Editorial Board Members’ Collection Series in “Featuring Ligands and Their Applications in Coordination Chemistry”, 2nd Edition

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Coordination Chemistry".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 6159

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemistry, Colorado State University, Fort Colllins, CO 80523, USA
Interests: metals in medicine; vanadium; drugs and biologically active compounds; cancer; diabetes; tuberculosis; pharmaceutically active compounds; transition metals; platinum, ruthenium, copper, rhenium, lipid and lipid model interfaces; hydrophobic compounds; spectroscopy; reverse micelles; chemistry in confined spaces
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Chemistry, National Autonomous University of Mexico, Circuito Exterior S/N, University City, Coyoacán Municipality, Mexico City 04510, Mexico
Interests: chelating ligands; coordination and organometallic chemistry; catalysis; pincer compound chemistry; cytotoxic activity; antimicrobial activity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ligands are at the core of coordination and organometallic chemistry and define metal complexes. Ligands can be synthetic or naturally derived, providing the environment and the scaffold for the resulting steric and electronic complexes for metal centers to function as a selective catalyst or a highly efficient metallodrug. Sometimes ligands are spectators; other times, they are part of the various parts of the processes, and the whole complexes are involved, assuming a critical role in the catalytic process or being a true protagonist in a given process.

Following the success of the first edition of this Special Issue, a second volume has been launched to collect original research articles or comprehensive review papers focusing on the design and participation of ligands in the formation of and the performance of their corresponding metal complexes.

Prof. Dr. Debbie C. Crans
Prof. Dr. David Morales-Morales
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • design and synthesis of ligands
  • ligand–metal complexes
  • non-innocent ligands
  • privileged ligand platforms
  • bioactive ligands
  • metal–ligand complex catalysts
  • metal–ligand multiple bond
  • chiral ligands
  • ambidentate ligands
  • bulky ligands
  • binucleating ligands
  • peptidic ligands
  • ligand–metal complexes with protein
  • ligand–metal complexes with nucleic acids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 4574 KB  
Article
A Heterobimetallic Au(I)–Ru(II) Complex Bridged by dppb: Synthesis, Structural and Solution Characterization, BSA Interaction and In Vivo Toxicity Evaluation in Wistar Rats
by Adnan Zahirović, Sunčica Roca, Muhamed Fočak, Selma Fetahović, Višnja Muzika, Damir Suljević, Anela Topčagić, Maja Mitrašinović-Brulić, Irnesa Osmanković, Debbie C. Crans and Aleksandar Višnjevac
Inorganics 2025, 13(10), 323; https://doi.org/10.3390/inorganics13100323 - 29 Sep 2025
Viewed by 310
Abstract
A novel heterobimetallic ruthenium(II)–gold(I) complex featuring a bridging bis(diphenylphosphino)butane (dppb) ligand was prepared and fully characterized. Single-crystal X-ray diffraction revealed a piano-stool geometry around Ru(II) with η6-cymene, two chlorido ligands, and one phosphorus atom from dppb, while the Au(I) center adopts [...] Read more.
A novel heterobimetallic ruthenium(II)–gold(I) complex featuring a bridging bis(diphenylphosphino)butane (dppb) ligand was prepared and fully characterized. Single-crystal X-ray diffraction revealed a piano-stool geometry around Ru(II) with η6-cymene, two chlorido ligands, and one phosphorus atom from dppb, while the Au(I) center adopts a linear P–Au–Cl coordination. Structural integrity in the solution was confirmed by 1D and 2D NMR spectroscopy, while solution behavior was further monitored by variable solvent 31P NMR and UV/Vis spectroscopy, indicating that the organometallic Ru–arene core remains intact, whereas the chlorido ligands coordinated to Ru exhibit partial lability. Complementary characterization included elemental analysis, FTIR, and UV/Vis spectroscopy. Spectrofluorimetric and FRET analyses showed that Au(dppb), Ru(dppb), and the heterobimetallic AuRu complex bind to BSA with apparent constants of 1.41 × 105, 5.12 × 102, and 2.66 × 104 M−1, respectively, following a static quenching mechanism. In vivo biological evaluation in Wistar rats revealed no significant hepatotoxicity or nephrotoxicity, with only mild and reversible histological alterations and preserved hepatocyte nuclear morphology. Hematological analysis indicated a statistically significant reduction in leukocyte populations, suggesting immunomodulatory potential, while elevated serum glucose levels point to possible endocrine or metabolic activity. These findings highlight compound structural stability and intriguing bioactivity profile, making it a promising platform for further organometallic drug development and testing. Full article
Show Figures

