Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (237)

Search Parameters:
Keywords = anthropogenically disturbed habitats

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 135
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

16 pages, 1285 KiB  
Article
The Physiological Cost of Being Hot: High Thermal Stress and Disturbance Decrease Energy Reserves in Dragonflies in the Wild
by Eduardo Ulises Castillo-Pérez, Angélica S. Ensaldo-Cárdenas, Catalina M. Suárez-Tovar, José D. Rivera-Duarte, Daniel González-Tokman and Alex Córdoba-Aguilar
Biology 2025, 14(8), 956; https://doi.org/10.3390/biology14080956 - 29 Jul 2025
Viewed by 185
Abstract
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due [...] Read more.
Anthropogenic disturbance alters macro- and microclimatic conditions, often increasing ambient temperatures. These changes can strongly affect insects, particularly those experiencing high thermal stress (i.e., large differences between body and environmental temperature), as prolonged exposure to elevated temperatures can reduce their energetic reserves due to increased metabolic demands and physiological stress. We evaluated thermal stress in 16 insect dragonfly species during two sampling periods (2019 and 2022) in preserved and disturbed sites within a tropical dry forest in western Mexico. Also, we compared energetic condition (lipid and protein content) and thoracic mass for the seven most abundant species between both habitat types. In preserved sites, insects showed higher thermal stress at lower maximum temperatures, which decreased as temperatures increased. Dragonflies in disturbed sites maintained consistent levels of thermal stress across the temperature gradient. Thermal stress was linked to lower lipid and protein content, and individuals from disturbed sites had reduced energy reserves. We also found a weak but consistent positive relationship between mean ambient temperature and protein content. In preserved sites, thoracic mass increased with thermal stress, but only at high mean temperatures. These findings suggest that although species can persist in disturbed environments, their energetic condition may be compromised, potentially affecting their performance and fitness. Preserving suitable habitats is essential for preserving both biodiversity and ecological function. Full article
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 356
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Alien Flora on Weizhou Island, Northern South China Sea: Inventory and Invasion Risk Assessment
by Hong Wei, Xuan Wu and Linyu Bai
Diversity 2025, 17(8), 508; https://doi.org/10.3390/d17080508 - 24 Jul 2025
Viewed by 288
Abstract
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, [...] Read more.
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, and invasive vascular plants (based on herbarium specimen data for 2018–2024 and surveys of 112 plots); analyzed species composition, origins, life forms, and habitats; and conducted an invasive species risk assessment. This identified 203 aliens, including infraspecific and hybrid taxa, 129 (63.5%) naturalized and 71 (55.0% of the naturalized species) invasive. The aliens were dominated by the Fabaceae, Asteraceae, and Euphorbiaceae, particularly genera such as Euphorbia, Senna, and Portulaca, originating primarily in North America, Oceania, and Africa. Perennial herbs were the most common lifeform, followed by annual herbs and shrubs. Invasion hotspots were primarily abandoned farmland, roadsides, and agricultural lands. Using the Analytic Hierarchy Process, we classified the 71 invasive species as representing high-risk, moderate-risk, and low-risk (20, 16, and 35 species, respectively). Bidens pilosa, Ageratum conyzoides, Opuntia dillenii, and Leucaena leucocephala pose severe threats to the island ecosystem. This first complete inventory of the alien flora on Weizhou Island offers critical insight into the management of invasive alien plants in island ecosystems. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

18 pages, 3184 KiB  
Article
Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia
by Cristian Granados-Martínez, Meyer Guevara-Mora, Eugenia López-López and José Rincón Ramírez
Water 2025, 17(14), 2142; https://doi.org/10.3390/w17142142 - 18 Jul 2025
Viewed by 1028
Abstract
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining [...] Read more.
Rivers in tropical semi-arid regions face increasing anthropogenic pressures yet remain critically understudied despite their global importance. This study evaluated the aquatic macroinvertebrate community structure in the Ranchería River, Colombia, across three land use conditions: conserved zones (CZs), urban/agricultural zones (UAZs), and mining influence zones (MZs). Ten sampling stations were established, and macroinvertebrate communities were assessed alongside physical, chemical, and hydromorphological variables during the dry season (January–March 2021). A total of 9288 individuals from 84 genera across 16 orders were collected. Generalized Linear Models revealed significant differences among zones for 67 genera (79.8%), indicating strong community responses to land use gradients. Conserved zones exhibited the highest diversity according to the Hill numbers and were dominated by sensitive taxa, including Simulium, Smicridea, and Leptohyphes. Urban/agricultural zones showed the lowest richness (35 genera) and were characterized by disturbance-tolerant species, particularly Melanoides. Mining zones displayed intermediate diversity but exhibited severe habitat alterations. A redundancy analysis with variance partitioning revealed that land use types constituted the primary driver of community structure (a 24.1% pure effect), exceeding the physical and chemical variables (19.5%) and land cover characteristics (19.2%). The integrated model explained 63.5% of the total compositional variation, demonstrating that landscape-scale anthropogenic disturbances exert a greater influence on aquatic communities than local environmental conditions alone. Different anthropogenic activities create distinct environmental filters affecting macroinvertebrate assemblages, emphasizing the importance of land use planning for maintaining aquatic ecosystem integrity in semi-arid watersheds. Full article
Show Figures

