechanical Testing Scheme for Composite Surrounding Rock Specimens
3.2. Analysis of Mechanical Properties of Surrounding Rock Composite
4. Research on the Theoretical Model of Zoning Deterioration in Surrounding Rock
4.1. Zonal Deterioration Theoretical Model
4.2. Analysis of Partition Response of Surrounding Rock in Mining Roadway
4.3. Analysis of Deterioration Radius of Three Mining Roadway Zones
5. Numerical Simulation Analysis of Composite Roof in Mining Road-Ways
5.1. Selection of Constitutive Model and Parameter Calibration for Composite Roof
5.2. Model Establishment and Boundary Conditions
- (1)
- Numerical Model Setup
- (2)
- Original Support Scheme Parameters
- (3)
- Advance and Monitoring
5.3. Deflection Calculation of Main Stress Field
5.4. Deterioration Response Characteristics of Composite Roof Under Mining Deflection Effect
6. Construction of Synergistic Control System for Composite Roof
6.1. “Homogenization Constraint Energy Absorption” Multi-Level Bearing Synergistic Control Concept
- (1)
- Homogenization via Grouting Reinforcement
- (2)
- Rigid Constraint via Prestressed Cable Bolts
- (3)
- Energy Regulation via Energy-Absorbing Bolts
6.2. Design of Synergistic Control Scheme for Composite Roof in the Left 7 Upper Lane Return Roadway
- (1)
- Homogenization of Surrounding Rock
- (2)
- Rigid Constraint Reinforcement
- (3)
- Coordinated Dynamic Energy Solidification
7. Field Industrial Trial Evaluation
7.1. Monitoring Setup and Zoning
7.2. Deformation Control Effect of Synergistic Support
7.3. Microseismic Data Analysis with Statistical Summarization
- a.
- Average Energy
- b.
- Maximum Energy
- c.
- Energy Standard Deviation
- d.
- Proportion of High-Energy Events
7.4. Economic Benefit Analysis
8. Discussion
8.1. Theoretical and Practical Significance
8.2. Limitations and Future Work
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raza, M.A.; Karim, A.; Aman, M.M.; Al-khasawneh, M.A.; Faheem, M. Global progress towards the Coal: Tracking coal reserves, coal prices, electricity from coal, carbon emissions and coal phase-out. Gondwana Res. 2025, 139, 43–72. [Google Scholar] [CrossRef]
- Xiong, X.; Ouyang, Y.; Dai, J.; Ling, Z. Analysis and control of self stable balance circle of surrounding rock of roadway in inclined coal seam. Appl. Math. Model. 2023, 124, 749–767. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Gao, E.; Chang, L.; Ji, C.; Ma, S.; Li, T. Failure mechanism and stability control of surrounding rock in mining roadway with gentle slope and close distance. Eng. Fail. Anal. 2023, 152, 107489. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhou, J.L.; Zhang, C.; Liu, B.; Ling, C.-W.; Liu, W.-C.; Han, C.-J. Failure mechanism of gob-side roadway in deep coal mining in the Xinjie mining area: Theoretical analysis and numerical simulation. J. Cent. South Univ. 2023, 30, 1631–1648. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Y.; Xu, X.; Xiao, Y.; Xu, Y. The mechanistical principles and engineering application of roof-cutting for roadway protection in advance of the working face. Sci. Rep. 2025, 15, 1660. [Google Scholar] [CrossRef]
- Zhang, P.F.; Gu, X.B.; Guo, W.Y.; Zhao, T.-B.; Gong, X.-F.; Zhu, Z.-Q.; Guo, L. Bending energy storage mechanical model of layered composite roof structure in coal mining. Sci. Rep. 2024, 14, 30976. [Google Scholar] [CrossRef]
