Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (58,950)

Search Parameters:
Keywords = anti-oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1729 KiB  
Article
Melatonin During Pre-Maturation and Its Effects on Bovine Oocyte Competence
by Laryssa Ketelyn Lima Pimenta, Nayara Ribeiro Kussano, José Eduardo Vieira Chaves, Hallya Beatriz Sousa Amaral, Maurício Machaim Franco, José Felipe Warmling Sprícigo and Margot Alves Nunes Dode
Antioxidants 2025, 14(8), 969; https://doi.org/10.3390/antiox14080969 (registering DOI) - 7 Aug 2025
Abstract
To minimize the deleterious effects of oxidative stress and improve oocyte competence, we assessed the impact of melatonin during in vitro pre-maturation (pre-IVM) in bovine cumulus–oocyte complexes (COCs). We compared three groups: control (conventional IVM), pre-IVM control (without melatonin), and pre-IVM + MTn [...] Read more.
To minimize the deleterious effects of oxidative stress and improve oocyte competence, we assessed the impact of melatonin during in vitro pre-maturation (pre-IVM) in bovine cumulus–oocyte complexes (COCs). We compared three groups: control (conventional IVM), pre-IVM control (without melatonin), and pre-IVM + MTn (with melatonin). The analyses included levels of reactive oxygen species (ROS), mitochondrial activity, oocyte lipid content, and the expression of genes related to oxidative stress and lipid metabolism in oocytes and cumulus cells. We also examined embryo quality by evaluating kinetics of development and gene expression. The pre-IVM + MTn group exhibited an increase (p ≤ 0.05) in ROS levels and a decrease (p ≤ 0.05) in lipid content, while maintaining mitochondrial activity similar (p > 0.05) to that of the control group. Regarding gene expression, the effect of pre-IVM, independent of melatonin, was characterized by a decrease in FABP3 transcripts in cumulus cells and reductions in GSS and NFE2L2 transcripts in oocytes (p ≤ 0.05). The pre-IVM + MTn group also displayed a decrease (p ≤ 0.05) in CAT and SOD2 transcript levels. In terms of embryonic development, the pre-IVM + MTn group achieved a higher blastocyst rate on D7 (p ≤ 0.05) compared to the control group (30.8% versus 25.8%), but with similar rates (p > 0.05) to the pre-IVM control group (30.8% versus 35.9%). However, there was a decrease in the levels of the PLAC8 transcript. This study indicates that, under the conditions tested, melatonin did not significantly benefit oocyte competence. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 858 KiB  
Article
Valorization of Coffee Cherry Pulp into Potential Functional Poultry Feed Additives by Pectinolytic Yeast Kluyveromyces marxianus ST5
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Orranee Srinual, Hien Van Doan and Pornchai Rachtanapun
Animals 2025, 15(15), 2311; https://doi.org/10.3390/ani15152311 (registering DOI) - 7 Aug 2025
Abstract
Coffee cherry pulp (CCP), a coffee by-product rich in pectin and phenolic compounds, serves as a valuable substrate for microbial enzyme production, improving the nutritional and antioxidant properties of poultry feed. This study evaluated the potential of Kluyveromyces marxianus ST5 to produce pectin-degrading [...] Read more.
Coffee cherry pulp (CCP), a coffee by-product rich in pectin and phenolic compounds, serves as a valuable substrate for microbial enzyme production, improving the nutritional and antioxidant properties of poultry feed. This study evaluated the potential of Kluyveromyces marxianus ST5 to produce pectin-degrading enzymes using CCP. Under unoptimized conditions, the pectin lyase (PL) and polygalacturonase (PG) activities were 3.29 ± 0.22 and 6.32 ± 0.13 U/mL, respectively. Optimization using a central composite design (CCD) identified optimal conditions at 16.81% (w/v) CCP, 5.87% (v/v) inoculum size, pH 5.24, and 30 °C for 48 h, resulting in PL and PG activities of 9.17 ± 0.20 and 15.78 ± 0.14 U/mL, representing increases of 178.7% and 149.7% over unoptimized conditions. Fermented CCP was further evaluated using an in vitro chicken gastrointestinal digestion model. Peptide release increased by 66.2% compared with unfermented CCP. Antioxidant capacity also improved, with significant increases observed in DPPH (32.4%), ABTS (45.0%), and FRAP (42.3%) assays, along with an 11.1% increase in total phenolic content. These results demonstrate that CCP bioconversion by K. marxianus ST5 enhances digestibility and antioxidant properties, supporting its potential as a sustainable poultry feed additive and contributing to the valorization of agro-industrial waste. Full article
Show Figures

