Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of GSH-Cu NCs/Al3+
2.3. Fluorescent Detection of Quercetin
2.4. Application in Real Samples
3. Results
3.1. Characterization of the GSH-Cu NCs/Al3+
3.2. Optimization Assay
3.3. GSH-Cu NCs/Al3+ as a Fluorescent Switch-Off Sensor for Quercetin
3.4. Quercetin Sensing in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.R.; Sun, X.L.; Zhou, Y.F.; Liu, J.C.; Zhu, H.Y.; Jiang, R.; Miao, Y.J.; Fu, Y.Q. A ratiometric fluorescent probe based on UiO-66-TCPP for selective and visual detection of quercetin in food. Food Chem. 2024, 457, 140198. [Google Scholar] [CrossRef]
- Fan, Y.; Yao, J.; Huang, M.K.; Linghu, C.X.; Guo, J.L.; Li, Y. Non-conjugated polymer dots for fluorometric and colorimetric dual-mode detection of quercetin. Food Chem. 2021, 359, 129962. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shabestari, F.A.; Vaezi, S.; Abak, A.; Shoorei, H.; Karimi, A.; Taheri, M.; Basiri, A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021, 138, 111548. [Google Scholar] [CrossRef]
- Liu, J.; Fu, Y.; Zhou, S.; Zhao, P.; Zhao, J.; Yang, Q.; Wu, H.; Ding, M.; Li, Y. Comparison of the effect of quercetin and daidzein on production performance, anti- oxidation, hormones, and cecal microflora in laying hens during the late laying period. Poult. Sci. 2023, 102, 102674. [Google Scholar] [CrossRef]
- Feng, S.T.; Tang, F.R.; Wu, F.S.; Zhang, J. One-pot synthesis of nano Zr-based metal-organic frameworks for fluorescence determination of quercetin and Hg2+. Food Chem. 2024, 432, 137173. [Google Scholar] [CrossRef]
- Pang, L.; Jiang, X.; Lian, X.; Chen, J.; Song, E.F.; Jin, L.G.; Cai, Y. Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: With consideration of gender-related differences. Mil. Med. Res. 2022, 9, 33. [Google Scholar] [CrossRef]
- Huang, Y.; Han, Z.T.; Zhou, X.; Li, J.X.; Gu, X.L.; Li, Z.F.; Sun, W.; Niu, X.L. Three dimensional MoS2-graphene aerogel nanocomposites for electrochemical sensing of quercetin. Microchim. Acta 2022, 189, 299. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.L.; Boyce, M.C.; Breadmore, M.C. Extraction and on-line concentration of flavonoids in Brassica oleracea by capillary electrophoresis using large volume sample stacking. Food Chem. 2012, 133, 205–211. [Google Scholar] [CrossRef]
- Rahimi, M.; Bahar, S.; Heydari, R.; Amininasab, S.M. Determination of quercetin using a molecularly imprinted polymer as solid-phase microextraction sorbent and high-performance liquid chromatography. Microchem. J. 2019, 148, 433–441. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zong, L.K.; Geng, G.W.; Li, Y.C.; Zhang, Y.P. Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sens. Actuat. B-Chem. 2018, 257, 1099–1109. [Google Scholar] [CrossRef]
- Cao, X.Y.; Zhao, S.; Liu, X.W.; Zhu, X.X.; Gao, Y.; Liu, Q.Y. CeO2/Co3O4@N-doped hollow carbon microspheres with improved peroxidase-like activity for the determination of quercetin. Anal. Bioanal. Chem. 2022, 414, 4767–4775. [Google Scholar] [CrossRef] [PubMed]
- Su, X.Q.; Sun, W.W.; Wang, L.; Zhang, X.; Liu, M.X.; Qu, Y.; Ming, L.J. A “turn-on” Al(III)-mediated fluorescent micro-probe for quercetin sensing. Sens. Actuat. B-Chem. 2024, 420, 1099–1109. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Miao, Y.M.; Lian, L.W.; Yan, G.Q. Detection of quercetin based on Al3+-amplified phosphorescence signals of manganese-doped ZnS quantum dots. Anal. Biochem. 2015, 489, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Sasikumar, K.; Ju, H. Ti3C2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal. Chim. Acta 2024, 1322, 343069. [Google Scholar] [CrossRef] [PubMed]
- Kadian, S.; Manik, G. Sulfur doped graphene quantum dots as a potential sensitive fluorescent probe for the detection of quercetin. Food Chem. 2020, 317, 124457. [Google Scholar] [CrossRef]
- Li, J.J.; Zhu, J.J.; Xu, K. Fluorescent metal nanoclusters: From synthesis to applications. TrAC-Trend. Anal. Chem. 2014, 58, 90–98. [Google Scholar] [CrossRef]
