Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,343)

Search Parameters:
Keywords = atomic metals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3421 KB  
Article
Design and Characterization of Ceramic Bricks with Industrial Waste and Silica–Carbon-Based Additives
by Aidar Kengesbekov, Alfira Sabitova, Moldir Bayandinova, Zhanna Sharipkhan, Diana Bexoltanova and Nurlan Mukhamediarov
Buildings 2026, 16(1), 20; https://doi.org/10.3390/buildings16010020 (registering DOI) - 19 Dec 2025
Abstract
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation [...] Read more.
This study investigates ceramic bricks produced by partially replacing clay with Pb–Zn metallurgical residues (lead furnace dust and cyclone dust), fly ash, and carbonaceous additives. The novelty lies in the integrated multi-waste formulation and the combined FTIR–TGA–XRD analytical approach used to elucidate phase-formation mechanisms. The results show that firing promotes the development of quartz, mullite, iron oxides, and an extensive Fe–Pb–Zn–Si–O amorphous network, while higher residue contents enhance amorphization and suppress mullite crystallization. These microstructural changes correlate with reduced compressive strength (1.6–3.1 MPa) and high water absorption (32–36%), although all samples completed 15 freeze–thaw cycles. Heavy-metal leaching assessed by atomic absorption spectroscopy (AAS) revealed very low Pb (0.08–0.20 mg/L) and Zn (0.25–0.45 mg/L) release, well below international safety limits, demonstrating effective immobilization of hazardous ions within the glassy matrix. Overall, the study provides new insight into multi-waste interactions during sintering and confirms that controlled residue incorporation enables environmentally safe, non-load-bearing ceramic materials with reduced clay consumption. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 639 KB  
Article
Synthesis, Characterization, Antimicrobial and Anticancer Evaluation of Novel Heterocyclic Diazene Compounds Derived from 8-Quinolinol
by Ion Burcă, Alexandra-Mihaela Diaconescu, Valentin Badea and Francisc Péter
Pharmaceuticals 2026, 19(1), 4; https://doi.org/10.3390/ph19010004 - 19 Dec 2025
Abstract
Background: 8-Quinolinol and its derivatives are drawing significant attention across various disciplines due to their remarkable versatility. These compounds are well-known for their exceptional chelating ability, forming stable metal complexes via their nitrogen and oxygen electron donor atoms. This main characteristic determines [...] Read more.
Background: 8-Quinolinol and its derivatives are drawing significant attention across various disciplines due to their remarkable versatility. These compounds are well-known for their exceptional chelating ability, forming stable metal complexes via their nitrogen and oxygen electron donor atoms. This main characteristic determines their broad utility. Biological activity can also be explained by the chelating capacity, which allows 8-quinolinol to bind to essential metal ions such as Fe, Zn, Cu, and others. This chelation disrupts metal-dependent biological processes in target cells or organisms, leading to a range of effects, including antimicrobial, anticancer, antifungal, and neuroprotective activities. On the other hand, the biological activity of pyrazole derivatives is attributed to their heterocyclic structure, which allows for interactions with biological targets that can lead to enzyme inhibition, receptor antagonism, radical scavenging, and other effects. Objective: This work aimed to synthesize and characterize novel diazene compounds derived from 8-quinolinol or 2-methyl-8-quinolinol and pyrazole amines, and to evaluate their antimicrobial and anticancer activities. Methods: The compounds have been synthesized by coupling diazonium salts obtained from the diazotization of heterocyclic amines with 8-quinolinol and its derivative, 2-methyl-8-quinolinol. The careful selection of reaction conditions enabled the synthesis of high-purity products. The compounds were characterized by 1D and 2D NMR, FT-IR spectroscopy, UV-Vis spectroscopy, and LC-HRMS analysis. The biological activity of the newly synthesized compounds was evaluated following the protocols of EU-OPENSCREEN, a European Research Infrastructure Consortium (ERIC) initiative dedicated to supporting early drug discovery. Results: By combining diazonium salts obtained from 3-methyl-1H-pyrazol-5-amine and ethyl 5-amino-3-methyl-1H-pyrazole-4-carboxylate with the aforementioned coupling agents, four novel 8-quinolinol derivatives were synthesized. The further hydrolysis of the ethoxy carbonyl functional group allowed its conversion to a carboxylic functional group, thus expanding the series of new compounds to six members. Several compounds from the series have proven to be biologically active against several human pathogenic microorganisms and the Hep-G2 cancer cell line. Conclusions: The combination of two well-known biologically active scaffolds through a classic diazo coupling reaction allowed the synthesis of novel biologically active compounds, which showed promising results as possible antifungal and anticancer agents. These results represent a foundation for future studies, which will include a broader biological screening and in vivo studies. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