Figure 1

16 pages, 1481 KiB  
Article
Effects of Underwater Noise Exposure on Early Development in Zebrafish
by Tong Zhou, Yuchi Duan, Ya Li, Wei Yang and Qiliang Chen
Animals 2025, 15(15), 2310; https://doi.org/10.3390/ani15152310 (registering DOI) - 7 Aug 2025
Abstract
Anthropogenic noise pollution is a significant global environmental issue that adversely affects the behavior, physiology, and auditory functions of aquatic species. However, studies on the effects of underwater noise on early developmental stages of fish remain scarce, particularly regarding the differential impacts of [...] Read more.
Anthropogenic noise pollution is a significant global environmental issue that adversely affects the behavior, physiology, and auditory functions of aquatic species. However, studies on the effects of underwater noise on early developmental stages of fish remain scarce, particularly regarding the differential impacts of daytime versus nighttime noise exposure. In this study, zebrafish (Danio rerio) embryos were exposed to control group (no additional noise), daytime noise (100–1000 Hz, 130 dB, from 08:00 to 20:00) or nighttime noise (100–1000 Hz, 130 dB, from 20:00 to 08:00) for 5 days, and their embryonic development and oxidative stress levels were analyzed. Compared to the control group, the results indicated that exposure to both daytime and nighttime noise led to delays in embryo hatching time and a significant decrease in larval heart rate. Notably, exposure to nighttime noise significantly increased the larval deformity rate. Noise exposure, particularly at night, elevated the activities of catalase (CAT) and glutathione peroxidase (GPX), as well as the concentration of malondialdehyde (MDA), accompanied by upregulation of antioxidant-related gene expression levels. Nighttime noise exposure significantly increased the abnormality rate of otolith development in larvae and markedly downregulated the expression levels of otop1 related to otolith development regulation, while daytime noise exposure only induced a slight increase in the otolith abnormality rate. After noise exposure, the number of lateral neuromasts in larvae decreased slightly, yet genes (slc17a8 and capgb) related to hair cell development were significantly upregulated. Overall, this study demonstrates that both daytime and nighttime noise can induce oxidative stress and impair embryonic development of zebrafish, with nighttime noise causing more severe damage. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

16 pages, 2468 KiB  
Article
Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens
by Gabriela Miotto Galli, Ines Andretta, Camila Lopes Carvalho, Aleksandro Schafer da Silva and Marcos Kipper
Poultry 2025, 4(3), 35; https://doi.org/10.3390/poultry4030035 (registering DOI) - 7 Aug 2025
Abstract
(1) Background: The goal of the present study was to evaluate whether the supplementation with a multi-species probiotic in the diet of laying hens can change the microbiota and health status of the oviduct. (2) Methods: A total of 60 cages housing lightweight [...] Read more.
(1) Background: The goal of the present study was to evaluate whether the supplementation with a multi-species probiotic in the diet of laying hens can change the microbiota and health status of the oviduct. (2) Methods: A total of 60 cages housing lightweight laying hens (36 weeks old) were randomly assigned to the following two different treatments: a control group fed a diet without probiotic, and a treatment group receiving diets supplemented with 50 g/ton of probiotics. The trial lasted for 26 weeks, after which five layers were slaughtered per treatment for oviduct (magnum) assessment, focusing on microbiome composition, oxidant and antioxidant status, and morphological analyses. Additionally, intestinal (jejunum) samples were collected to determine oxidant and antioxidant status. (3) Results: Probiotic supplementation resulted in lower counts of organisms from the RB41 order (p = 0.039) and Burkholderia genus (p = 0.017), and a total reduction in Bacillus and Corynebacterium (p = 0.050) compared to the control treatment. Genera Burkholderia (p = 0.017), Corynebacterium (p = 0.050), and Bacillus (p = 0.050) were also lower with the probiotic supplementation in relation to the control. Genera Epulopiscium (p = 0.089), Flavobacterium (p = 0.100), Ruminococcus (p = 0.089), and Staphylococcus (p = 0.100) tended to be lower in the probiotic group compared to the control. No significant differences were found between treatments for oviduct lesions. Probiotic treatment resulted in a higher protein thiol level in the intestine compared to the control (p < 0.001). However, the use of probiotics tended to reduce glutathione S-transferase levels in the oviduct compared to the control (p = 0.068). (4) Conclusions: These results suggest that dietary supplementation with probiotics can modulate the oviduct microbiota and improve the antioxidant status of laying hens, without causing tissue damage. Further research is warranted to explore the long-term implications of these changes on reproductive performance and egg quality. Full article
Show Figures