Graphical abstract

16 pages, 1384 KB  
Article
Transition Metal (II) Coordination Chemistry Ligated by a New Coplanar Tridentate Ligand, 2,6-Bis(5-isopropyl-1H-pyrazol-3-yl)pyridine
by Kiyoshi Fujisawa, Yurika Minakawa and David James Young
Inorganics 2025, 13(6), 189; https://doi.org/10.3390/inorganics13060189 - 6 Jun 2025
Cited by 1 | Viewed by 2728
Abstract
Transition metal (II) complexes stabilized by 2,6-di(pyrazol-3-yl)pyridine as a novel coplanar tridentate nitrogen-donor ligand have been reported for their unusual structures and photoluminescent properties. In this work, the ligand 2,6-bis(5-isopropyl-1H-pyrazole-3-yl)pyridine (denoted as L) and its transition metal (II) halogenido complexes [...] Read more.
Transition metal (II) complexes stabilized by 2,6-di(pyrazol-3-yl)pyridine as a novel coplanar tridentate nitrogen-donor ligand have been reported for their unusual structures and photoluminescent properties. In this work, the ligand 2,6-bis(5-isopropyl-1H-pyrazole-3-yl)pyridine (denoted as L) and its transition metal (II) halogenido complexes viz [ZnCl2(L)] (1), [ZnBr2(L)] (2), [CuCl2(L)] (3), and [CuCl(L)(thf)](PF6) (4) were synthesized and characterized by single crystal X-ray crystal analysis. Its structures contained N–H groups in its pyrazole rings and hydrogen bonds between these N–H donors and the coordinated halogenide ions and lattice solvent molecules. Tautomers between 3-pyridyl and 5-pyridyl substitutes were also observed. In L, the N–H group at the pyrazole nitrogen was located adjacent to the pyridine ring to form hydrogen bonds with adjacent pyrazoles. However, on complexation, the H atoms at the pyrazole nitrogens are shifted remotely to the pyridine. The zinc (II) complexes [ZnCl2(L)] (1) and [ZnBr2(L)] (2) possessed distorted trigonal pyramidal structures in the solid state. By comparison, the copper (II) complexes [CuCl2(L)] (3) and [CuCl(L)(thf)](PF6) (4) adopted square pyramidal geometry with a Jahn–Teller distortion resulting from their d9 electron configurations. Full article
Show Figures

Graphical abstract

15 pages, 2403 KB  
Article
Accessing Bisphosphine Copper(I) Complexes with Recalcitrant Pterin–Phenanthroline Ligands Through Mechanochemistry
by Siva S. M. Bandaru, Christian Fischer, Jevy V. Correia, Anna-Lena Land and Carola Schulzke
Inorganics 2025, 13(6), 175; https://doi.org/10.3390/inorganics13060175 - 22 May 2025
Viewed by 834
Abstract
The synthesis of [Cu(PteN˄N)(P˄P)][BF4] complexes with pterin-fused phenanthroline (PteN˄N) derivatives and bisphosphine (P˄P) co-ligands was achieved through a mechanochemical approach. Due to the extremely poor solubility of PteN˄N ligands, traditional solution [...] Read more.
The synthesis of [Cu(PteN˄N)(P˄P)][BF4] complexes with pterin-fused phenanthroline (PteN˄N) derivatives and bisphosphine (P˄P) co-ligands was achieved through a mechanochemical approach. Due to the extremely poor solubility of PteN˄N ligands, traditional solution methods are ineffective, whereas solid-state mechanochemistry reliably yielded the targeted heteroleptic—rather than homoleptic—complexes with considerable stability even in solution. The transformation from ligand to complex increased the solubility dramatically. The ligands and complexes were comprehensively characterised with a mixture of routine spectroscopic and spectrometric methods, the applicability of which depended to some extent on the compounds’ solubility, e.g., in the case of NMR spectroscopy. The photophysical properties of the complexes, which were not as exciting as anticipated, were assessed by absorption and emission spectroscopic methods, showing that further improvements are needed in complex design if these species are to be developed towards photocatalysis in the future. Full article
Show Figures