- Lin, H.B.; Song, X.R.; Chai, O.J.H.; Yao, Q.F.; Yang, H.H.; Xie, J.P. Photoluminescent characterization of metal nanoclusters: Basic parameters, methods, and applications. Adv. Mater. 2024, 36, 2401002. [Google Scholar] [CrossRef]
- Gao, W.X.; Zhao, H.G.; Shang, L. Fluorescent metal nanoclusters for explosive detection: A review. TrAC-Trend. Anal. Chem. 2024, 180, 117919. [Google Scholar] [CrossRef]
- Huang, K.Y.; Chen, Y.Y.; Yang, Z.Q.; Pan, Y.P.; Xie, J.; Chen, W.; Deng, H.H. Dual-function strategy for enhanced quercetin detection using terbium(III) ion-bound gold nanoclusters. Anal. Chem. 2025, 97, 5191–5199. [Google Scholar] [CrossRef]
- An, Y.; Ren, Y.; Bick, M.; Dudek, A.; Waworuntu, E.H.-W.; Tang, J.; Chen, J.; Chang, B.S. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens. Bioelectron. 2020, 154, 112078. [Google Scholar] [CrossRef]
- Sam, S.; Anand, S.K.; Mathew, M.R.; Kumar, K.G. Tannic acid capped copper nanoclusters as a cost-effective fluorescence probe for hemoglobin determination. Anal. Sci. 2021, 37, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.Y.; Li, W.J.; Guo, P.Y.; Han, X.R.; Deng, Z.R.; Zhang, S.; Cai, Z.F. One facile fluorescence strategy for sensitive determination of baicalein using trypsin-templated copper nanoclusters. Spectrochim. Acta A 2022, 268, 120689. [Google Scholar] [CrossRef]
- Chen, X.; Gao, F.; Cao, Y.T.; Fu, Y.M.; Li, H.H.; Wang, M.K.; Pan, Q.H. In situ formation of copper nanoclusters for efficient analysis of β-glucosidase activity. Microchem. J. 2024, 196, 109546. [Google Scholar] [CrossRef]
- Gao, X.Q.; Liu, J.; Zhuang, X.M.; Tian, C.Y.; Luan, F.; Liu, H.T.; Xiong, Y. Incorporating copper nanoclusters into a zeolitic imidazole framework-90 for use as a highly sensitive adenosine triphosphate sensing system to evaluate the freshness of aquatic products. Sens. Actuat. B-Chem. 2020, 308, 127720. [Google Scholar] [CrossRef]
- Kan, X.W.; Zhang, T.T.; Zhong, M.; Lu, X.J. CD/AuNPs/MWCNTs based electrochemical sensor for quercetin dual-signal detection. Biosens. Bioelectron. 2016, 77, 638–643. [Google Scholar] [CrossRef]
- Patel, P.; Bothra, S.; Kumar, R.; Crisponi, G.; Sahoo, S.K. Pyridoxamine driven selective turn-off detection of picric acid using glutathione stabilized fluorescent copper nanoclusters and its applications with chemically modified cellulose strips. Biosens. Bioelectron. 2018, 102, 196–203. [Google Scholar] [CrossRef]
- Gao, X.Q.; Zhuang, X.M.; Tian, C.Y.; Liu, H.T.; Lai, W.F.; Wang, Z.G.; Yang, X.M.; Chen, L.X.; Rogach, A.L. A copper nanocluster incorporated nanogel: Confinement-assisted emission enhancement for zinc ion detection in living cells. Sens. Actuat. B-Chem. 2020, 307, 127626. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, M.L.; Zhang, W.T.; Guo, Y.Y. Preparation and application of copper nanoclusters as a fluorescent sensor for sensitive detection of tartrazine. Microchem. J. 2024, 207, 112146. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Sun, D.W.; Ma, J.; Cheng, J.H.; Wang, Z.M.; Tang, B.Z. A volatile basic nitrogens-responsive tag based on aggregation-induced emission luminogen for real-time monitoring and in situ visualization of salmon freshness. Anal. Chim. Acta 2022, 1221, 340122. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Pang, Y.H.; Shen, X.F. Rapid microwave-assisted synthesis of copper nanoclusters for “on-off-on” fluorescent sensor of tert-butylhydroquinone in edible oil. Microchem. J. 2023, 193, 109070. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Huang, J.; Wang, Y.K.; Ma, F.J.; Ji, J.H.; Lei, J.P. Progressive aggregation-induced emission strategy for imaging of aluminum ions in cellular microenvironment. Talanta 2020, 211, 120699. [Google Scholar] [CrossRef]
- Liu, X.H.; Shao, C.Y.; Chen, T.D.; He, Z.J.; Du, G.F. Stable silver nanoclusters with aggregation-induced emission enhancement for detection of aluminum ion. Sens. Actuat. B-Chem. 2019, 278, 181–189. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, M.; Gao, P.F.; Zhang, G.M.; Shi, L.R.; Yuan, M.J.; Shuang, S.M. The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sens. Actuat. B-Chem. 2021, 326, 129009. [Google Scholar] [CrossRef]