Figure 1

18 pages, 2516 KiB  
Article
Joint Metabolomics and Transcriptomics Reveal Rewired Glycerophospholipid and Arginine Metabolism as Components of BRCA1-Induced Metabolic Reprogramming in Breast Cancer Cells
by Thomas Lucaora and Daniel Morvan
Metabolites 2025, 15(8), 534; https://doi.org/10.3390/metabo15080534 (registering DOI) - 7 Aug 2025
Abstract
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself [...] Read more.
Background/Objectives: The breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene whose mutations are associated with increased susceptibility to develop breast or ovarian cancer. BRCA1 mainly exerts its protective effects through DNA double-strand break repair. Although not itself a transcriptional factor, BRCA1, through its multiple protein interaction domains, exerts transcriptional coregulation. In addition, BRCA1 expression alters cellular metabolism including inhibition of de novo fatty acid synthesis, changes in cellular bioenergetics, and activation of antioxidant defenses. Some of these actions may contribute to its global oncosuppressive effects. However, the breadth of metabolic pathways reprogrammed by BRCA1 is not fully elucidated. Methods: Breast cancer cells expressing BRCA1 were investigated by multiplatform metabolomics, metabolism-related transcriptomics, and joint metabolomics/transcriptomics data processing techniques, namely two-way orthogonal partial least squares and pathway analysis. Results: Joint analyses revealed the most important metabolites, genes, and pathways of metabolic reprogramming in BRCA1-expressing breast cancer cells. The breadth of metabolic reprogramming included fatty acid synthesis, bioenergetics, HIF-1 signaling pathway, antioxidation, nucleic acid synthesis, and other pathways. Among them, rewiring of glycerophospholipid (including phosphatidylcholine, -serine and -inositol) metabolism and increased arginine metabolism have not been reported yet. Conclusions: Rewired glycerophospholipid and arginine metabolism were identified as components of BRCA1-induced metabolic reprogramming in breast cancer cells. The study helps to identify metabolites that are candidate biomarkers of the BRCA1 genotype and metabolic pathways that can be exploited in targeted therapies. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