Graphical abstract

12 pages, 2422 KB  
Article
A Pt(II) Complex with a PNN Type Ligand Dppmaphen Exhibits Selective, Reversible Vapor-Chromic Photoluminescence
by Yuanyuan Hu, Jiangyue Wang, David James Young, Hong-Xi Li, Yuxin Lu and Zhi-Gang Ren
Inorganics 2025, 13(5), 170; https://doi.org/10.3390/inorganics13050170 - 16 May 2025
Viewed by 675
Abstract
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of [...] Read more.
The reaction of PtCl2 with a PNN type ligand dppmaphen (N-(diphenylphosphanylmethyl)-2-amino-1,10-phenanthroline) yielded a new Pt(II) complex [Pt(dppmaphen)Cl]Cl·H2O (1). Upon excitation at 370 nm, compound 1 emits yellow phosphorescence at 539 and 576 nm at room temperature. Exposure of compound 1 to MeOH vapor induces a shift in its emission to 645 nm, which can be attributed to the substitution of MeOH molecules for H2O, resulting in the disruption and reorganization of weak interactions in 1. This response is selective for MeOH and, to a lesser extent, EtOH, the orange photoluminescence recovered in air. The emission change of 1 was reversible and visible to the naked eye. Full article
Show Figures

Graphical abstract

10 pages, 1490 KB  
Article
Cadmium Complexes—A Novel Family in the Coordination Chemistry of 1,2-bis(arylimino)acenaphthenes
by Egor V. Chekhov, Ivan V. Bakaev, Alisa K. Gukova, Nikolay O. Shaposhnikov, Veronika I. Komlyagina, Saltanat Appazova, Banu Diyarova, Klara Darmagambet, Nurbol Appazov, Nikolai F. Romashev and Artem L. Gushchin
Inorganics 2025, 13(5), 145; https://doi.org/10.3390/inorganics13050145 - 2 May 2025
Viewed by 1180
Abstract
This work presents the synthesis routes for the first representatives of cadmium complexes based on 1,2-bis(arylimino)acenaphthene (Ar-bian). The reaction of CdCl2 with bis-(2,4,6-trimethylphenylimino)acenaphthene (tmp-bian) in a 1-to-1 molar ratio led to a dimeric complex [Cd2(tmp-bian)2Cl2(µ-Cl)2 [...] Read more.
This work presents the synthesis routes for the first representatives of cadmium complexes based on 1,2-bis(arylimino)acenaphthene (Ar-bian). The reaction of CdCl2 with bis-(2,4,6-trimethylphenylimino)acenaphthene (tmp-bian) in a 1-to-1 molar ratio led to a dimeric complex [Cd2(tmp-bian)2Cl2(µ-Cl)2] (1). Further treatment of complex 1 with silver triflate as a chloride-eliminating agent, followed by the addition of one equivalent of tmp-bian, resulted in the formation of a mixture consisting of [Cd2(tmp-bian)2(H2O)4(µ-Cl)2](OTf)2 (2) and [Cd(tmp-bian)2(OTf)2] (3). To obtain complex 3 in its individual form, a reaction of Cd(OTf)2 with two equivalents of tmp-bian was carried out. The characterization of the complexes was conducted through a range of analytical methods, including X-ray diffraction analysis, elemental analysis, as well as IR and 1H NMR-spectroscopies. Redox properties of 1 and 3 were investigated by means of cyclic voltammetry. Cyclic voltammograms revealed irreversible reduction processes centered on the tmp-bian ligand, which were confirmed by quantum chemical calculations. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 2041 KB  
Review
Chiral Transition Metal Complexes Featuring Limonene-Derived Ligands: Roles in Catalysis and Biology
by Ghaita Chahboun, Mohamed El Hllafi, Eva Royo and Mohamed Amin El Amrani
Inorganics 2025, 13(10), 336; https://doi.org/10.3390/inorganics13100336 - 13 Oct 2025
Abstract
Chiral coordination compounds are of growing interest due to their structural diversity and wide applicability. Besides chirality, alcohol and especially oxime-functionalized limonene derivatives confer water solubility, stability, and the appropriate reactivity to enable their use in asymmetric catalysis—such as allylic substitution, alkynylation, transfer [...] Read more.
Chiral coordination compounds are of growing interest due to their structural diversity and wide applicability. Besides chirality, alcohol and especially oxime-functionalized limonene derivatives confer water solubility, stability, and the appropriate reactivity to enable their use in asymmetric catalysis—such as allylic substitution, alkynylation, transfer hydrogenation, and selective C–C bond formation. Biologically, they have shown promising anticancer, antibacterial, and antibiofilm activity. This review presents an integrated overview of the synthesis, properties, and applications of chiral transition metal complexes featuring ligands derived from inexpensive, naturally occurring R- and S-limonene substrates, and explore their roles in catalysis and biological activity. Full article
Show Figures

Figure 1

Back to TopTop