Effects of Underwater Noise Exposure on Early Development in Zebrafish
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects and Housing Conditions
2.2. Experimental Design and Noise Exposure Protocol
2.3. Biochemical Assays
2.4. Hair Cell Staining and Lateral Neuromast Counting
2.5. RT-qPCR
2.6. Statistical Analysis
3. Results
3.1. Development Parameters
3.2. Activities of Antioxidant Enzymes and Expressions of Related Genes
3.3. Otolith Development and Expressions of Related Genes
3.4. Number of Lateral Neuromasts and Expressions of Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and Non-Auditory Effects of Noise on Health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Roscoe, C.; Grady, S.T.; Hart, J.E.; Iyer, H.S.; Manson, J.E.; Rexrode, K.M.; Rimm, E.B.; Laden, F.; James, P. Association Between Noise and Cardiovascular Disease in a Nationwide U.S. Prospective Cohort Study of Women Followed from 1988 to 2018. Environ. Health Perspect. 2023, 131, 127005. [Google Scholar] [CrossRef]
- Kaplan, M.B.; Solomon, S. A Coming Boom in Commercial Shipping? The Potential for Rapid Growth of Noise from Commercial Ships by 2030. Mar. Policy 2016, 73, 119–121. [Google Scholar] [CrossRef]
- Wardle, C.S.; Carter, T.J.; Urquhart, G.G.; Johnstone, A.D.F.; Ziolkowski, A.M.; Hampson, G.; Mackie, D. Effects of Seismic Air Guns on Marine Fish. Cont. Shelf Res. 2001, 21, 1005–1027. [Google Scholar] [CrossRef]
- Hildebrand, J. Anthropogenic and Natural Sources of Ambient Noise in the Ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef]
- Kunc, H.P.; McLaughlin, K.E.; Schmidt, R. Aquatic Noise Pollution: Implications for Individuals, Populations, and Ecosystems. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160839. [Google Scholar] [CrossRef]
- Rojas, E.; Gouret, M.; Agostini, S.; Fiorini, S.; Fonseca, P.; Lacroix, G.; Médoc, V. From Behaviour to Complex Communities: Resilience to Anthropogenic Noise in a Fish-Induced Trophic Cascade. Environ. Pollut. 2023, 335, 122371. [Google Scholar] [CrossRef]
- Rountree, R.A.; Juanes, F.; Bolgan, M. Temperate Freshwater Soundscapes: A Cacophony of Undescribed Biological Sounds Now Threatened by Anthropogenic Noise. PLoS ONE 2020, 15, e0221842. [Google Scholar] [CrossRef]
- Celi, M.; Filiciotto, F.; Maricchiolo, G.; Genovese, L.; Quinci, E.M.; Maccarrone, V.; Mazzola, S.; Vazzana, M.; Buscaino, G. Vessel Noise Pollution as a Human Threat to Fish: Assessment of the Stress Response in Gilthead Sea Bream (Sparus aurata, Linnaeus 1758). Fish Physiol. Biochem. 2016, 42, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Kane, A.S.; Popper, A.N. Noise-Induced Stress Response and Hearing Loss in Goldfish (Carassius auratus). J. Exp. Biol. 2004, 207, 427–435. [Google Scholar] [CrossRef]
- Wysocki, L.E.; Dittami, J.P.; Ladich, F. Ship Noise and Cortisol Secretion in European Freshwater Fishes. Biol. Conserv. 2006, 128, 501–508. [Google Scholar] [CrossRef]
- Song, S.; Shan, X.; Su, C.; Zhao, Y. Physiological Reactions of Large Yellow Croaker (Larimichthys crocea) to Sound Stimulus at 500 Hz: Implications for Marine Management Regarding Low Frequency Continuous Noise. Aquaculture 2025, 610, 742888. [Google Scholar] [CrossRef]
- Kusku, H.; Yigit, Ü.; Yilmaz, S.; Yigit, M.; Ergün, S. Acoustic Effects of Underwater Drilling and Piling Noise on Growth and Physiological Response of Nile Tilapia (Oreochromis niloticus). Aquac. Res. 2020, 51, 3166–3174. [Google Scholar] [CrossRef]
