Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens
Abstract
1. Introduction
2. Materials and Methods
2.1. Probiotic
2.2. Animals, Diets, and Experimental Design
2.3. Data Collection
2.3.1. Microbiota Analyses
2.3.2. Oviduct Morphology
2.3.3. Oxidative and Antioxidant Status
2.4. Statistical Analysis
3. Results
3.1. General Performance, Welfare, and Egg Quality
3.2. Oviduct Microbiome
3.3. Morphology and Oxidant and Antioxidant Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shini, S.; Shini, A.; Blackall, P.J. The potential for probiotics to prevent reproductive tract lesions in free-range laying hens. Anim. Prod. Sci. 2013, 53, 1298–1308. [Google Scholar] [CrossRef]
- Wen, C.; Li, Q.; Lan, F.; Li, X.; Li, G.; Yan, Y.; Wu, G.; Yang, N.; Sun, C. Microbiota continuum along the chicken oviduct and its association with host genetics and egg formation. Poult. Sci. 2021, 100, 101104. [Google Scholar] [CrossRef]
- De Reu, K.; Messens, W.; Heyndrickx, M.; Rodenburg, T.B.; Uyttendaele, M.; Herman, L. Bacterial contamination of table eggs and the influence of housing systems. J. World‘s Poult. Sci. 2008, 64, 5–19. [Google Scholar] [CrossRef]
- Gast, R.K.; Rupa, G.; Jean, G. Salmonella enteritidis deposition in eggs after experimental infection of laying hens with different oral doses. J. Food. Prot. 2013, 76, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Hope, B.K.; Baker, R.; Edel, E.D.; Hogue, A.T.; Schlosser, R.; Whiting, R.; McDowell, R.M.; Morales, R.A. An overview of the Salmonella enteritidis risk assessment for shell eggs and egg products. Risk Anal. 2002, 22, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Lu, Y.; Li, X.; Yang, X.; Wang, H.; Liu, L.; Chen, J.; Zhao, C.; Chang, Y. In vitro adherence and invasion of primary chicken oviduct epithelial cells by Gallibacterium antis. Vet. Microbiol. 2017, 203, 136–142. [Google Scholar] [CrossRef]
- Lv, J.; Guo, J.; Chen, B.; Hao, K.; Ma, H.; Liu, Y.; Min, Y. Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens. Poult. Sci. 2022, 10, 101570. [Google Scholar] [CrossRef]
- Carvalho, C.L.; Andretta, I.; Galli, G.M.; Martins, G.B.; Camargo, N.; De, O.T.; Stefanello, T.B.; Melchior, R.; Da Silva, M.K. Dietary supplementation with β-mannanase and probiotics as a strategy to improve laying hen‘s welfare. Front. Vet. Sci. 2022, 9, 985947. [Google Scholar] [CrossRef]
- Xue, M.; Zhang, L.; Yang, Y.; Wang, Y.; Lv, F. Compound probiotics can improve intestinal health by affecting the gut microbiota of broilers. Poult. Sci. 2022, 101, 102208. [Google Scholar]
- Carvalho, C.L.; Andretta, I.; Galli, G.M.; Stefanello, T.B.; Camargo, N.d.O.T.; Marchiori, M.; Melchior, R.; Kipper, M. Effects of Dietary Probiotic Supplementation on Egg Quality during Storage. Poultry 2022, 1, 180–192. [Google Scholar] [CrossRef]
- Hy-Line. Management Guide for W-36 Commercial Layers. 2020. Available online: https://www.hyline.com/filesimages/Hy-Line-Products/Hy-Line-Product-PDFs/W-36/36%20COM%20ENG.pdf (accessed on 10 September 2024).