45 pages, 26296 KB  
Article
Gamma Radiation Shielding Efficiency of Cross-Linked Polystyrene-b-Polyethyleneglycol Block Copolymer Nanocomposites Doped Arsenic (III) Oxide and Boron Nitride Nanoparticles
by Bülend Ortaç, Taylan Baskan, Saliha Mutlu, Sevil Savaskan Yilmaz and Ahmet Hakan Yilmaz
Polymers 2025, 17(24), 3330; https://doi.org/10.3390/polym17243330 - 17 Dec 2025
Abstract
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3 [...] Read more.
In recent years, polymer-based hybrid nanocomposites have emerged as promising alternatives to traditional heavy metal shields due to their low density, flexibility, and environmental safety. In this study, the synthesis of PS-PEG copolymers and the gamma radiation-shielding properties of PS-PEG/As2O3, PS-PEG/BN, and PS-PEG/As2O3/BN nanocomposites with different compositions are investigated. The goal is to find the optimal nanocomposite composition for gamma radiation shielding and dosimetry. Therefore, the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half-value layer (HVL), tenth-value layer (TVL), effective atomic number, mean free path (MFP), radiation shielding efficiency (RPE), electron density, and specific gamma-ray constant were presented. Gamma rays emitted by the Eu source were detected by a high-purity germanium (HPGe) detector device. GammaVision was used to analyze the given data. Photon energy was in the vicinity of 121.8–1408.0 keV. The MAC values in XCOM simulation tools were used to compute. Gamma-shielding efficiency was increased by an increased number of NPs at a smaller photon energy. At 121.8 keV, the HVL of a composite with 70 wt% As2O3 NPs is 2.00 cm, which is comparable to the HVL of lead (0.56 cm) at the same energy level. Due to the increasing need for lightweight, flexible, and lead-free shielding materials, PS-b-PEG copolymer-based nanocomposites reinforced with arsenic oxide and BN NPs will be materials of significant interest for next-generation radiation protection applications. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Graphical abstract

14 pages, 1535 KB  
Article
Divalent Europium Complexes with Phenochalcogenato Ligands: Syntheses, Crystal Structures, and Luminescence Properties
by Zhi-Feng Wu, Qing-Song Yang, You-Song Ding and Zhiping Zheng
Inorganics 2025, 13(12), 413; https://doi.org/10.3390/inorganics13120413 - 17 Dec 2025
Abstract
Divalent europium complexes have attracted significant attention in various fields due to the unique electronic configuration of the Eu(II) ion. Given the high sensitivity of the 5d → 4f emission of Eu(II) ions to the ligand field, it is crucial to explore the [...] Read more.
Divalent europium complexes have attracted significant attention in various fields due to the unique electronic configuration of the Eu(II) ion. Given the high sensitivity of the 5d → 4f emission of Eu(II) ions to the ligand field, it is crucial to explore the relationship between ligands and this emission in Eu(II) complexes. However, the heavy-atom effects on the 5d → 4f emission of Eu(II) complexes coordinated with non-metal elements in the same group remain unclear. In this study, five mononuclear Eu(II)-chalcogenide complexes, Eu[H3B·EPh-κE,H,H]2(DME)2 (E = S for 1 and Se for 2; DME = 1,2-Dimethoxyethane) and Eu[EPh]2(18-C-6) (E = S for 3, Se for 4, and Te for 5; 18-C-6 = 1,4,7,10,13,16-Hexaoxacyclooctadecane), were synthesized via reduction of diphenyl disulfide chalcogenide analogs with Eu(BH4)2(THF)2 or NaH. The structures of these complexes were investigated by single-crystal X-ray diffraction, and their properties were characterized by thermogravimetric analysis and photophysical property tests. Complexes 1 and 2 are isomorphous and show similar yellowish-green luminescence, while complexes 35 have similar structures but crystallize in different space groups with bluish-green luminescence. This research reveals the influence of chalcogenide ligands on the 5d → 4f emission of Eu(II) complexes, providing a theoretical basis and new research ideas for the application of Eu(II) complexes in various fields, including luminescent materials, cryogenic refrigerants, and magnetic materials. Full article
Show Figures

