Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Groups
2.3. Preparation of Semen Dilutions
2.4. Semen Collection and Pretreatment
2.5. Semen Freezing and Thawing
2.6. Semen Quality Testing
2.7. Measurement of Oxidative Stress Indicators
2.8. Data Processing and Analysis
3. Results
3.1. Sperm Vitality
3.2. Sperm Motility
3.3. Superoxide Dismutase (SOD)
3.4. Catalase (CAT)
3.5. Glutathione Peroxidase (GSH-Px)
3.6. Malondialdehyde (MDA) and Total Antioxidant Capacity (T-AOC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taskin, A.; Ergun, D.; Ergun, F. Effects of different concentrations of honeysuckle (Lonicera iberica M. Bieb.) and barberry (Berberis vulgaris L.) extracts in cryopreserving of duck semen on sperm quality. Eur. Poult. Sci. 2023, 87, 1–12. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Zong, Y.; Mehaisen, G.M.K.; Chen, J. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges. J. Anim. Sci. Biotechnol. 2022, 13, 115. [Google Scholar] [CrossRef]
- Telnoni, S.P.; Dilak, H.I.; Arifiantini, I.; Nalley, W.M. Manila duck (Cairina moschata) frozen semen quality in lactated ringer’s egg yolk-astaxanthin with different concentrations of DMSO. Anim. Reprod. 2024, 21, e20230015. [Google Scholar] [CrossRef] [PubMed]
- Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle, horse, pig and sheep. Anim. Reprod. Sci. 2022, 246, 106904. [Google Scholar] [CrossRef] [PubMed]
- Oldenhof, H.; Wolkers, W.F.; Sieme, H. Cryopreservation of Semen from Domestic Livestock: Bovine, Equine, and Porcine Sperm. In Cryopreservation and Freeze-Drying Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2021; pp. 365–377. [Google Scholar]
- Partyka, A.; Niżański, W. Advances in storage of poultry semen. Anim. Reprod. Sci. 2022, 246, 106921. [Google Scholar] [CrossRef]
- Janosikova, M.; Petricakova, K.; Ptacek, M.; Savvulidi, F.G.; Rychtarova, J.; Fulka, J., Jr. New approaches for long-term conservation of rooster spermatozoa. Poult. Sci. 2023, 102, 102386. [Google Scholar] [CrossRef]
- Zong, Y.; Li, Y.; Sun, Y.; Mehaisen, G.M.K.; Ma, T.; Chen, J. Chicken Sperm Cryopreservation: Review of Techniques, Freezing Damage, and Freezability Mechanisms. Agriculture 2023, 13, 445. [Google Scholar] [CrossRef]
- Tselutin, K.; Seigneurin, F.; Blesbois, E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult. Sci. 1999, 78, 586–590. [Google Scholar] [CrossRef]
- Zong, Y.; Li, Y.; Sun, Y.; Han, X.; Yuan, J.; Ma, L.; Ma, H.; Chen, J. Mitochondrial aspartate aminotransferase (GOT2) protein as a potential cryodamage biomarker in rooster spermatozoa cryopreservation. Poult. Sci. 2025, 104, 104690. [Google Scholar] [CrossRef]
- Tang, M.; Cao, J.; Yu, Z.; Liu, H.; Yang, F.; Huang, S.; He, J.; Yan, H. New semen freezing method for chicken and drake using dimethylacetamide as the cryoprotectant. Poult. Sci. 2021, 100, 101091. [Google Scholar] [CrossRef]
- Olexikova, L.; Miranda, M.; Kulikova, B.; Baláži, A.; Chrenek, P. Cryodamage of plasma membrane and acrosome region in chicken sperm. Anat. Histol. Embryol. 2019, 48, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Thananurak, P.; Chuaychu-noo, N.; Phasuk, Y.; Vongpralub, T. Comparison of TNC and standard extender on post-thaw quality and in vivo fertility of Thai native chicken sperm. Cryobiology 2020, 92, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.; Partyka, A.; Ligocka, Z.; Niżański, W. Cryoprotective effect of melatonin supplementation on post-thawed rooster sperm quality. Anim. Reprod. Sci. 2020, 212, 106238. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, M.S.; Mardenli, O.; Amin AL-Tawash, A.S. Evaluation of The Cryopreservation Technology of Poultry Sperm: A Review Study. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012016. [Google Scholar] [CrossRef]