- Carvalho, C.L.; Andretta, I.; Galli, G.M.; Stefanello, T.B.; Camargo, N.D.O.T.; Mendes, R.E.; Pelisser, G.; Balamuralikrishnan, B.; Melchior, R.; Kipper, M. Dietary supplementation with β-mannanase and probiotics as a strategy to improve laying hen performance and egg quality. Front. Vet. Sci. 2023, 10, 1229485. [Google Scholar] [CrossRef]
- Brasil Ministério da Ciência. Tecnologia e Inovação. In Diretrizes Para a Prática de Eutanásia do CONCEA; MCTI: Brasília, Brazil, 2013. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Degnan, P.H.; Ochman, H. Illumina-based analysis of microbial community diversity. ISME J. 2012, 6, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2013, 42, gkt1209. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1978, 95, 351–358. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Kursa, O.; Tomczyk, G.; Sawicka-Durkalec, A.; Adamska, K. Bacterial communities of the oviduct of turkeys. Sci. Rep. 2022, 12, 14884. [Google Scholar] [CrossRef]
- Lee, S.; La, T.M.; Lee, H.J.; Choi, I.S.; Song, C.S.; Park, S.Y.; Lee, J.B.; Lee, S.W. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci. Rep. 2019, 9, 6839. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Q.; Huang, Z.; Lv, L.; Liu, X.; Yin, C.; Yan, H.; Yuan, J. Effect of Bacillus subtilis CGMCC 1. 1086 on the growth performance and intestinal microbiota of broilers. J. Appl. Microbiol. 2016, 120, 195–204. [Google Scholar]
- Nii, T.; Shinkoda, T.; Isobe, N.; Yoshimura, Y. Intravaginal injection of Lactobacillus johnsonii may modulates oviductal microbiota and mucosal barrier function of laying hens. Poult. Sci. 2023, 102, 102699. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, E.S.; Willner, D.; Buttini, M.; Hafner, L.M.; Theodoropoulos, C.; Huygens, F. The fallopian tube microbiome: Implications for reproductive health. Oncotarget 2018, 9, 21541–21551. [Google Scholar] [CrossRef] [PubMed]
- Lupo, A.; Isis, E.; Perreten, V.; Endimiani, A. Raw meat contaminated with epidemic clones of Burkholderia multivorans found in cystic fibrosis patients. J. Cyst. Fibros. 2015, 14, 150–152. [Google Scholar] [CrossRef]
- Shivaprasad, H.L. Pathology of birds—An overview. C. L. Davis Found. Conf. Gross Morb. Anat. Anim. 2002, 1–50. [Google Scholar]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics to Enhance Gut Health and Food Safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef]
- Lee, S.J.; Cho, S.; La, T.M.; Lee, H.J.; Lee, J.B.; Park, S.Y.; Song, C.S.; Choi, I.S.; Lee, S.W. Comparison of microbiota in the cloaca, colon, and magnum of layer chicken. PLoS ONE 2020, 15, e0237108. [Google Scholar] [CrossRef]
- Greenacre, C.B.; Morishita, T.Y. Backyard Poultry Medicine and Surgery: A Guide for Veterinary Practitioners, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Poultry DVM. SALPINGITIS. 2021. Available online: http://www.poultrydvm.com/condition/salpingitis (accessed on 8 January 2025).
- Oh, J.K.; Pajarillo, E.A.B.; Chae, J.P.; Kim, I.H.; Kang, D.K. Protective effects of Bacillus subtilis against Salmonella infection in the microbiome of Hy-Line Brown layers. Asian-Australas J. Anim. Sci. 2017, 30, 1332–1339. [Google Scholar] [CrossRef]
- Vancanneyt, M.; Segers, P.; Hauben, L.; Hommez, L.; Devriese, L.A.; Hoste, B.; Vandamme, P.; Kersters, K. Flavobacterium meningosepticum, a pathogen in birds. J. Clin. Microbiol. 1994, 32, 2398–2403. [Google Scholar] [CrossRef]
- Ramlucken, U.; Lalloo, R.; Roets, Y.; Moonsamy, G.; Van Rensburg, C.J.; Thantsha, M.S. Advantages of Bacillus-based probiotics in poultry production. Livest. Sci. 2020, 241, 104215. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J.; Lv, Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life 2023, 13, 1468. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Meng, J.X.; Ren, W.X.; Ma, H.; Liu, G.; Liu, R.; Geng, H.L.; Zhao, Q.; Zhang, X.X.; Ni, H.B. Amplicon-based metagenomic association analysis of gut microbiota in relation to egg-laying period and breeds of hens. BMC Microbiol. 2023, 23, 138. [Google Scholar] [CrossRef] [PubMed]