Figure 1

31 pages, 1574 KB  
Review
Nanoparticle-Based Assays for Antioxidant Capacity Determination
by Jolanta Flieger, Natalia Żuk, Ewelina Grabias-Blicharz, Piotr Puźniak and Wojciech Flieger
Antioxidants 2025, 14(12), 1506; https://doi.org/10.3390/antiox14121506 - 15 Dec 2025
Viewed by 155
Abstract
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation [...] Read more.
Thanks to both endogenous and exogenous antioxidants (AOs), the antioxidant defense system ensures redox homeostasis, which is crucial for protecting the body from oxidative stress and maintaining overall health. The food industry also exploits the antioxidant properties to prevent or delay the oxidation of other molecules during processing and storage. There are many classical methods for assessing antioxidant capacity/activity, which are based on mechanisms such as hydrogen atom transfer (HAT), single electron transfer (SET), electron transfer with proton conjugation (HAT/SET mixed mode assays) or the chelation of selected transition metal ions (e.g., Fe2+ or Cu1+). The antioxidant capacity (AOxC) index value can be expressed in terms of standard AOs (e.g., Trolox or ascorbic acid) equivalents, enabling different products to be compared. However, there is currently no standardized method for measuring AOxC. Nanoparticle sensors offer a new approach to assessing antioxidant status and can be used to analyze environmental samples, plant extracts, foodstuffs, dietary supplements and clinical samples. This review summarizes the available information on nanoparticle sensors as tools for assessing antioxidant status. Particular attention has been paid to nanoparticles (with a size of less than 100 nm), including silver (AgNPs), gold (AuNPs), cerium oxide (CeONPs) and other metal oxide nanoparticles, as well as nanozymes. Nanozymes belong to an advanced class of nanomaterials that mimic natural enzymes due to their catalytic properties and constitute a novel signal transduction strategy in colorimetric and absorption sensors based on the localized surface plasmon resonance (LSPR) band. Other potential AOxC sensors include quantum dots (QDs, <10 nm), which are particularly useful for the sensitive detection of specific antioxidants (e.g., GSH, AA and baicalein) and can achieve very good limits of detection (LOD). QDs and metallic nanoparticles (MNPs) operate on different principles to evaluate AOxC. MNPs rely on optical changes resulting from LSPR, which are monitored as changes in color or absorbance during synthesis, growth or aggregation. QDs, on the other hand, primarily utilize changes in fluorescence. This review aims to demonstrate that, thanks to its simplicity, speed, small sample volumes and relatively inexpensive instrumentation, nanoparticle-based AOxC assessment is a useful alternative to classical approaches and can be tailored to the desired aim and analytes. Full article
Show Figures

Figure 1

24 pages, 2759 KB  
Review
Harnessing High-Valent Metals for Catalytic Oxidation: Next-Gen Strategies in Water Remediation and Circular Chemistry
by Muhammad Qasim, Sidra Manzoor, Muhammad Ikram Nabeel, Sabir Hussain, Raja Waqas, Collin G. Joseph and Jonathan Suazo-Hernández
Catalysts 2025, 15(12), 1168; https://doi.org/10.3390/catal15121168 - 15 Dec 2025
Viewed by 280
Abstract
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review [...] Read more.
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review discusses recent advances in the synthesis, stabilization, and catalytic applications of high-valent metals in aqueous environments. This study highlights their dual functionality, not only as conventional oxidants but also as mechanistic mediators within redox cycles that underpin next-generation AOPs. In this review, the formation mechanisms of these species in various oxidant systems are critically evaluated, highlighting the significance of ligand design, supramolecular confinement, and single-atom engineering in enhancing their stability. The integration of high-valent metal-based AOPs into photocatalysis, sonocatalysis, and electrochemical regeneration is explored through a newly proposed classification framework, highlighting their potential in the development of energy efficient hybrid systems. In addition, this work addresses the critical yet underexplored area of environmental fate, elucidating the post-oxidation transformation pathways of high-valent species, with particular attention to their implications for metal recovery and nutrient valorization. This review highlights the potential of high-valent metal-based AOPs as a promising approach for zero wastewater treatment within circular economies. Future frontiers, including bioinspired catalyst design, machine learning-guided optimization, and closed loop reactor engineering, will bridge the gap between laboratory research and real-world applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