- Hu, X.; Mao, X.X.; Zhang, X.D.; Huang, X.M. One-step synthesis of orange fluorescent copper nanoclusters for sensitive and selective sensing of Al3+ ions in food samples. Sens. Actuat. B-Chem. 2017, 247, 312–318. [Google Scholar] [CrossRef]
- Cai, Z.F.; Li, H.Y.; Wu, J.L.; Zhu, L.; Ma, X.R.; Zhang, C.F. Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin. RSC Adv. 2020, 10, 8989–8993. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.H.; Huang, S.Y.; Ma, X.R.; Zhang, C.F. Novel blue-emitting probes of polyethyleneimine-capped copper nanoclusters for fluorescence detection of quercetin. Chem. Pap. 2021, 75, 3761–3769. [Google Scholar] [CrossRef]
- Jiang, W.J.; He, R.; Zhang, F.; Wang, L.; Wei, Y.L. Water-soluble sulfur quantum dots as a potential sensitive fluorescent probe for quercetin detection and cell imaging. Food Chem. 2025, 464, 141618. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Q.; Cheng, J.; Lu, F.; Du, Y.D.; Xie, Y.; Zhou, C.; Zhang, J.; Feng, Y.H. Optimized HPLC extraction method of quercetin and berberine based on response surface analysis. RSC Adv. 2023, 13, 29427–29437. [Google Scholar] [CrossRef] [PubMed]
- Hemwech, P.; Obma, A.; Detsangiamsak, S.; Wirasate, S.; Wilairat, P.; Chantiwas, R. Capillary surface modification using millimolar levels of aminosilane reagent for highly efficient separation of phenolic acids and flavonols by capillary electrophoresis with UV detection. Phytochem. Anal. 2023, 34, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Di Giulio, T.; Asif, I.M.; Corsi, M.; Rajpal, S.; Mizaikoff, B.; Ditaranto, N.; De Benedetto, G.E.; Malitesta, C.; Barillaro, G.; Mazzotta, E. A molecularly imprinted polymer-based porous silicon optical sensor for quercetin detection in wines. ACS App. Mater. Interfaces 2025, 17, 12663–12675. [Google Scholar] [CrossRef]
- Fang, X.Y.; Ma, J.L.; Gu, C.J.; Xiong, W.; Jiang, T. Synchronous enhancement of electromagnetic and chemical effects-induced quantitative adsorptive detection of quercetin based on flexible polymer-silver-ZIF-67 SERS substrate. Sens. Actuat. B-Chem. 2023, 378, 133176. [Google Scholar] [CrossRef]
- Mariyappan, V.; Karuppusamy, N.; Chen, S.M.; Raja, P.; Ramachandran, R. Electrochemical determination of quercetin using glassy carbon electrode modified with WS2/GdCoO3 nanocomposite. Microchim. Acta 2022, 189, 118. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.G.; Liu, X.; Duan, W.M.; Dai, S.S.; Lu, H.S. Visual and ratiometric fluorescent determination of Al3+ by a red-emission carbon dot-quercetin system. Microchem. J. 2020, 156, 104807. [Google Scholar] [CrossRef]
- Gao, M.; He, M.; Xing, R.; Wang, X.F.; Wang, Z. Borate-modified carbon dots as a probe for quercetin in plants. Analyst 2021, 146, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, T.; Ilanchelian, M. Water-soluble luminescent copper nanoclusters as a fluorescent quenching probe for the detection of rutin and quercetin based on the inner filter effect. Luminescence 2021, 36, 326–335. [Google Scholar] [CrossRef]
Samples | Spiked (μM) | Found (μM) | Recovery (%, n = 3) | RSD (%, n = 3) |
---|---|---|---|---|
Green tea | 5 | 5.2 | 103.5 | 1.1 |
10 | 10.8 | 108.3 | 3.2 | |
20 | 21.5 | 107.7 | 3.8 | |
Black tea | 5 | 4.9 | 99.1 | 2.9 |
10 | 10.4 | 101.6 | 2.5 | |
20 | 21.0 | 102.6 | 3.4 | |
Oolong tea | 5 | 4.9 | 97.5 | 2.2 |
10 | 9.8 | 96.4 | 3.1 | |
20 | 20.6 | 100.6 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Zhuang, X. Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples. Foods 2025, 14, 2750. https://doi.org/10.3390/foods14152750
Gao X, Zhuang X. Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples. Foods. 2025; 14(15):2750. https://doi.org/10.3390/foods14152750
Chicago/Turabian StyleGao, Xueqing, and Xuming Zhuang. 2025. "Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples" Foods 14, no. 15: 2750. https://doi.org/10.3390/foods14152750
APA StyleGao, X., & Zhuang, X. (2025). Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples. Foods, 14(15), 2750. https://doi.org/10.3390/foods14152750