- Radford, A.N.; Lèbre, L.; Lecaillon, G.; Nedelec, S.L.; Simpson, S.D. Repeated Exposure Reduces the Response to Impulsive Noise in European Seabass. Glob. Change Biol. 2016, 22, 3349–3360. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.D.; Purser, J.; Radford, A.N. Anthropogenic Noise Compromises Antipredator Behaviour in European Eels. Glob. Change Biol. 2015, 21, 586–593. [Google Scholar] [CrossRef]
- Hang, S.; Zhao, J.; Ji, B.; Li, H.; Zhang, Y.; Peng, Z.; Zhou, F.; Ding, X.; Ye, Z. Impact of Underwater Noise on the Growth, Physiology and Behavior of Micropterus salmoides in Industrial Recirculating Aquaculture Systems. Environ. Pollut. 2021, 291, 118152. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, L.E.; Davidson, J.W.; Smith, M.E.; Frankel, A.S.; Ellison, W.T.; Mazik, P.M.; Popper, A.N.; Bebak, J. Effects of Aquaculture Production Noise on Hearing, Growth, and Disease Resistance of Rainbow Trout Oncorhynchus mykiss. Aquaculture 2007, 272, 687–697. [Google Scholar] [CrossRef]
- Scholik, A.R.; Yan, H.Y. Effects of Underwater Noise on Auditory Sensitivity of a Cyprinid Fish. Hear. Res. 2001, 152, 17–24. [Google Scholar] [CrossRef]
- Lara, R.A.; Breitzler, L.; Lau, I.H.; Gordillo-Martinez, F.; Chen, F.; Fonseca, P.J.; Bass, A.H.; Vasconcelos, R.O. Noise-Induced Hearing Loss Correlates with Inner Ear Hair Cell Decrease in Larval Zebrafish. J. Exp. Biol. 2022, 225, jeb243743. [Google Scholar] [CrossRef]
- McCauley, R.D.; Fewtrell, J.; Popper, A.N. High Intensity Anthropogenic Sound Damages Fish Ears. J. Acoust. Soc. Am. 2003, 113, 638–642. [Google Scholar] [CrossRef]
- Engås, A.; Haugland, E.K.; Øvredal, J.T. Reactions of Cod (Gadus morhua L.) in the Pre-Vessel Zone to an Approaching Trawler under Different Light Conditions. Hydrobiologia 1998, 371–372, 199–206. [Google Scholar] [CrossRef]
- Jacobsen, L.; Baktoft, H.; Jepsen, N.; Aarestrup, K.; Berg, S.; Skov, C. Effect of Boat Noise and Angling on Lake Fish Behaviour. J. Fish Biol. 2014, 84, 1768–1780. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Radford, A.N.; Pearl, L.; Nedelec, B.; McCormick, M.I.; Meekan, M.G.; Simpson, S.D. Motorboat Noise Impacts Parental Behaviour and Offspring Survival in a Reef Fish. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170143. [Google Scholar] [CrossRef]
- Purser, J.; Radford, A.N. Acoustic Noise Induces Attention Shifts and Reduces Foraging Performance in Three-Spined Sticklebacks (Gasterosteus aculeatus). PLoS ONE 2011, 6, e17478. [Google Scholar] [CrossRef]
- Voellmy, I.K.; Purser, J.; Flynn, D.; Kennedy, P.; Simpson, S.D.; Radford, A.N. Acoustic Noise Reduces Foraging Success in Two Sympatric Fish Species via Different Mechanisms. Anim. Behav. 2014, 89, 191–198. [Google Scholar] [CrossRef]
- Barcellos, H.H.A.; Koakoski, G.; Chaulet, F.; Kirsten, K.S.; Kreutz, L.C.; Kalueff, A.V.; Barcellos, L.J.G. The Effects of Auditory Enrichment on Zebrafish Behavior and Physiology. PeerJ 2018, 6, e5162. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.I.; Lau, I.H.; Gordillo-Martinez, F.; Vasconcelos, R.O. The Effect of Time Regime in Noise Exposure on the Auditory System and Behavioural Stress in the Zebrafish. Sci. Rep. 2022, 12, 15353. [Google Scholar] [CrossRef] [PubMed]