42 pages, 9085 KB  
Review
In2O3: An Oxide Semiconductor for Thin-Film Transistors, a Short Review
by Christophe Avis and Jin Jang
Molecules 2025, 30(24), 4762; https://doi.org/10.3390/molecules30244762 - 12 Dec 2025
Viewed by 617
Abstract
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on [...] Read more.
With the discovery of amorphous oxide semiconductors, a new era of electronics opened. Indium gallium zinc oxide (IGZO) overcame the problems of amorphous and poly-silicon by reaching mobilities of ~10 cm2/Vs and demonstrating thin-film transistors (TFTs) are easy to manufacture on transparent and flexible substrates. However, mobilities over 30 cm2/Vs have been difficult to reach and other materials have been introduced. Recently, polycrystalline In2O3 has demonstrated breakthroughs in the field. In2O3 TFTs have attracted attention because of their high mobility of over 100 cm2/Vs, which has been achieved multiple times, and because of their use in scaled devices with channel lengths down to 10 nm for high integration in back-end-of-the-line (BEOL) applications and others. The present review focuses first on the material properties with the understanding of the bandgap value, the importance of the position of the charge neutrality level (CNL), the doping effect of various atoms (Zr, Ge, Mo, Ti, Sn, or H) on the carrier concentration, the optical properties, the effective mass, and the mobility. We introduce the effects of the non-parabolicity of the conduction band and how to assess them. We also introduce ways to evaluate the CNL position (usually at ~EC + 0.4 eV). Then, we describe TFTs’ general properties and parameters, like the field effect mobility, the subthreshold swing, the measurements necessary to assess the TFT stability through positive and negative bias temperature stress, and the negative bias illumination stress (NBIS), to finally introduce In2O3 TFTs. Then, we will introduce vacuum and non-vacuum processes like spin-coating and liquid metal printing. We will introduce the various dopants and their applications, from mobility and crystal size improvements with H to NBIS improvements with lanthanides. We will also discuss the importance of device engineering, introducing how to choose the passivation layer, the source and drain, the gate insulator, the substrate, but also the possibility of advanced engineering by introducing the use of dual gate and 2 DEG devices on the mobility improvement. Finally, we will introduce the recent breakthroughs where In2O3 TFTs are integrated in neuromorphic applications and 3D integration. Full article
Show Figures

Figure 1

16 pages, 2904 KB  
Review
A Brief Review of the Electromigration Reliability for Sn-Bi-Based Solder Joints
by Jeongheon Lee and Jae B. Kwak
Electronics 2025, 14(24), 4895; https://doi.org/10.3390/electronics14244895 - 12 Dec 2025
Viewed by 143
Abstract
Electromigration (EM) presents a major reliability challenge in advanced electronic packaging as device scaling and rising power demands lead to higher current densities in solder joints. While eutectic Sn-58Bi solder is widely adopted as a low-temperature alternative for its energy efficiency and compatibility [...] Read more.
Electromigration (EM) presents a major reliability challenge in advanced electronic packaging as device scaling and rising power demands lead to higher current densities in solder joints. While eutectic Sn-58Bi solder is widely adopted as a low-temperature alternative for its energy efficiency and compatibility with heat-sensitive substrates, its heterogeneous microstructure renders it vulnerable to EM-induced degradation. This review summarizes recent progress in understanding the EM behavior of Sn-Bi solder joints. We first introduce lifetime prediction models based on Black’s law, emphasizing the influences of current density, Joule heating, and thermomigration. Subsequently, the microstructural mechanisms accelerating degradation, including phase segregation and the coarsening of intermetallic compounds (IMCs), are examined. Various alloying strategies are evaluated for their effectiveness in strengthening the solder matrix and suppressing atomic diffusion to improve EM resistance. The critical role of substrate metallization is also discussed, comparing how different surface finishes affect interfacial reactions and joint lifetimes. Additionally, operational methods such as current polarity reversal are explored as potential pathways to mitigate degradation. Finally, we conclude that the EM reliability of Sn-Bi solder joints depends on the combined effects of alloy chemistry, interfacial reactions, and operating conditions, and we suggest future research directions in advanced modeling and material design for next-generation electronic applications. Full article
Show Figures