- Chai, Y.; Dou, L.; Cai, W.; Małkowski, P.; Li, X.; Gong, S.; Bai, J.; Cao, J. Experimental investigation into damage and failure process of coal-rock composite structures with different roof lithologies under mining-induced stress loading. Int. J. Rock Tech. Min. Sci. 2023, 170, 105479. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Zhang, J.; Liu, H.; Zhu, G.; Wang, Y. Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof. Eng. Fail. Anal. 2021, 129, 105723. [Google Scholar] [CrossRef]
- Qiu, L.; Dang, J.; Zhang, J.; Zhang, J.; Wang, M.; Liu, Q.; Si, L.; Jiang, Z.; Khan, M. Investigating nonlinear resistivity characteristics and mechanisms of coal during various loading stages. J. Appl. Geophys. 2025, 238, 105705. [Google Scholar] [CrossRef]
- Zhou, H.; Song, M.; Zhang, C.Q.; Lu, J.J.; Liu, Z.J.; Shi, L.K. Study on the confining pressure effect on deformation and failure characteristics of horizontal layered composite rock mass. Rock Soil Mech. 2019, 40, 465–473. [Google Scholar] [CrossRef]
- Zhang, W.D.; Tao, H.F.; Yang, J.; Wang, Y.; Chang, Z.G. Technology of narrow coal pillar width and surrounding rock control for gob-side entry driving in soft and broken composite roof. Saf. Coal Mines 2023, 54, 132–139. [Google Scholar] [CrossRef]
- Song, D.; Liu, Q.; Qiu, L.; Zhang, J.; Khan, M.; Peng, Y.; Zhao, Y.; Wang, M.; Guo, M.; Hong, T. Experimental study on resistivity evolution law and precursory signals in the damage process of gas-bearing coal. Fuel 2024, 362, 130798. [Google Scholar] [CrossRef]
- Zuo, J.P.; Yu, M.l.; Sun, Y.J.; Wu, G.S. Mechanism and mechanical model analysis of fracture mode transition of rock layers with different thicknesses. J. China Coal Soc. 2023, 48, 1449–1463. [Google Scholar] [CrossRef]
- Jia, H.S.; Pan, K.; Liu, S.W.; Zhang, L.; Fan, K.; Niu, Z.; Zhuo, J.; Wang, Q. Delamination failure mechanism and prediction method of composite roof in mining roadway. J. Min. Saf. Eng. 2021, 38, 518–527. [Google Scholar] [CrossRef]
- Jiang, L.S.; Ma, N.J.; Bai, L.; Li, Y.j.; Zhang, L. Deformation and failure characteristics of roadway composite roof and classification of roof-fall hazard. J. China Coal Soc. 2014, 39, 1205–1211. [Google Scholar] [CrossRef]
- Kang, H.P.; Gao, F.Q. Evolution of mining-induced stress and surrounding rock control in coal mines. Chin. J. Rock Tech. Eng. 2024, 43, 1–40. [Google Scholar] [CrossRef]
- Kang, H.P. Analysis of types and interactions of in-situ stress fields in coal mines. J. China Coal Soc. 2008, 33, 1329–1335. [Google Scholar]
- Kang, H.P.; Wang, G.F.; Jiang, P.F.; Wang, J.; Zhang, N.; Jing, H.; Huang, B.; Yang, B.; Guan, X.; Wang, Z. Conception for strata control and intelligent mining technology in deep coal mines with depth over 1000 m. J. China Coal Soc. 2018, 43, 1789–1800. [Google Scholar] [CrossRef]
- Kang, H.P.; Lin, J.; Yan, L.X.; Zhang, X.; WU, Y.Z.; SI, L.P. Study on characteristics of in-situ stress field distribution in underground coal mines in Shanxi mining area. Chin. J. Geophys. 2009, 52, 1782–1792. [Google Scholar]
- Kang, H.P. Sixty years development and prospects of rock bolting technology for coal mine roadways in China. J. China Univ. Min. Technol. 2016, 45, 1071–1081. [Google Scholar] [CrossRef]
- Zhang, L.X.; Wei, X.J.; Liu, G.C. Application research on grouting reinforcement technology for broken surrounding rock in 1366 mining roadway. J. Min. Sci. Technol. 2023, 8, 583–592. [Google Scholar] [CrossRef]