Graphical abstract

27 pages, 6077 KiB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Viewed by 451
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

24 pages, 1862 KiB  
Article
Dynamics and Anthropisation of Edible Caterpillar Habitats in the Landscape of the Luki Biosphere Reserve, Democratic Republic of the Congo
by Ernestine Lonpi Tipi, Médard Mpanda Mukenza, Yannick Useni Sikuzani, Jean-Pierre Messina Ndzomo, Raoul Sambieni Kouagou, François Malaisse, Joseph Lumande Kasali, Damase Khasa and Jan Bogaert
Land 2025, 14(7), 1384; https://doi.org/10.3390/land14071384 - 1 Jul 2025
Viewed by 378
Abstract
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering [...] Read more.
The Luki Biosphere Reserve landscape is located in the southwest of the Democratic Republic of Congo. Illicit anthropogenic activities in this landscape have contributed to the degradation of forest massifs, which are habitats for edible caterpillars. Accordingly, based on five Landsat images covering 2004–2024 period, we analysed the dynamics of edible caterpillar habitats in the Luki Biosphere Reserve, its periphery, and the landscape. The study was complemented by the calculation of class area, number of class patches, dominance, and the disturbance index. The results show that fragmentation and attrition have caused forest areas to decline by 46.13%, 21.17%, and 23.54% in the Reserve, its periphery, and at the landscape level, respectively. The dynamics of caterpillar habitats are reflected in the replacement of forest and fallow land by savannah. The level of disturbance has thus risen from 0.3 to 1.6 in the Reserve, from 2.5 to 13.9 in the periphery, and from 2.0 to 9.2 on a landscape scale. These results are mainly attributed to the expansion of agricultural land. Our observations imply an extent of disturbance in caterpillar habitats that might cause their scarcity, and strongly indicate the need for promoting effective strategies for preserving and restoring forest ecosystems in this landscape. Full article
Show Figures

Figure 1

14 pages, 1640 KiB  
Article
Ecological Drivers and Community Perceptions: Conservation Challenges for the Critically Endangered Elongated Tortoise (Indotestudo elongata) in Jalthal Forest, Eastern Nepal
by Kamala Limbu, Asmit Subba, Nishan Limbu, Laxman Khanal and Randall C. Kyes
Diversity 2025, 17(7), 458; https://doi.org/10.3390/d17070458 - 28 Jun 2025
Viewed by 2173
Abstract
The elongated tortoise (Indotestudo elongata), a Critically Endangered (CR) species, faces numerous threats across its range. Yet, the ecological and anthropogenic factors affecting its conservation in fragmented habitats remain poorly understood. This study integrated field surveys and community questionnaires to assess [...] Read more.
The elongated tortoise (Indotestudo elongata), a Critically Endangered (CR) species, faces numerous threats across its range. Yet, the ecological and anthropogenic factors affecting its conservation in fragmented habitats remain poorly understood. This study integrated field surveys and community questionnaires to assess the distribution drivers and local perceptions, such as attitudes, knowledge, conservation practices, and perceived threats, in the Jalthal Forest, one of the last remnants of suitable habitat for the elongated tortoise in eastern Nepal. Using ArcMap, we established 138 randomly selected grids (500 m × 500 m) to evaluate the environmental covariates of tortoise occurrence and anthropogenic pressures. Generalized linear models revealed that tortoise occurrence was negatively associated with dense ground cover (β = −3.50, p = 0.017) and human disturbance (β = −8.11, p = 0.019). Surveys of local residents from community forest user groups (n = 236 respondents) indicated strong local support for tortoise conservation (69% willing to protect the species). Despite this, the respondents identified persistent threats, including hunting for bushmeat and traditional medicine (74%), habitat degradation (65%), and forest fires. While 60% of the respondents recognized the threatened species status, significant knowledge gaps regarding that status and ongoing illegal exploitation persisted. These findings underscore the need for targeted habitat management, reduced anthropogenic pressures, and community-led initiatives to align local attitudes with conservation actions. This study provides critical baseline data for conserving the elongated tortoise in human-modified landscapes and emphasizes the necessity of integrated ecological and socio-cultural strategies for its long-term survival. Full article
Show Figures