Figure 1

9 pages, 3632 KB  
Article
Low-Temperature Synthesis of Highly Preferentially Oriented ε-Ga2O3 Films for Solar-Blind Detector Application
by He Tian, Yijun Zhang, Hong Wang, Daogui Liao, Jiale Di, Chao Liu, Wei Ren and Zuo-Guang Ye
Nanomaterials 2025, 15(24), 1867; https://doi.org/10.3390/nano15241867 - 12 Dec 2025
Viewed by 213
Abstract
As one of the polymorphs of the gallium oxide family, ε gallium oxide (ε-Ga2O3) demonstrates promising potential in high-power electronic devices and solar-blind photodetection applications. However, the synthesis of pure-phase ε-Ga2O3 remains challenging through low-energy consumption [...] Read more.
As one of the polymorphs of the gallium oxide family, ε gallium oxide (ε-Ga2O3) demonstrates promising potential in high-power electronic devices and solar-blind photodetection applications. However, the synthesis of pure-phase ε-Ga2O3 remains challenging through low-energy consumption methods, due to its metastable phase of gallium oxide. In this study, we have fabricated pure-phase and highly oriented ε-Ga2O3 thin films on c-plane sapphire substrates via thermal atomic layer deposition (ALD) at a low temperature of 400 °C, utilizing low-reactive trimethylgallium (TMG) as the gallium precursor and ozone (O3) as the oxygen source. X-ray diffraction (XRD) results revealed that the in situ-grown ε-Ga2O3 films exhibit a preferred orientation parallel to the (002) crystallographic plane, and the pure ε phase remains stable following a post-annealing up to 800 °C, but it completely transforms into β-Ga2O3 once the thermal treatment temperature reaches 900 °C. Notably, post-annealing at 800 °C significantly enhanced the crystalline quality of ε-Ga2O3. To evaluate the optoelectronic characteristics, metal–semiconductor–metal (MSM)-structured solar-blind photodetectors were fabricated using the ε-Ga2O3 films. The devices have an extremely low dark current (<1 pA), a high photo-to-dark current ratio (>106), a maximum responsivity (>1 A/W), and the optoelectronic properties maintained stability under varying illumination intensities. This work provides valuable insights into the low-temperature synthesis of high-quality ε-Ga2O3 films and the development of ε-Ga2O3-based solar-blind photodetectors for practical applications. Full article
(This article belongs to the Special Issue Dielectric and Ferroelectric Properties of Ceramic Nanocomposites)
Show Figures

Graphical abstract

19 pages, 7066 KB  
Article
Improvement and Validation of Transient Analysis Code FRTAC for Liquid Metal-Cooled Fast Reactors
by Jian Hong, Bo Kuang, Lixia Ren, Yuping Zhou, Xintong Zhao, Xiaochen Xu, Shirui Li and Wenjun Hu
Energies 2025, 18(24), 6503; https://doi.org/10.3390/en18246503 - 11 Dec 2025
Viewed by 191
Abstract
Transient safety analysis is a critical aspect of ensuring the safe design of Liquid Metal-cooled Fast Reactors (LMRs), relying heavily on advanced system analysis programs. To this end, the China Institute of Atomic Energy (CIAE) independently developed the Fast Reactor Transient Analysis Code [...] Read more.
Transient safety analysis is a critical aspect of ensuring the safe design of Liquid Metal-cooled Fast Reactors (LMRs), relying heavily on advanced system analysis programs. To this end, the China Institute of Atomic Energy (CIAE) independently developed the Fast Reactor Transient Analysis Code (FRTAC) system analysis code for LMRs, which has been applied to the safety analysis of several reactor types. However, long-term use has revealed certain limitations, such as complex control system modeling and numerical dissipation from the first-order numerical scheme. This study analyzes the current limitations of the code and carries out systematic improvements and validation. The main improvements include enhancing the system compilation architecture and refactoring functional modules to improve computational efficiency, scalability, and usability; introducing a second-order accurate numerical scheme based on a limiter to reduce numerical dissipation in the convection term while ensuring computational stability; and optimizing the solution procedure to accommodate the new architecture and algorithms. The improved code’s computational stability and accuracy were validated using the Edwards blowdown experiment and the Energy Technology Engineering Center (ETEC) once-through steam generator steady-state test, respectively. The validation results show that the improved code maintains excellent numerical stability in problems with rapid transient pressure changes. In steady-state convective heat transfer problems, the computational accuracy and grid convergence are significantly improved, with the relative deviation of the water-side outlet temperature reduced from −3.56% to −0.59%. Under the same computational conditions, the computational efficiency was increased by up to 36.1%. The results of this study will provide a more accurate and efficient system analysis code for the transient safety analysis of LMRs. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