- Li, G.C.; Hao, H.R.; Sun, Y.T.; Sun, Y.; Li, J.; Yang, S.; Shao, Z.; Wo, X. Principle and technology of stepwise reinforcement control for soft rock argillized roadway in coal mine. J. China Coal Soc. 2025, 50, 810–823. [Google Scholar] [CrossRef]
- Li, G.C.; Yang, S.; Sun, Y.T.; Xu, J.H.; Li, J.H. Research progress on surrounding rock control technology of roadways under complex conditions. Coal Sci. Technol. 2022, 50, 29–45. [Google Scholar] [CrossRef]
- Zhang, Z.Q. Spatiotemporal Evolution Characteristics of Surrounding Rock Stress Shells and Support Mechanisms in Deep Roadways. Ph.D. Dissertation, China University of Mining and Technology, Beijing, China, 2019. [Google Scholar]
- Li, Y.; Zhai, C.; Ding, X. Study on the influence of deep horizontal principal stress direction on the stability of surrounding rock in coal roadway. Coal Eng. 2023, 55, 86–92. [Google Scholar]
- Li, J.; Ren, J.; Li, C.; Zhang, W.; Tong, F. Failure Mechanism and Stability Control of Soft Roof in Advance Support Section of Mining Face. Minerals 2023, 13, 178. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, X.; Zhao, Z.; Li, J.; Guo, X. Stability analysis and control of surrounding rock in deep mining roadway. J. China Coal Soc. 2015, 40, 2287–2295. [Google Scholar] [CrossRef]
- Liu, H.T.; Han, Z.J.; Han, Z.; Huo, T.H.; Luo, M.; Luo, Z.L.; Peng, J.C.; Zhang, H.K. Mechanism of non-uniform expansion and stability control in surrounding rock failure zone due to superimposed mining. J. Min. Saf. Eng. 2024, 41, 522–532. [Google Scholar] [CrossRef]
- Li, Q.L.; Zhao, G.M.; Wang, Y.F.; Zeng, X.; Cheng, X.; Li, Y.; Meng, X. Performance and Microstructure Characteristics of Cement-Sodium Silicate Double-Liquid Grouting Material. Coal Mine Saf. 2025, 56, 136–145. [Google Scholar] [CrossRef]
- Kang, H.P.; Yi, K. Simulation study and application of dilatancy and rheological characteristics of surrounding rock in deep soft rock roadways. J. China Coal Soc. 2023, 48, 15–33. [Google Scholar] [CrossRef]
- Han, C.; Yuan, Y.; Ding, G.; Li, W.; Yang, H.; Han, G. The Active Roof Supporting Technique of a Double-Layer Flexible and Thick Anchorage for Deep Withdrawal Roadway under Strong Mining Disturbance. Appl. Sci. 2023, 13, 12656. [Google Scholar] [CrossRef]
- Qian, D.; Jiao, H.; Deng, J.; Yang, J.; Jiao, M.; Xian, G.; Li, B. Instability Mechanism, Pressure Relief, and Long Anchorage Control Countermeasures for Surrounding Rock of Strong Mining Roadway at Large Mining Height Working Face. Minerals 2023, 13, 391. [Google Scholar] [CrossRef]
- Song, Z.P.; Xu, X.J.; Liu, W.; Li, J. Research review on energy-absorbing bolts and their static and dynamic testing methods. Mod. Tunn. Technol. 2023, 60, 1–13. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, Z.; Fan, Y. Research status and prospects of energy-absorbing anchor support equipment. Coal Sci. Technol. 2025, 53, 54–64. [Google Scholar] [CrossRef]
Rock Type | σc (MPa) | σt (MPa) | E (GPa) | μ (Dimensionless Quantity) | C (MPa) | φ/(°) | v/(m/s) |
---|---|---|---|---|---|---|---|
fine sandstone | 120.19 | 5.31 | 12.46 | 0.18 | 8.11 | 36.40 | 2700 |
Medium sandstone | 97.60 | 2.81 | 10.97 | 0.15 | 5.37 | 32.10 | 2310 |
sandy mudstone | 35.14 | 1.05 | 2.80 | 0.28 | 2.45 | 25.13 | 2080 |
Scope of Influence | ||||
---|---|---|---|---|
Roadway | Fracture Zone | Plastic Zone | Elastic Zone | |