- Shafiei Sabet, S.; Neo, Y.Y.; Slabbekoorn, H. The Effect of Temporal Variation in Sound Exposure on Swimming and Foraging Behaviour of Captive Zebrafish. Anim. Behav. 2015, 107, 49–60. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Breitzler, L.; Lau, I.H.; Fonseca, P.J.; Vasconcelos, R.O. Noise-Induced Hearing Loss in Zebrafish: Investigating Structural and Functional Inner Ear Damage and Recovery. Hear. Res. 2020, 391, 107952. [Google Scholar] [CrossRef]
- Higgs, D.M.; Souza, M.J.; Wilkins, H.R.; Presson, J.C.; Popper, A.N. Age- and Size-Related Changes in the Inner Ear and Hearing Ability of the Adult Zebrafish (Danio rerio). JARO J. Assoc. Res. Otolaryngol. 2002, 3, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Popper, A.N.; Sisneros, J.A. The Sound World of Zebrafish: A Critical Review of Hearing Assessment. Zebrafish 2022, 19, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; DeSmidt, A.A.; Tekin, M.; Liu, X.; Lu, Z. Hearing Assessment in Zebrafish During the First Week Postfertilization. Zebrafish 2016, 13, 79–86. [Google Scholar] [CrossRef]
- Neo, Y.Y.; Parie, L.; Bakker, F.; Snelderwaard, P.; Tudorache, C.; Schaaf, M.; Slabbekoorn, H. Behavioral Changes in Response to Sound Exposure and No Spatial Avoidance of Noisy Conditions in Captive Zebrafish. Front. Behav. Neurosci. 2015, 9, 28. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.C.; Wang, G.X.; Madelaine, R.; Skariah, G.; Kawakami, K.; Deisseroth, K.; Urban, A.E.; Mourrain, P. Neural Signatures of Sleep in Zebrafish. Nature 2019, 571, 198–204. [Google Scholar] [CrossRef]
- Chen, Q.; An, J.; Xie, D.; Gong, S.; Lian, X.; Liu, Z.; Shen, Y.; Li, Y. Suppression and Recovery of Reproductive Behavior Induced by Early Life Exposure to Mercury in Zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2021, 239, 108876. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Yang, W.; Duan, Y.; Zhou, T.; Li, Y.; Li, Y.; Liu, Z.; Shen, Y.; Chen, Q. Underwater Noise Impairs Reproduction in Zebrafish by Disrupting the Hypothalamic-Pituitary-Gonadal Axis. Aquac. Rep. 2025, 42, 102786. [Google Scholar] [CrossRef]
- Lara, R.A.; Vasconcelos, R.O. Impact of Noise on Development, Physiological Stress and Behavioural Patterns in Larval Zebrafish. Sci. Rep. 2021, 11, 6615. [Google Scholar] [CrossRef]
- Amoser, S.; Wysocki, L.E.; Ladich, F. Noise Emission During the First Powerboat Race in an Alpine Lake and Potential Impact on Fish Communities. J. Acoust. Soc. Am. 2004, 116, 3789–3797. [Google Scholar] [CrossRef]
- Amron, A.; Hidayat, R.R.; Nur Meinita, M.D.; Trenggono, M. Underwater Noise of Traditional Fishing Boats in Cilacap Waters, Indonesia. Heliyon 2021, 7, e08364. [Google Scholar] [CrossRef]
- McCloskey, K.P.; Chapman, K.E.; Chapuis, L.; McCormick, M.I.; Radford, A.N.; Simpson, S.D. Assessing and Mitigating Impacts of Motorboat Noise on Nesting Damselfish. Environ. Pollut. 2020, 266, 115376. [Google Scholar] [CrossRef]
- Zhang, Q.-F.; Li, Y.-W.; Liu, Z.-H.; Chen, Q.-L. Reproductive Toxicity of Inorganic Mercury Exposure in Adult Zebrafish: Histological Damage, Oxidative Stress, and Alterations of Sex Hormone and Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Aquat. Toxicol. 2016, 177, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Kruger, M.; Boney, R.; Ordoobadi, A.J.; Sommers, T.F.; Trapani, J.G.; Coffin, A.B. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity. Front. Cell. Neurosci. 2016, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Fakan, E.P.; McCormick, M.I. Boat Noise Affects the Early Life History of Two Damselfishes. Mar. Pollut. Bull. 2019, 141, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Fonseca, P.J.; Vieira, M.; Alves, L.M.F.; Lemos, M.F.L.; Novais, S.C.; Matos, A.B.; Vieira, D.; Amorim, M.C.P. Boat Noise Impacts Early Life Stages in the Lusitanian toadfish: A Field Experiment. Sci. Total Environ. 2022, 811, 151367. [Google Scholar] [CrossRef] [PubMed]