21 pages, 6545 KB  
Article
Combination of Noble Metal and Gold–Silver Nanoclusters as Enhanced Antibacterial Coatings for Ti-Based Medical Implants
by Evgeniia S. Vikulova, Svetlana I. Dorovskikh, David S. Sergeevichev, Tatiana Ya. Guselnikova, Anastasiya D. Fedorenko, Alexander A. Zheravin and Natalya B. Morozova
Int. J. Mol. Sci. 2025, 26(24), 11945; https://doi.org/10.3390/ijms262411945 - 11 Dec 2025
Viewed by 92
Abstract
The surface modification of medical implant materials stands as a favorable strategy to enhance their biological properties including their antibacterial effect and biocompatibility. Recently, both in vitro and in vivo studies have shown that film heterostructures based on a combination of noble metal [...] Read more.
The surface modification of medical implant materials stands as a favorable strategy to enhance their biological properties including their antibacterial effect and biocompatibility. Recently, both in vitro and in vivo studies have shown that film heterostructures based on a combination of noble metal sublayers and an active component, such as silver and gold nanoparticles, offer unique advantages. The present work develops this promising direction and focuses on a series of combinations of noble metal coatings functionalized with bimetallic nanoclusters obtained by vapor-phase deposition methods onto the surfaces of Ti-based implants. This investigation investigates the influence of sequential deposition (AgAu or AuAg) and noble metal component (Ir or Au) on the coating morphology and the active component chemical form and release. Thus, scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy have been applied to characterize the samples before and after in vivo biological studies (rat models, 1 and 3 months). Histological and blood analyses confirmed the high biocompatibility of all the heterostructures. The samples also showed a pronounced in vitro biocidal effect against Gram-positive (S. epidermalis) and Gram-negative (P. aeruginosa) bacteria that correlates with a dynamic of silver release. The AuAg/M heterostructures demonstrated superior biological characteristics compared to their AgAu/M counterparts, suggesting enhanced both long-term integration and antibacterial action. Full article
(This article belongs to the Special Issue Biomaterials and Antibacterial Materials for Medical Applications)
Show Figures

Graphical abstract

29 pages, 5077 KB  
Article
TiO2-Engineered Lead-Free Borate Glasses: A Dual-Functional Platform for Photonic and Radiation Shielding Technologies
by Gurinder Pal Singh, Joga Singh, Abayomi Yusuf and Kulwinder Kaur
Ceramics 2025, 8(4), 152; https://doi.org/10.3390/ceramics8040152 - 11 Dec 2025
Viewed by 242
Abstract
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3 [...] Read more.
Environmentally friendly materials with superior structural, physical, optical, and shielding capabilities are of great technological importance and are continually being investigated. In this work, novel multicomponent borate glasses with the composition xTiO2-10BaO-5Al2O3-5WO3-20Bi2O3-(60-x) B2O3, where 0 ≤ x ≤ 15 mol%, were produced via the melt-quenching technique. The increase in TiO2 content results in a decrease in molar volume and a corresponding increase in density, indicating the formation of a compact, rigid, and mechanically hard glass network. Elastic constant measurements further confirmed this behavior. FTIR analysis confirms the transformation of BO3 to BO4 units, signifying improved network polymerization and structural stability. The prepared glasses exhibit an optical absorption edge in the visible region, demonstrating their strong ultraviolet light blocking capability. Incorporation of TiO2 leads to an increase in refractive index, optical basicity, and polarizability, and a decrease in the optical band gap and metallization number; all of these suggest enhanced electron density and polarizability of the glass matrix. Radiation shielding properties were evaluated using Phy-X/PSD software. The outcomes illustrate that the Mass Attenuation Coefficient (MAC), Effective Atomic Number (Zeff), Linear Attenuation Coefficient (LAC) increase, while Mean Free Path (MFP) and Half Value Layer (HVL) decrease with increasing TiO2 at the expense of B2O3, confirming superior gamma-ray attenuation capability. Additionally, both TiO2-doped and undoped samples show higher fast neutron removal cross sections (FNRCS) compared to several commercial glasses and concrete materials. Overall, the incorporation of TiO2 significantly enhances the optical performance and radiation-shielding efficiency of the environmentally friendly glass system, making these potential candidates for advanced photonic devices and radiation-shielding applications. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