Figure 1

23 pages, 3706 KiB  
Article
Vegetation Structure and Habitat Characterization: An Ecological Basis for the Conservation of the Korean Endemic Plant, Taihyun’s Abelia (Zabelia tyaihyonii (Nakai) Hisauti & H.Hara, 1951; Caprifoliaceae)
by Byeong-Joo Park, Tae-Im Heo and Kwang-Il Cheon
Forests 2025, 16(7), 1042; https://doi.org/10.3390/f16071042 - 21 Jun 2025
Viewed by 344
Abstract
Endemic plant species, with their restricted distribution, are vulnerable to extinction due to human activities and environmental change. Monitoring their ecological characteristics and habitat relationships is crucial for conservation. This study examined plant communities to prioritize populations for conserving the Korean endemic species, [...] Read more.
Endemic plant species, with their restricted distribution, are vulnerable to extinction due to human activities and environmental change. Monitoring their ecological characteristics and habitat relationships is crucial for conservation. This study examined plant communities to prioritize populations for conserving the Korean endemic species, Taihyun’s abelia (Zabelia tyaihyonii (Nakai) Hisauti & H.Hara), and to identify threats and strategies for its protection. Vegetation surveys were conducted, classifying communities and analyzing species composition differences. Habitat quality and zeta diversity, assessed using the InVEST model, identified three community types: Quercus dentata–Thuja orientalis (Com. 1), Fraxinus rhynchophylla–Buxus koreana (Com. 2), and Quercus dentata–Carex humilis var. nana (Com. 3). Community classification was supported by a multi-response permutation procedure (p < 0.001) and non-metric multidimensional scaling (R2 = 0.643). Species richness and soil calcium influenced species composition, and habitat quality was moderate (0.5562 ± 0.0294). Com. 1 and Com. 3 showed minimal zeta diversity decline, indicating strong habitat connectivity. However, fluctuations at zeta orders 8–12 suggested localized disturbances. Species turnover instability was linked to urbanization and disturbance. This study, using a diverse set of analytical tools, was able to pinpoint key features of habitat quality and composition associated with Z. tyaihyonii and the anthropogenic factors that will lead to its decline. Our work provides a road map for the conservation of other rare and endemic Korean plant species with similar conservation issues. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

13 pages, 2528 KiB  
Article
Assessment of Ecosystem Sustainability and Management Measures in the Danube Floodplains in Slovakia by the Bioindicative Value of Spiders (Araneae)
by Zuzana Krumpálová and Vladimír Langraf
Forests 2025, 16(6), 1027; https://doi.org/10.3390/f16061027 - 19 Jun 2025
Viewed by 330
Abstract
The aim of this research was to record changes in the population structure of epigeic spider assemblages in the Central European Danube Delta (Slovakia) as a result of habitat management measures and the impact of human intervention. During this research (2020–2023), we assessed [...] Read more.
The aim of this research was to record changes in the population structure of epigeic spider assemblages in the Central European Danube Delta (Slovakia) as a result of habitat management measures and the impact of human intervention. During this research (2020–2023), we assessed the impact of management measures on newly planted forest stands and the effect of grazing in semi-natural conditions, and carried out diversity monitoring in flooded meadows. A total of 6344 individuals belonging to 89 spider species were collected by pitfall traps and identified. Using spatial modelling, we observed the following: (i) there are differences between the structures of managed and unmanaged forest stands (larger number of taxa); (ii) the differences in the number of individuals between study plots and years were statistically significant; (iii) the trend analysis of spider communities showed that study plots that underwent management intervention are expected to see an increase in the number of individuals in the future; and (iv) in the areas that did not undergo management, the number of species was stable. Using spiders as bioindicators could therefore answer the question of whether anthropogenic disturbance disrupts ecological stability. This approach utilizes spiders to assess the sustainability of the landscape. Full article
(This article belongs to the Special Issue Ecology of Forested Wetlands)
Show Figures