17 pages, 7385 KiB  
Article
Microbial Alliance of Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 Enhances Nitrogen Fixation, Yield, and Salinity Tolerance in Black Gram Under Saline, Nutrient-Depleted Soils
by Praveen Kumar Tiwari, Anchal Kumar Srivastava, Rachana Singh and Alok Kumar Srivastava
Nitrogen 2025, 6(3), 66; https://doi.org/10.3390/nitrogen6030066 (registering DOI) - 7 Aug 2025
Abstract
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus [...] Read more.
Salinity is a major abiotic stress limiting black gram (Vigna mungo) productivity, particularly in arid and semi-arid regions. Saline soils negatively impact plant growth, nodulation, nitrogen fixation, and yield. This study evaluated the efficacy of co-inoculating salt-tolerant plant growth-promoting bacteria Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 on black gram performance under saline field conditions (EC: 8.87 dS m−1; pH: 8.37) with low organic carbon (0.6%) and nutrient deficiencies. In vitro assays demonstrated the biocontrol potential of SPR11, inhibiting Fusarium oxysporum and Macrophomina phaseolina by 76% and 62%, respectively. Germination assays and net house experiments under 300 mM NaCl stress showed that co-inoculation significantly improved physiological traits, including germination rate, root length (61.39%), shoot biomass (59.95%), and nitrogen fixation (52.4%) in nitrogen-free media. Field trials further revealed enhanced stress tolerance markers: chlorophyll content increased by 54.74%, proline by 50.89%, and antioxidant enzyme activities (SOD, CAT, PAL) were significantly upregulated. Electrolyte leakage was reduced by 55.77%, indicating improved membrane stability. Agronomic performance also improved, with co-inoculated plants showing increased root length (7.19%), grain yield (15.55 q ha−1; 77.04% over control), total biomass (26.73 q ha−1; 57.06%), and straw yield (8.18 q ha−1). Pod number, seed count, and seed weight were also enhanced. Nutrient analysis showed elevated uptake of nitrogen, phosphorus, potassium, and key micronutrients (Zn, Fe) in both grain and straw. To the best of our knowledge, this is the very first field-based report demonstrating the synergistic benefits of co-inoculating Paenibacillus sp. SPR11 and Bradyrhizobium yuanmingense PR3 in black gram under saline, nutrient-poor conditions without external nitrogen inputs. The results highlight a sustainable strategy to enhance legume productivity and resilience in salt-affected soils. Full article
Show Figures

Graphical abstract

11 pages, 860 KiB  
Article
Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress
by Zhicheng Wang, Haotian Gu, Chunhong Zhu, Yifei Wang, Hongxiang Liu, Weitao Song, Zhiyun Tao, Wenjuan Xu, Shuangjie Zhang and Huifang Li
Animals 2025, 15(15), 2309; https://doi.org/10.3390/ani15152309 (registering DOI) - 6 Aug 2025
Abstract
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, [...] Read more.
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, we first used four different freezing procedures (P1–P4) to freeze duck semen and compared their effects on duck sperm quality. Then, the changes in antioxidant indexes in semen were monitored. The results showed that program P4 (initial 7 °C/min slow descent to −35 °C, followed by 60 °C/min rapid descent to −140 °C) was significantly better than the other programs (p < 0.05), and its post-freezing sperm vitality reached 71.41%, and the sperm motility was 51.73%. In the P1 and P3 groups, the sperm vitality was 65.56% and 53.41%, and the sperm motility was 46.99% and 31.76%, respectively. In terms of antioxidant indexes, compared with the fresh semen group (CK), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) in the P2 group were significantly decreased (p < 0.05), while the activities of SOD and CAT in the P4 group showed no significant changes (p > 0.05) except that the activity of GSH-px was significantly decreased (p < 0.05). And the CAT and GSH-px activities in the P4 group were significantly higher than those in the P2 group (p < 0.05). The content of malondialdehyde (MDA) in the P2 group was significantly higher than that in the fresh semen group (p < 0.05), and there was no significant difference between the P2 group and the P4 group (p > 0.05). The total antioxidant capacity (T-AOC) content of the P2 and P4 groups was significantly lower than that of the fresh semen group (p < 0.05). The staged cooling strategy of P4 was effective in reducing the exposure time to the hypertonic environment by balancing intracellular dehydration and ice crystal inhibition, shortening the reactive oxygen species accumulation and alleviating oxidative stress injury. On the contrary, the multi-stage slow-down strategy of P2 exacerbated mitochondrial dysfunction and the oxidative stress cascade response due to prolonged cryogenic exposure time. The present study confirmed that the freezing procedure directly affects duck sperm quality by modulating the oxidative stress pathway and provides a theoretical basis for the standardization of duck semen cryopreservation technology. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