- Abaidulallah, M.; Peng, S.; Kamran, M.; Song, X.; Yin, Z. Current findings on gut microbiota mediated immune modulation against viral diseases in chicken. Viruses 2019, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Quaiser, A.; Ochsenreiter, T.; Lanz, C.; Schuster, S.C.; Treusch, A.H.; Eck, J.; Schleper, C. Acidobacteria form a coherent but highly diverse group within the bacterial domain: Evidence from environmental genomics. Mol. Microbiol. 2003, 50, 563–575. [Google Scholar] [CrossRef]
- Kherouf, A.; Aouacheri, O.; Tichati, L.; Tebboub, I.; Kherouf, M.; Saka, S. Potential antioxidant properties and anti-diabetic and hepatic/pancreatic protective effects of dietary Boswellia serrata gum resin powder against oxidative damage in streptozotocin-induced diabetic rats. Comp. Clin. Path. 2021, 30, 891–904. [Google Scholar] [CrossRef]
- Tarasconi, L.; Dazuk, V.; Molosse, V.L.; Cecere, B.G.O.; Deolindo, G.L.; Mendes, R.R.; Gloria, E.M.; Ternus, E.M.; Galli, G.M.; Paiano, D.; et al. Nursery pigs fed with feed contaminated by aflatoxin B1 (Aspergillus flavus) and anti-mycotoxin blend: Pathogenesis and negative impact on animal health and weight gain. Microb. Pathog. 2024, 186, 106464. [Google Scholar] [CrossRef]
- Galli, G.M.; Aniecevski, E.; Petrolli, T.G.; Da Rosa, G.; Boiago, M.M.; Simões, C.A.D.P.; Wagner, R.; Copetti, P.M.; Morsch, V.R.; Araujo, D.N.; et al. Growth performance and meat quality of broilers fed with microencapsulated organic acids. Anim. Feed Sci. Technol. 2021, 271, 114706. [Google Scholar] [CrossRef]
- Baba, S.P.; Bhatnagar, A. Role of thiols in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef]
- Ficagna, C.A.; Galli, G.M.; Zatti, E.; Sponchiado, B.M.; Cecere, B.G.O.; Deolindo, G.L.; Tarasconi, L.; Horn, V.W.; Mendes, R.E.; Bissacotti, B.F.; et al. Butyric acid glycerides in the diet of broilers to replace conventional growth promoters: Effects on performance, metabolism, and intestinal health. Arch. Anim. Nutr. 2022, 76, 191–204. [Google Scholar] [CrossRef]
Control Treatment | |
---|---|
Ingredient Composition | |
Corn | 61.790 |
Soybean meal 45% | 23.556 |
Limestone | 9.283 |
Soybean oil | 1.645 |
Dicalcium phosphate | 1.549 |
Corn gluten 60% | 1.024 |
Inert (washed sand) | 0.262 |
Salt | 0.497 |
DL-methionine | 0.183 |
Vitamin premix 1 | 0.100 |
Mineral premix 2 | 0.060 |
Choline chloride 70% | 0.050 |
Calculated composition | |
Metabolizable energy (kcal/kg) | 2.800 |
Crude protein (%) | 16.50 |
Calcium (%) | 4.020 |
Available phosphorus (%) | 0.380 |
Digestible methionine (%) | 0.431 |
Digest. methionine + cystine (%) | 0.668 |
Digestible lysine (%) | 0.731 |
Digestible threonine (%) | 0.559 |
Digestible tryptophan (%) | 0.174 |
Digestible arginine (%) | 0.984 |
Digestible valine (%) | 0.690 |
Sodium (%) | 0.220 |
Chlorine (%) | 0.339 |
Potassium (%) | 0.621 |
Variables 1 | Treatments | SE 2 | p-Value 3 | |
---|---|---|---|---|
Control | Probiotic | |||
Intestine | ||||
TBARS | 1.840 | 1.760 | 0.120 | 0.890 |
GST | 975.1 | 912.6 | 10.10 | 0.570 |
PSH | 1.490 | 2.810 | 0.040 | <0.001 |
Oviduct | ||||
TBARS | 0.710 | 0.970 | 0.080 | 0.172 |
GST | 861.2 | 794.9 | 15.30 | 0.068 |
TSH | 1.250 | 1.300 | 0.140 | 0.734 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galli, G.M.; Andretta, I.; Carvalho, C.L.; da Silva, A.S.; Kipper, M. Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens. Poultry 2025, 4, 35. https://doi.org/10.3390/poultry4030035
Galli GM, Andretta I, Carvalho CL, da Silva AS, Kipper M. Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens. Poultry. 2025; 4(3):35. https://doi.org/10.3390/poultry4030035
Chicago/Turabian StyleGalli, Gabriela Miotto, Ines Andretta, Camila Lopes Carvalho, Aleksandro Schafer da Silva, and Marcos Kipper. 2025. "Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens" Poultry 4, no. 3: 35. https://doi.org/10.3390/poultry4030035
APA StyleGalli, G. M., Andretta, I., Carvalho, C. L., da Silva, A. S., & Kipper, M. (2025). Targeting the Oviduct Microbiota and Redox Status: A Novel Perspective on Probiotic Use in Laying Hens. Poultry, 4(3), 35. https://doi.org/10.3390/poultry4030035