Figure 1

6 pages, 1672 KiB  
Interesting Images
New Insular Record of the Giant Water Bug, Lethocerus patruelis (Hemiptera: Belostomatidae), from the Northeastern Aegean
by Giorgos Stavrianakis, Asimina Koukoura, Apostolos Christopoulos and Yiannis G. Zevgolis
Diversity 2025, 17(6), 433; https://doi.org/10.3390/d17060433 - 19 Jun 2025
Viewed by 778
Abstract
Lethocerus patruelis (Stål, 1854) is a large aquatic hemipteran and the only European representative of the family Belostomatidae. Commonly known as the giant water bug, this species was historically restricted to the Balkans, Anatolia, and parts of the Middle East, but has exhibited [...] Read more.
Lethocerus patruelis (Stål, 1854) is a large aquatic hemipteran and the only European representative of the family Belostomatidae. Commonly known as the giant water bug, this species was historically restricted to the Balkans, Anatolia, and parts of the Middle East, but has exhibited a marked westward and northward range expansion in recent decades. In this study, we report the first confirmed occurrence of L. patruelis on Lesvos Island, in the northeastern Aegean Sea, based on a direct observation made within a wastewater treatment facility. The individual was identified in situ using diagnostic morphological traits and photographed without disturbance. This finding extends the known insular distribution of the species and underscores its capacity to exploit anthropogenically modified aquatic systems. Given the island’s rich mosaic of natural and artificial wetland habitats—including over 200 mapped sites—Lesvos may offer suitable conditions for the establishment of local populations. This record highlights the need for targeted surveys and long-term monitoring across under-sampled insular landscapes. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

19 pages, 3442 KiB  
Article
Spatial Patterns and Functional Diversity of Nearshore and Offshore Coral-Reef Fish Communities in the South China Sea
by Chen Zhang, Simin Hu, Lintao Huang, Xianzhi Lin, Hui Huang and Sheng Liu
Diversity 2025, 17(6), 432; https://doi.org/10.3390/d17060432 - 19 Jun 2025
Viewed by 428
Abstract
Coral-reef fishes in the South China Sea play a crucial role in sustaining ecosystem stability and delivering essential ecological functions. However, widespread coral degradation has led to habitat loss, intensifying environmental stress on reef-associated fish communities. To better understand their current status and [...] Read more.
Coral-reef fishes in the South China Sea play a crucial role in sustaining ecosystem stability and delivering essential ecological functions. However, widespread coral degradation has led to habitat loss, intensifying environmental stress on reef-associated fish communities. To better understand their current status and guide conservation efforts, this study conducted a comprehensive, trait-based assessment of coral-reef fish diversity across 19 reef sites in the South China Sea, spanning nearshore (Sanya, Hainan) and offshore (Xisha and Nansha Islands) systems. Significant spatial differences were observed in species composition, functional trait structure, and responses to environmental disturbance. Offshore reefs, particularly in the Nansha Islands, exhibited the highest species richness, trophic complexity, and functional diversity, while nearshore reefs showed simplified community structure dominated by small, sedentary species with high microhabitat dependence. Coral cover was only weakly correlated with fish diversity and failed to reflect functional trait complexity, highlighting the limitation of relying on structural indicators alone. Using community-weighted trait metrics, PCA, and indicator species analysis, this study established a tri-principle framework for identifying priority conservation species based on ecological function, rarity, and vulnerability. Key functional species—including Chlorurus sordidus, Siganus fuscescens, and Cephalopholis urodeta—were identified, along with representative conservation sites such as Meiji Reef, Lingyang Reef, and Luhuitou. These findings underscore the need to integrate species-level and functional diversity into coral reef monitoring and management. The proposed framework provides a science-based foundation for prioritizing species and habitats, enhancing the resilience of reef ecosystems under the dual threats of climate change and anthropogenic pressure. Full article
(This article belongs to the Special Issue Coral Reef Biodiversity Conservation and Ecological Rehabilitation)
Show Figures