41 pages, 2949 KiB  
Review
Nanocarriers Containing Curcumin and Derivatives for Arthritis Treatment: Mapping the Evidence in a Scoping Review
by Beatriz Yurie Sugisawa Sato, Susan Iida Chong, Nathalia Marçallo Peixoto Souza, Raul Edison Luna Lazo, Roberto Pontarolo, Fabiane Gomes de Moraes Rego, Luana Mota Ferreira and Marcel Henrique Marcondes Sari
Pharmaceutics 2025, 17(8), 1022; https://doi.org/10.3390/pharmaceutics17081022 - 6 Aug 2025
Abstract
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water [...] Read more.
Background/Objectives: Curcumin (CUR) is well known for its therapeutic properties, particularly attributed to its antioxidant and anti-inflammatory effects in managing chronic diseases such as arthritis. While CUR application for biomedical purposes is well known, the phytochemical has several restrictions given its poor water solubility, physicochemical instability, and low bioavailability. These limitations have led to innovative formulations, with nanocarriers emerging as a promising alternative. For this reason, this study aimed to address the potential advantages of associating CUR with nanocarrier systems in managing arthritis through a scoping review. Methods: A systematic literature search of preclinical (in vivo) and clinical studies was performed in PubMed, Scopus, and Web of Science (December 2024). General inclusion criteria include using CUR or natural derivatives in nano-based formulations for arthritis treatment. These elements lead to the question: “What is the impact of the association of CUR or derivatives in nanocarriers in treating arthritis?”. Results: From an initial 536 articles, 34 were selected for further analysis (31 preclinical investigations and three randomized clinical trials). Most studies used pure CUR (25/34), associated with organic (30/34) nanocarrier systems. Remarkably, nanoparticles (16/34) and nanoemulsions (5/34) were emphasized. The formulations were primarily presented in liquid form (23/34) and were generally administered to animal models through intra-articular injection (11/31). Complete Freund’s Adjuvant (CFA) was the most frequently utilized among the various models to induce arthritis-like joint damage. The findings indicate that associating CUR or its derivatives with nanocarrier systems enhances its pharmacological efficacy through controlled release and enhanced solubility, bioavailability, and stability. Moreover, the encapsulation of CUR showed better results in most cases than in its free form. Nonetheless, most studies were restricted to the preclinical model, not providing direct evidence in humans. Additionally, inadequate information and clarity presented considerable challenges for preclinical evidence, which was confirmed by SYRCLE’s bias detection tools. Conclusions: Hence, this scoping review highlights the anti-arthritic effects of CUR nanocarriers as a promising alternative for improved treatment. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Devices and Platforms for Pain Management)
14 pages, 313 KiB  
Article
Effects of Dietary Puffed Jujube Powder on Growth Performance, Apparent Digestibility, and Meat Quality of Hainan Black Goats
by Yi Zhang, Jianzhi Shi, Jiapeng Wang, Keke Li, Xianzheng Qiao, Dong Chen, Tingting Dong, Yuanxiao Li, Yushu Zhang and Renlong Lv
Animals 2025, 15(15), 2306; https://doi.org/10.3390/ani15152306 - 6 Aug 2025
Abstract
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with [...] Read more.