Range/m | 0~2 | 2~7.13 | 7.13~7.93 | 7.93~∞ |
Influence area/m | 0 | 5.13 | 0.8 | 7.93~∞ |
Radiation radius/m | 2 | 7.13 | 7.93 | ∞ |
Control Level | Technical Parameters | Primary Action Zone | Mechanism of Action | Engineering Standards |
---|---|---|---|---|
Structural Homogenization | Grouting bolts: Φ 20 × 2100 mm Diffusion radius: 5 m Grouting pressure: 8–12 MPa Grout type: Nano-silicate composite slurry (After encountering water, the expansion ratio reaches 20–25 times, blocking the contact between water and mudstone) | Sandy mudstone | Fracture filling + interfacial bonding Forms composite Stable load-bearing structure (thickness: 3.8 m) Stress transmission efficiency increased by 65% | Grouting zone upper boundary: 1.83 m height (medium sandstone) Grout vein network covers entire sandy mudstone layer (2.71 m) |
Rigid Constraint Reinforcement | Prestressed cable bolts: Φ 21.8 × 8000 mm Pretension force: 200 kN Installation angle: 53° Anchorage depth: 3.46 m (into fine sandstone) | Fine sandstone | Forms butterfly-shaped rigid constraint Enhancement of interlayer shear stiffness Suppresses loosening circle expansion | Cable bolt group penetrates butterfly zone Forms 53° spatial angle with metal mesh plane |
Coordinated Energy Solidification | Anchor bolt parameters: Φ 32 × 5800 mm (Three segment splicing) Constant resistance value: 345 MPa Slip amount: 300–1000 mm Energy absorption: 4.23 times that of conventional anchor rods | Fine sandstone, Medium sandstone, Sandy mudstone | Graded energy dissipation: Elastic phase: 0–300 mm Plastic phase: 300–1000 mm | Double-row layout Penetrates composite roof strata |
Parameter | Original Support Area | Synergistic Support Area | Decline Rate |
---|---|---|---|
Average Energy (J) | 2.8 × 103 | 1.0 × 101 | 99.6% |
Maximum Energy (J) | 9.2 × 104 | 3.5 × 102 | 99.6% |
Energy Standard Deviation (J) | ±4.1 × 103 | ±8.7 × 101 | 97.9% |
Proportion of High-Energy Events (%) | 68% (>103 J) | 12% (>102 J) | 82.4% |
Indicator | Traditional Support Scheme (CNY) | Synergistic Support Scheme (CNY) | Unit Savings/Gain (CNY) |
---|---|---|---|
Annual Repair Cost (100 m) | 360,000–540,000 | 120,000–180,000 | 240,000–360,000 |
Support Material Cost (100 m) | 500,000–600,000 | 420,000–480,000 | 80,000–120,000 |
Annual Accident Risk Loss | 160,000–240,000 | 40,000–60,000 | 120,000–180,000 |
Production Increase Benefit (Working Face/Year) | 0 | 1,000,000 | 1,000,000 |
Comprehensive Annualized Net Benefit | — | — | 1,440,000–1,660,000 per 100 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, G.; Lin, D.; Song, Y.; Zhu, Y. Research on Synergistic Control Technology for Composite Roofs in Mining Roadways. Processes 2025, 13, 2342. https://doi.org/10.3390/pr13082342
Wang L, Liu G, Lin D, Song Y, Zhu Y. Research on Synergistic Control Technology for Composite Roofs in Mining Roadways. Processes. 2025; 13(8):2342. https://doi.org/10.3390/pr13082342
Chicago/Turabian StyleWang, Lei, Gang Liu, Dali Lin, Yue Song, and Yongtao Zhu. 2025. "Research on Synergistic Control Technology for Composite Roofs in Mining Roadways" Processes 13, no. 8: 2342. https://doi.org/10.3390/pr13082342
APA StyleWang, L., Liu, G., Lin, D., Song, Y., & Zhu, Y. (2025). Research on Synergistic Control Technology for Composite Roofs in Mining Roadways. Processes, 13(8), 2342. https://doi.org/10.3390/pr13082342