- Nedelec, S.L.; Simpson, S.D.; Morley, E.L.; Nedelec, B.; Radford, A.N. Impacts of Regular and Random Noise on the Behaviour, Growth and Development of Larval Atlantic Cod (Gadus morhua). Proc. R. Soc. B Biol. Sci. 2015, 282, 20151943. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Radford, A.N.; Gatenby, P.; Davidson, I.K.; Velasquez Jimenez, L.; Travis, M.; Chapman, K.E.; McCloskey, K.P.; Lamont, T.A.C.; Illing, B.; et al. Limiting Motorboat Noise on Coral Reefs Boosts Fish Reproductive Success. Nat. Commun. 2022, 13, 2822. [Google Scholar] [CrossRef] [PubMed]
- Gierten, J.; Pylatiuk, C.; Hammouda, O.T.; Schock, C.; Stegmaier, J.; Wittbrodt, J.; Gehrig, J.; Loosli, F. Automated High-Throughput Heartbeat Quantification in Medaka and Zebrafish Embryos under Physiological Conditions. Sci. Rep. 2020, 10, 2046. [Google Scholar] [CrossRef] [PubMed]
- De Soto, N.A.; Delorme, N.; Atkins, J.; Howard, S.; Williams, J.; Johnson, M. Anthropogenic Noise Causes Body Malformations and Delays Development in Marine Larvae. Sci. Rep. 2013, 3, 2831. [Google Scholar] [CrossRef]
- Di Giulio, R.T.; Washburn, P.C.; Wenning, R.J.; Winston, G.W.; Jewell, C.S. Biochemical Responses in Aquatic Animals: A Review of Determinants of Oxidative Stress. Environ. Toxicol. Chem. 1989, 8, 1103–1123. [Google Scholar] [CrossRef]
- Winston, G.W.; Di Giulio, R.T. Prooxidant and Antioxidant Mechanisms in Aquatic Organisms. Aquat. Toxicol. 1991, 19, 137–161. [Google Scholar] [CrossRef]
- Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione Metabolism in Brain: Metabolic Interaction Between Astrocytes and Neurons in the Defense against Reactive Oxygen Species. Eur. J. Biochem. 2000, 267, 4912–4916. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.; Bielefeld, E.C.; Harris, K.C.; Hu, B.H. The Role of Oxidative Stress in Noise-Induced Hearing Loss. Ear Hear. 2006, 27, 1–19. [Google Scholar] [CrossRef]
- Demirel, R.; Mollaoğlu, H.; Yeşilyurt, H.; Üçok, K.; Ayçiçek, A.; Akkaya, M.; Genç, A.; Uygur, R.; Doğan, M. Noise Induces Oxidative Stress in Rat. Electron. J. Gen. Med. 2009, 6, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Johnson, J.A. An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism. BMB Rep. 2004, 37, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; DeSmidt, A.A. Early Development of Hearing in Zebrafish. J. Assoc. Res. Otolaryngol. 2013, 14, 509–521. [Google Scholar] [CrossRef]
- Murayama, E.; Takagi, Y.; Ohira, T.; Davis, J.G.; Greene, M.I.; Nagasawa, H. Fish Otolith Contains a Unique Structural Protein, Otolin-1. Eur. J. Biochem. 2002, 269, 688–696. [Google Scholar] [CrossRef]
- Han, J.; Liu, K.; Wang, R.; Zhang, Y.; Zhou, B. Exposure to Cadmium Causes Inhibition of Otolith Development and Behavioral Impairment in Zebrafish Larvae. Aquat. Toxicol. 2019, 214, 105236. [Google Scholar] [CrossRef]
- Hughes, I.; Blasiole, B.; Huss, D.; Warchol, M.E.; Rath, N.P.; Hurle, B.; Ignatova, E.; David Dickman, J.; Thalmann, R.; Levenson, R.; et al. Otopetrin 1 Is Required for Otolith Formation in the Zebrafish Danio rerio. Dev. Biol. 2004, 276, 391–402. [Google Scholar] [CrossRef]