This study was conducted to investigate the effects of puffed jujube powder (PJP) supplementation in the diet on the slaughter characteristics, growth performance, meat quality, and serum antioxidant capacity of Hainan Black (HB) goats. Twenty-four healthy male HB goats, three months old with an initial body weight of 15.12 ± 3.67 kg, were randomly divided into three groups: the 10% PJP group (basal diet plus 10% PJP); the 20% PJP group (basal diet plus 20% PJP); and the control group (basal diet only). After a 10-day adaptation period, a feeding trial was carried out for 90 days in an ad libitum diet environment. The results show that the final body weight of the 20% PJP group was markedly higher (p < 0.05) than that of the control group (22.58 ± 0.94 kg vs. 20.45 ± 1.01 kg). The average daily gain of the 20% PJP group was 83.44 ± 1.78 g/d, which was substantially greater (p < 0.05) than the 59.22 ± 2.13 g/d of the control group. The feed intake of the 20% PJP group was 713.10 ± 4.54 g/d, notably higher (p < 0.05) than the 498.20 ± 4.33 g/d of the control group. In terms of slaughter characteristics, the carcass weight of the 20% PJP group was 13.99 ± 1.22 kg, considerably heavier (p < 0.05) than the 11.79 ± 1.38 kg of the control group. The muscle weight of the 20% PJP group was 11.43 ± 1.42 kg, distinctly greater (p < 0.05) than the 9.59 ± 1.99 kg of the control group. The slaughter rate of the 20% PJP group was 42.41%, showing a notable increase (p < 0.05) compared with the 37.42% of the control group, and the net meat rate of the 20% PJP group was 34.65%, with a significant rise (p < 0.05) compared with the 30.43% of the control group. Regarding serum antioxidant capacity and meat quality, the activities of serum antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were conspicuously increased (p < 0.05) in the 20% PJP group. The meat shear force of the 20% PJP group was decreased by 12.9%, and the cooking loss was improved by 8.9% in comparison with the control group. In conclusion, the supplementation of 20% PJP in the diet was demonstrated to enhance the growth performance, improve the meat quality, and boost the antioxidant status of HB goats, thus presenting a feasible strategy for optimizing tropical goat production systems. Full article
(This article belongs to the Section Animal Nutrition)
17 pages, 4825 KiB  
Article
Tea Polyphenols Mitigate TBBPA-Induced Renal Injury Through Modulation of ROS-PI3K/AKT-NF-κB Signalling in Carp (Cyprinus carpio)
by Fuxin Han, Ran Xu, Hongru Wang, Xuejiao Gao and Mengyao Guo
Animals 2025, 15(15), 2307; https://doi.org/10.3390/ani15152307 - 6 Aug 2025
Abstract
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and [...] Read more.
Tetrabromobisphenol A (TBBPA), a widely utilised brominated flame retardant, demonstrates toxicological effects in aquatic organisms. Tea polyphenols (TPs), natural compounds found in tea leaves, exhibit both antioxidant and anti-inflammatory activities. The kidney is one of the major metabolic organs in common carp and serves as a target organ for toxic substances. This study evaluated the therapeutic potential of TPs in mitigating TBBPA-induced nephrotoxicity in common carp. Common carp were exposed to 0.5 mg/L TBBPA in water and/or fed a diet supplemented with 1 g/kg TPs for 14 days. In vitro, primary renal cells were treated with 60 μM TBBPA and/or 2.5 μg/L TPs for 24 h. Methods included histopathology, TUNEL assay for apoptosis, ROS detection, and molecular analyses. Antioxidant enzymes (SOD, CAT) and inflammatory cytokines (IL-1β, IL-6, TNF-α) were quantified using ELISA kits. Results showed that TBBPA induced oxidative stress, and activated the ROS-PI3K/AKT-NF-κB pathway, thereby resulting in inflammatory responses. TBBPA upregulated apoptosis-related genes (Caspase-3, Bax, and Bcl-2) and induced apoptosis. TBBPA upregulated the expression of RIPK3/MLKL, thereby exacerbating necroptosis. TPs intervention significantly mitigated these effects by reducing ROS, suppressing NF-κB activation, and restoring antioxidant enzyme activities (SOD, CAT). Moreover, TPs attenuated apoptosis and necrosis in the carp kidney, thereby enhancing the survival ability and immunity of common carp. Full article
Show Figures