11 pages, 2841 KB  
Article
Assessment of Chromium Contamination in Aquatic Environments near Tannery Industries: A Portuguese Case Study
by Liliana J. G. Silva, Maria J. G. Casimiro, Angelina Pena, Maria J. Campos and André M. P. T. Pereira
Toxics 2025, 13(12), 1068; https://doi.org/10.3390/toxics13121068 - 11 Dec 2025
Viewed by 237
Abstract
Environmental contamination from industrial activities remains a significant concern, with tanneries being major contributors of chromium (Cr) to aquatic systems. Cr, a heavy metal with multiple oxidation states, varies in toxicity and poses risks to both ecosystems and human health. In Portugal, the [...] Read more.
Environmental contamination from industrial activities remains a significant concern, with tanneries being major contributors of chromium (Cr) to aquatic systems. Cr, a heavy metal with multiple oxidation states, varies in toxicity and poses risks to both ecosystems and human health. In Portugal, the Alcanena region is particularly affected, hosting around 60 tanning industries. This study assessed total Cr levels in water from the Alviela River and Carvalho Stream, with particular focus on the impact of a local wastewater treatment plant (WWTP) that processes tannery effluents. Water samples were collected upstream and downstream of the WWTP discharge point. Analytical techniques included graphite furnace atomic absorption spectrometry and inductively coupled plasma optical emission spectroscopy, with a detection limit of 0.33 µg L−1. The highest Cr concentration (560 µg L−1) was found in the Carvalho Stream, downstream of the WWTP, confirming its contribution to local contamination. In the Alviela River, Cr concentrations ranged from 8 to 50 µg L−1 downstream of the WWTP, exceeding the predicted no-effect concentration for aquatic organisms and the safety limit for human consumption (25 µg L−1). These findings highlight, for the first time, the ongoing environmental impact of tannery effluents in this region and emphasize the urgent need for improved monitoring and pollution control measures. Full article
Show Figures

Graphical abstract

13 pages, 3460 KB  
Article
First-Principles Calculation Study on the Interfacial Stability Between Zr and F Co-Doped Li6PS5Cl and Lithium Metal Anode
by Junbo Zhang, Hailong Zhang, Binbin Chen, Yinlian Ji, Caixia Qian, Jue Wang, Yu Wang, Tiantian Bao, Peipei Chen and Jie Mei
Batteries 2025, 11(12), 456; https://doi.org/10.3390/batteries11120456 - 11 Dec 2025
Viewed by 204
Abstract
Li-Argyrodite-type Li6PS5Cl solid electrolyte is one of the most extensively investigated and promising materials in the field of all-solid-state batteries. However, its interfacial stability against lithium metal anodes remains challenging. Herein, first-principles calculations were employed to probe the effects [...] Read more.
Li-Argyrodite-type Li6PS5Cl solid electrolyte is one of the most extensively investigated and promising materials in the field of all-solid-state batteries. However, its interfacial stability against lithium metal anodes remains challenging. Herein, first-principles calculations were employed to probe the effects of Zr and F co-doping on the interfacial structural characteristics of Li6P0.9Zr0.1S4.9F0.1Cl solid electrolytes in contact with lithium metal at the atomic scale. Systematic investigations were conducted on interfacial structural stability, electronic structure, lithium-ion transport properties, and stress–strain properties. Theoretical results demonstrate that the formation energy of sulfur on the lithium metal side in the Zr and F co-doped interface is significantly increased, which stems from the strong bonding interactions of Zr–S and P-F bonds. This effectively suppresses sulfur diffusion toward the lithium metal anode, thereby enhancing the interfacial structural stability. Moreover, Zr and F co-doping simultaneously improves both the lithium-ion migration capability and mechanical stress–strain properties at the interface. The maximum strain at the Li/Li6PS5Cl interface increases substantially from 6% to 12% with the implementation of Zr/F co-doping. The Li+ migration barrier at the interface exhibits a reduction of 36%. The insights from this study can serve as a design guideline for engineering high-performance solid electrolytes for all-solid-state batteries. Full article
Show Figures

Figure 1

Back to TopTop