- Zong, Y.; Sun, Y.; Li, Y.; Mehaisen, G.M.K.; Yuan, J.; Ma, H.; Ni, A.; Wang, Y.; Hamad, S.K.; Elomda, A.M.; et al. Effect of glycerol concentration, glycerol removal method, and straw type on the quality and fertility of frozen chicken semen. Poult. Sci. 2022, 101, 101840. [Google Scholar] [CrossRef]
- Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 1984, 247, C125–C142. [Google Scholar] [CrossRef]
- Feyzi, S.; Sharafi, M.; Rahimi, S. Stress preconditioning of rooster semen before cryopreservation improves fertility potential of thawed sperm. Poult. Sci. 2018, 97, 2582–2590. [Google Scholar] [CrossRef]
- Masoudi, R.; Sharafi, M.; Zare Shahneh, A.; Kohram, H.; Nejati-Amiri, E.; Karimi, H.; Khodaei-Motlagh, M.; Shahverdi, A. Supplementation of extender with coenzyme Q10 improves the function and fertility potential of rooster spermatozoa after cryopreservation. Anim. Reprod. Sci. 2018, 198, 193–201. [Google Scholar] [CrossRef]
- Abdalkarim Salih, S.; Daghigh-Kia, H.; Mehdipour, M.; Najafi, A. Does ergothioneine and thawing temperatures improve rooster semen post-thawed quality? Poult. Sci. 2021, 100, 101405. [Google Scholar] [CrossRef]
- Najafi, A.; Mehdipour, M.; Mohammadi, H.; Mehdipour, Z.; Khorrami, B.; Nazari, M. Effect of tempol and straw size on rooster sperm quality and fertility after post-thawing. Sci. Rep. 2022, 12, 12192. [Google Scholar] [CrossRef]
- Shahin, M.A.; Khalil, W.A.; Saadeldin, I.M.; Swelum, A.A.-A.; El-Harairy, M.A. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa. Animals 2020, 10, 78. [Google Scholar] [CrossRef]
- Ahmed, H.; Jahan, S.; Riaz, M.; Ijaz, M.U.; Wahab, A. Improving the quality and in vitro fertilization rate of frozen-thawed semen of buffalo (Bubalus bubalis) bulls with the inclusion of vitamin B12 in the cryopreservation medium. Anim. Reprod. Sci. 2021, 229, 106761. [Google Scholar] [CrossRef]
- Long, J.A. Avian semen cryopreservation: What are the biological challenges? Poult. Sci. 2006, 85, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Kamali Sangani, A.; Masoudi, A.A.; Vaez Torshizi, R. Association of mitochondrial function and sperm progressivity in slow- and fast-growing roosters. Poult. Sci. 2017, 96, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Mehdipour, M.; Daghigh Kia, H.; Martínez-Pastor, F. Poloxamer 188 exerts a cryoprotective effect on rooster sperm and allows decreasing glycerol concentration in the freezing extender. Poult. Sci. 2020, 99, 6212–6220. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Kia, H.D.; Mehdipour, M.; Hamishehkar, H.; Álvarez-Rodríguez, M. Effect of quercetin loaded liposomes or nanostructured lipid carrier (NLC) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology 2020, 152, 122–128. [Google Scholar] [CrossRef]
- Najafi, A.; Mohammadi, H.; Sharifi, S.D.; Rahimi, A. Apigenin supplementation substantially improves rooster sperm freezability and post-thaw function. Sci. Rep. 2024, 14, 4527. [Google Scholar] [CrossRef]
- Masoudi, R.; Asadzadeh, N.; Sharafi, M. Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Anim. Reprod. Sci. 2021, 225, 106671. [Google Scholar] [CrossRef]
- Rui, B.R.; Shibuya, F.Y.; Kawaoku, A.J.T.; Losano, J.D.A.; Angrimani, D.S.R.; Dalmazzo, A.; Nichi, M.; Pereira, R.J.G. Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility. Theriogenology 2017, 90, 11–19. [Google Scholar] [CrossRef]
- Leão, A.P.A.; Souza, A.V.d.; Mesquita, N.F.; Pereira, L.J.; Zangeronimo, M.G. Antioxidant enrichment of rooster semen extenders—A systematic review. Res. Vet. Sci. 2021, 136, 111–118. [Google Scholar] [CrossRef]
- GB/T32148-2015; Specification for Healthy Poultry Production. Standardization Administration of China: Beijing, China, 2015.
- NY/T 4047-2021; Testing Methods of Poultry Semen Quality. Ministry of Agriculture and Rural Affairs: Beijing, China, 2021.