Graphical abstract

20 pages, 4173 KiB  
Article
Visual Observation of Polystyrene Microplastics/Nanoplastics in Peanut Seedlings and Their Effects on Growth and the Antioxidant Defense System
by Yuyang Li, Xinyi Huang, Qiang Lv, Zhanqiang Ma, Minhua Zhang, Jing Liu, Liying Fan, Xuejiao Yan, Nianyuan Jiao, Aneela Younas, Muhammad Shaaban, Jiakai Gao, Yanfang Wang and Ling Liu
Agronomy 2025, 15(8), 1895; https://doi.org/10.3390/agronomy15081895 - 6 Aug 2025
Abstract
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and [...] Read more.
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and 100 mg L−1) on peanut growth, photosynthetic efficiency, and physiological characteristics, a 15-day hydroponic experiment was conducted using peanut seedlings as the experimental material. The results indicated that PS-MPs/NPs inhibited peanut growth, reduced soil and plant analyzer development (SPAD) values (6.7%), and increased levels of malondialdehyde (MDA, 22.0%), superoxide anion (O2, 3.8%) superoxide dismutase (SOD, 16.1%) and catalase (CAT, 12.1%) activity, and ascorbic acid (ASA, 12.6%) and glutathione (GSH, 9.1%) contents compared to the control. Moreover, high concentrations (100 mg L−1) of PS-MPs/NPs reduced the peanut shoot fresh weight (16.1%) and SPAD value (7.2%) and increased levels of MDA (17.1%), O2 (5.6%), SOD (10.6%), POD (27.2%), CAT (7.3%), ASA (12.3%), and GSH (6.8%) compared to low concentrations (10 mg L−1) of PS-MPs/NPs. Notably, under the same concentration, the impact of 50 nm PS-NPs was stronger than that of 5 μm PS-MPs. The peanut shoot fresh weight of PS-NPs was lower than that of PS-MPs by an average of 7.9%. Additionally, we found that with an increasing exposure time of PS-MPs/NPs, the inhibitory effect of low concentrations of PS-MPs/NPs on the fresh weight was decreased by 2.5%/9.9% (5 d) and then increased by 7.7%/2.7% (15 d). Conversely, high concentrations of PS-MPs/NPs consistently reduced the fresh weight. Correlation analysis revealed a clear positive correlation between peanut biomass and both the SPAD values as well as Fv/Fm, and a negative correlation with MDA, SOD, CAT, ASA, and GSH. Furthermore, the presence of PS-MPs/NPs in roots, stems, and leaves was confirmed using a confocal laser scanning microscope. The internalization of PS-MPs/NPs within peanut tissues negatively impacted peanut growth by increasing the MDA and O2 levels, reducing the SPAD values, and inhibiting the photosynthetic capacity. In conclusion, the study demonstrated that the effects of PS on peanuts were correlated with the PS size, concentration, and exposure time, highlighting the potential risk of 50 nm to 5 μm PS being absorbed by peanuts. Full article
(This article belongs to the Collection Crop Physiology and Stress)
19 pages, 1548 KiB  
Article
Phytochemical Analysis, Antioxidant Activity, and Anticancer Potential of Afzelia quanzensis Welw—Bark Extract: A Traditional Remedy Utilized by Indigenous Communities in KwaZulu-Natal and Eastern Cape Provinces of South Africa
by Siphamandla Qhubekani Njabuliso Lamula, Thando Bhanisa, Martha Wium, Juliano Domiraci Paccez, Luiz Fernando Zerbini and Lisa V. Buwa-Komoreng
Int. J. Mol. Sci. 2025, 26(15), 7623; https://doi.org/10.3390/ijms26157623 - 6 Aug 2025
Abstract
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South [...] Read more.
Despite the significant advancements in treatment and prevention, the fight against cancer is ongoing worldwide. This study evaluated the pharmacological properties and anticancer activity of Afzelia quanzensis bark, traditionally used by the indigenous communities of KwaZulu Natal and Eastern Cape Provinces of South Africa to treat cancer and related illnesses. Phytochemical screening, high-performance liquid chromatography–diode array detection (HPLC-DAD), and Fourier-transform infrared spectroscopy (FTIR) analyses were carried out using established protocols. The antioxidant activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and nitric oxide radicals. The anticancer activity was evaluated using the MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Phytochemical analysis revealed the presence of saponins, flavonoids, terpenoids, alkaloids, steroids, cardiac glycosides, and phlobatannins. The HPLC-DAD analysis detected seven distinctive peaks in the aqueous extract and three distinctive peaks in the methanolic extract. The FTIR spectra of the aqueous extract displayed characteristic peaks corresponding to O-H, C=O, C=C, and =C–H functional groups. Among the tested extracts, the methanol extract exhibited the strongest antioxidant activity, followed by the ethanolic extract, in both DPPH and nitric oxide. The methanol extract showed a higher cell proliferation inhibition against the DU-145 cancer cell line with the percentage of inhibition of 37.8%, followed by the aqueous extract with 36.3%. In contrast, limited activity was observed against PC-3, SK-UT-1, and AGS cell lines. The results demonstrated notable dose-dependent antioxidant and antiproliferative activities supporting the ethnomedicinal use of Afzelia quanzensis bark in cancer management. These findings warrant further investigation into its bioactive constituents and mechanisms of action. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
17 pages, 391 KiB  
Article
A Comparative Study of Paralympic Veterans with Either a Spinal Cord Injury or an Amputation: Implications for Personalized Nutritional Advice
by Ilaria Peluso, Anna Raguzzini, Elisabetta Toti, Gennaro Boccia, Roberto Ferrara, Diego Munzi, Paolo Riccardo Brustio, Alberto Rainoldi, Valentina Cavedon, Chiara Milanese, Tommaso Sciarra and Marco Bernardi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 305; https://doi.org/10.3390/jfmk10030305 - 6 Aug 2025
Abstract
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at [...] Read more.
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at filling up this gap, at least partially, and compared veteran PAs-SCI with PAs-AMP. Methods: A sample of 25 male PAs (12 with SCI and 13 with AMP), recruited during two training camps, was submitted to the following questionnaires: allergy questionnaire for athletes (AQUA), Nordic Musculoskeletal Questionnaire (NMQ), Starvation Symptom Inventory (SSI), neurogenic bowel dysfunction (NBD), orthorexia (ORTO-15/ORTO-7), alcohol use disorders identification test (AUDIT), and Mediterranean diet adherence (MDS). The PAs were also submitted to the following measurements: dietary Oxygen Radical Absorbance Capacity (ORAC) and intakes, body composition, handgrip strength (HGS), basal energy expenditure (BEE), peak oxygen uptake (VO2peak), peak power, peak heart rate (HR), post-exercise ketosis, and antioxidant response after a cardiopulmonary exercise test (CPET) to voluntary fatigue. Results: Compared to PAs-AMP, PAs-SCI had higher NBD and lower VO2peak (p < 0.05), peak power, peak HR, peak lactate, phase angle (PhA) of the dominant leg (p < 0.05), and ORTO15 (p < 0.05). The latter was related to NBD (r = −0.453), MDS (r = −0.638), and ORAC (r = −0.529), whereas ORTO7 correlated with PhA of the dominant leg (r = 0.485). Significant differences between PAs-AMP and PAs-SCI were not found in the antioxidant response, glucose, and ketone levels after CPET, nor in dietary intake, AUDIT, AQUA, NMQ, SSI, BEE, HGS, and FM%. Conclusions: The present study showed that PAs-SCI and PAs-AMP display similar characteristics in relation to lifestyle, energy intake, basal energy expenditure, and metabolic response to CPET. Based on both the similarities with PAs-SCI and the consequences of the limb deficiency impairment, PAs-AMP and PAs-SCI require personalized nutritional advice. Full article
(This article belongs to the Special Issue New Perspectives and Challenges in Adapted Sports)
Show Figures

Figure 1

11 pages, 1257 KiB  
Communication
Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples
by Xueqing Gao and Xuming Zhuang
Foods 2025, 14(15), 2750; https://doi.org/10.3390/foods14152750 - 6 Aug 2025
Abstract
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of [...] Read more.
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of quercetin. Glutathione acted as the reducing and protective agent in the synthesized process of Cu NCs via a facile, green one-pot method. As anticipated, the glutathione-capped Cu NCs (GSH-Cu NCs) exhibited favorable water solubility and ultrasmall size. The fluorescence property of GSH-Cu NCs was further enhanced with Al3+ ion through the aggregation-induced emission effect. When quercetin was present in the sample solution, the system exhibited effective fluorescence quenching, which was attributed to the internal filter effect. The GSH-Cu NCs/Al3+-based fluorescent sensor showed a good linear relationship to quercetin in the concentration range from 0.1 to 60 μM. A detection limit of 24 nM was obtained. Moreover, the constructed sensor was employed for the successful determination of quercetin in tea samples. Full article
(This article belongs to the Special Issue Development and Application of Biosensors in the Food Field)
Show Figures

Figure 1

Back to TopTop