- Söllner, C.; Schwarz, H.; Geisler, R.; Nicolson, T. Mutated Otopetrin 1 Affects the Genesis of Otoliths and the Localization of Starmaker in Zebrafish. Dev. Genes Evol. 2004, 214, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Froehlicher, M.; Liedtke, A.; Groh, K.J.; Neuhauss, S.C.F.; Segner, H.; Eggen, R.I.L. Zebrafish (Danio rerio) Neuromast: Promising Biological Endpoint Linking Developmental and Toxicological Studies. Aquat. Toxicol. 2009, 95, 307–319. [Google Scholar] [CrossRef]
- Erickson, T.; Nicolson, T. Identification of Sensory Hair-Cell Transcripts by Thiouracil-Tagging in Zebrafish. BMC Genom. 2015, 16, 842. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Wei, G.; Gao, Y.; Wang, X.; Gong, J.; Guo, C.; Wang, X.; Zhang, X.; Zhao, J.; Wang, C.; et al. Single-Cell RNA-Sequencing of Zebrafish Hair Cells Reveals Novel Genes Potentially Involved in Hearing Loss. Cell. Mol. Life Sci. 2022, 79, 385. [Google Scholar] [CrossRef]
- Sánchez-Vázquez, F.J.; López-Olmeda, J.F.; Vera, L.M.; Migaud, H.; López-Patiño, M.A.; Míguez, J.M. Environmental Cycles, Melatonin, and Circadian Control of Stress Response in Fish. Front. Endocrinol. 2019, 10, 279. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequence (5′ to 3′) | Size (bp) | Accession NO. |
---|---|---|---|
sparc | F: GCAAGAAGGGCAAAGTGTGTGA R: AGAAGTGGCAGGAGGACTCGTA | 147 | AY575072.1 |
otop1 | F: CTGCTGCTGGTGCTGGAGAAGT R: CCGTGGTTGAGGATGCCGTCAT | 146 | NM198803.1 |
pmca2 | F: TCCGCCATTACCGTCATCATCC R: GCCACCACCAGCACTGTAACA | 149 | EF591990.1 |
atp2b1a | F: CATCCAGGGCAACGACCTCAAA R: CCGACAGCAGTGACCACGATT | 147 | HM449162.1 |
myo6b | F: CGGCGTTCTTCATCTCGGCAAT R: AGGCTCACTCTCAGGTCGTCCT | 144 | AY691328.1 |
tekt3 | F: TGAGACGGCAGACACCAAGAAC R: CCAGACGGGTTTGGGCAACTT | 146 | XM696077.6 |
eya4 | F: CACTCACTCCTCACTGGCTCCT R: GCACCTGGTCGCACTCCTCTAA | 148 | NM001282173.1 |
otofb | F: CCTCAACACAGCGTTCCAGACA R: TTCCACACTCCTCCTCCACAGA | 118 | XM021467487.1 |
slc17a8 | F: CATGTCTTCGTGATCGCCTCCA R: CACCAATGATGCCGCACTTCTC | 130 | NM001082835.1 |
capgb | F: GGACTTGCTGGTGCGTGATGA R: CCTCTTCTCTTCTGCGTTGGCT | 100 | NM001001594.2 |
cat | F: TTGGAGCTTGCGTCCTGAATCG R: GTGTGCGATCCGTATCCGTTCA | 102 | NM130912.2 |
sod1 | F: ATGTGACCGCTGATGCCAGTG R: TTTCCTCATTGCCACCCTTCCC | 144 | NM131294.1 |
gpx1a | F: GACGACCCTGTGTCCCTTATGG R: CGATGGTGAGGAACCTTCTGCT | 148 | NM001007281.2 |
nrf2 | F: CTCCGCTCCACCTTCCACTGAT R: GCATTGGCATGTTGAGGCACTG | 146 | AB081314.1 |
ef1α | F: GATCACTGGTACTTCTCAGGCTGA R: GGTGAAAGCCAGGAGGGC | 121 | FJ915061 |
β-actin | F: CGAGCTGTCTTCCCATCCA R: TCACCAACGTAGCTGTCTTTCTG | 86 | AF025305.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, T.; Duan, Y.; Li, Y.; Yang, W.; Chen, Q. Effects of Underwater Noise Exposure on Early Development in Zebrafish. Animals 2025, 15, 2310. https://doi.org/10.3390/ani15152310
Zhou T, Duan Y, Li Y, Yang W, Chen Q. Effects of Underwater Noise Exposure on Early Development in Zebrafish. Animals. 2025; 15(15):2310. https://doi.org/10.3390/ani15152310
Chicago/Turabian StyleZhou, Tong, Yuchi Duan, Ya Li, Wei Yang, and Qiliang Chen. 2025. "Effects of Underwater Noise Exposure on Early Development in Zebrafish" Animals 15, no. 15: 2310. https://doi.org/10.3390/ani15152310
APA StyleZhou, T., Duan, Y., Li, Y., Yang, W., & Chen, Q. (2025). Effects of Underwater Noise Exposure on Early Development in Zebrafish. Animals, 15(15), 2310. https://doi.org/10.3390/ani15152310