- Le, M.T.; Nguyen, T.T.T.; Nguyen, T.T.; Nguyen, T.V.; Nguyen, T.A.T.; Nguyen, Q.H.V.; Cao, T.N. Does conventional freezing affect sperm DNA fragmentation? Clin. Exp. Reprod. Med. 2019, 46, 67–75. [Google Scholar] [CrossRef]
- Rizwan, H.; Pal, S.; Sabnam, S.; Pal, A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life Sci. 2020, 241, 117148. [Google Scholar] [CrossRef]
- Masoudi, R.; Sharafi, M.; Pourazadi, L. Improvement of rooster semen quality using coenzyme Q10 during cooling storage in the Lake extender. Cryobiology 2019, 88, 87–91. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2019, 54, 287–293. [Google Scholar] [CrossRef]
- Seifi-Jamadi, A.; Ahmad, E.; Ansari, M.; Kohram, H. Antioxidant effect of quercetin in an extender containing DMA or glycerol on freezing capacity of goat semen. Cryobiology 2017, 75, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Laura, Y.; Harimurti, S.; Ismaya. Effect of Different Levels of Dimethylacetamide (DMA) on Sperm Quality of Bangkok Rooster Chicken and Sperm Survivability in Reproductive Tract of Hen. Pak. J. Nutr. 2017, 16, 144–147. [Google Scholar] [CrossRef]
- Holt, W.V. Basic aspects of frozen storage of semen. Anim. Reprod. Sci. 2000, 62, 3–22. [Google Scholar] [CrossRef]
- Surai, P.F.; Blesbois, E.; Grasseau, I.; Chalah, T.; Brillard, J.P.; Wishart, G.J.; Cerolini, S.; Sparks, N.H.C. Fatty acid composition, glutathione peroxidase and superoxide dismutase activity and total antioxidant activity of avian semen. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1998, 120, 527–533. [Google Scholar] [CrossRef]
- Ortega-Ferrusola, C.; Martin Muñoz, P.; Ortiz-Rodriguez, J.M.; Anel-López, L.; Balao da Silva, C.; Álvarez, M.; de Paz, P.; Tapia, J.A.; Anel, L.; Silva- Rodríguez, A.; et al. Depletion of thiols leads to redox deregulation, production of 4-hydroxinonenal and sperm senescence: A possible role for GSH regulation in spermatozoa. Biol. Reprod. 2019, 100, 1090–1107. [Google Scholar] [CrossRef] [PubMed]
- Ancuelo, A.E.; Landicho, M.M.; Dichoso, G.A.; Sangel, P.P. Superoxide Dismutase (SOD) Activity in Cryopreserved Semen of Itik Pinas-Khaki (Anas platyrhynchos L.). Trop. Anim. Sci. J. 2021, 44, 138–145. [Google Scholar] [CrossRef]
- Partyka, A.; Łukaszewicz, E.; Niżański, W. Lipid peroxidation and antioxidant enzymes activity in avian semen. Anim. Reprod. Sci. 2012, 134, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Surai, F.P. Antioxidant Systems in Poultry Biology: Superoxide Dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [Google Scholar] [CrossRef]
- Bilodeau, J.F.; Blanchette, S.; Gagnon, C.; Sirard, M.A. Thiols prevent h2o2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology 2001, 56, 275–286. [Google Scholar] [CrossRef] [PubMed]
Programs | Steps to Cool Down |
---|---|
P1 | 5 °C → −10 °C (5 °C/min) → −130 °C (60 °C/min) |
P2 | 5 °C → 2 °C (1 °C/min, hold for 5 min) → −3 °C (10 °C/min) → −20 °C (6 °C/min) → −90 °C (10 °C/min) |
P3 | 5 °C → −44 °C (12 °C/min) → −120 °C (40 °C/min) |
P4 | 5 °C → −35 °C (7 °C/min) → −140 °C (60 °C/min) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Gu, H.; Zhu, C.; Wang, Y.; Liu, H.; Song, W.; Tao, Z.; Xu, W.; Zhang, S.; Li, H. Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress. Animals 2025, 15, 2309. https://doi.org/10.3390/ani15152309
Wang Z, Gu H, Zhu C, Wang Y, Liu H, Song W, Tao Z, Xu W, Zhang S, Li H. Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress. Animals. 2025; 15(15):2309. https://doi.org/10.3390/ani15152309
Chicago/Turabian StyleWang, Zhicheng, Haotian Gu, Chunhong Zhu, Yifei Wang, Hongxiang Liu, Weitao Song, Zhiyun Tao, Wenjuan Xu, Shuangjie Zhang, and Huifang Li. 2025. "Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress" Animals 15, no. 15: 2309. https://doi.org/10.3390/ani15152309
APA StyleWang, Z., Gu, H., Zhu, C., Wang, Y., Liu, H., Song, W., Tao, Z., Xu, W., Zhang, S., & Li, H. (2025). Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress. Animals, 15(15), 2309. https://doi.org/10.3390/ani15152309