Figure 1

18 pages, 4261 KiB  
Article
Assessment of Suitable Habitats and Identification of Key Protection Areas for Polyplectron katsumatae in Jianfengling, Hainan Province, China
by Wutao Yao, Yong Ma, An Long, Lixi Liu, Erping Shang, Shuyan Zhang, Jin Yang and Tianxiong Gao
Life 2025, 15(5), 826; https://doi.org/10.3390/life15050826 - 21 May 2025
Viewed by 471
Abstract
Polyplectron katsumatae is a rare and endangered species endemic to Hainan, China. It has long been regarded as a subspecies of the widely distributed Grey Peacock-Pheasant (Polyplectron bicalcaratum), a classification that has resulted in a paucity of targeted conservation studies and [...] Read more.
Polyplectron katsumatae is a rare and endangered species endemic to Hainan, China. It has long been regarded as a subspecies of the widely distributed Grey Peacock-Pheasant (Polyplectron bicalcaratum), a classification that has resulted in a paucity of targeted conservation studies and rendered efforts to protect and restore its populations and habitats exceedingly challenging. In this study, the Jianfengling section of Hainan Tropical Rainforest National Park was designated as the research area. We comprehensively utilized infrared camera monitoring data for P. katsumatae and other species, alongside habitat environmental factor data obtained through multiple monitoring approaches. An ensemble species distribution model (ESDM) was employed to evaluate the habitat suitability for four ground-dwelling bird species, including P. katsumatae, and to investigate their environmental preferences and competitive interactions during habitat selection. Subsequently, the Marxan model was applied to identify key protection areas for P. katsumatae. The results indicate that the suitable habitat for P. katsumatae is primarily distributed in the central, eastern, and certain southern areas of the study region, with low spatial overlap and minimal competition from the suitable habitats of the other three ground-dwelling bird species. However, due to anthropogenic disturbances and the inherently stringent habitat requirements of P. katsumatae, its overall suitable habitat area is limited, exhibiting a concentrated distribution overall with fragmented, small patches within it. Our study recommends designating the eastern and southern regions of the study area as key protection areas for P. katsumatae, thereby providing a robust baseline environment and policy support for the targeted protection of its habitat and the recovery of its populations. Full article
(This article belongs to the Special Issue Advances in Wildlife Behavior and Biodiversity)
Show Figures

Figure 1

18 pages, 1801 KiB  
Article
MaxEnt Modeling of the Impacts of Human Activities and Climate Change on the Potential Distribution of Plantago in China
by Da Liao, Bing Zhou, Haiyan Xiao, Yuxin Zhang, Shujian Zhang, Qitao Su and Xiaohong Yan
Biology 2025, 14(5), 564; https://doi.org/10.3390/biology14050564 - 17 May 2025
Viewed by 637
Abstract
Human activities exert both beneficial and detrimental impacts on the ecosystem. In recent years, greenhouse gas emissions have significantly increased due to global climate change, causing profound alterations in ecosystem distribution and productivity. The synergistic interplay between climatic shifts and anthropogenic activities is [...] Read more.
Human activities exert both beneficial and detrimental impacts on the ecosystem. In recent years, greenhouse gas emissions have significantly increased due to global climate change, causing profound alterations in ecosystem distribution and productivity. The synergistic interplay between climatic shifts and anthropogenic activities is intensifying ecological transformations and disturbances, and accelerating biodiversity depletion. The Plantago genus (Plantaginaceae family) includes 14 herbaceous species among China’s flora. This study was conducted to elucidate the spatial distribution of Plantago species patterns across China and evaluate their differential responses to impending climate change and human interventions. In this study, we projected the potential distributions of Plantago species under three climate scenarios (SSP126, SSP245, and SSP585) across current and future temporal intervals (2021–2040, 2041–2060, 2061–2080, and 2081–2100) using the MaxEnt model integrated with ArcGIS V10.8 spatial analysis. A spatial trend analyses was also conducted to assess habitat suitability dynamics by incorporating anthropogenic influence parameters. The model validation yielded AUC values exceeding 0.9, demonstrating excellent model performance and predictive reliability. Precipitation variability and anthropogenic pressure emerged as the most predominant determinants shaping Plantago distributions. Centroid migration analyses further indicated the progressive northward displacement of optimal habitats under the projected climate scenarios. These findings significantly advance our understanding of Plantago species’ adaptive responses to environmental changes. This study also offers an invaluable scientific foundation for sustainable resource management and ecological conservation strategies. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

51 pages, 11577 KiB  
Article
Projected Impacts of Climate and Land Use Change on Endemic Plant Distributions in a Mediterranean Island Hotspot: The Case of Evvia (Aegean, Greece)
by Konstantinos Kougioumoutzis, Ioannis P. Kokkoris, Panayiotis Trigas, Arne Strid and Panayotis Dimopoulos
Climate 2025, 13(5), 100; https://doi.org/10.3390/cli13050100 - 13 May 2025
Viewed by 1899
Abstract
Anthropogenic climate and land use change pose major threats to island floras worldwide, yet few studies have integrated these drivers in a single vulnerability assessment. Here, we examine the endemic flora of Evvia, the second-largest Aegean island in Greece and an important biodiversity [...] Read more.
Anthropogenic climate and land use change pose major threats to island floras worldwide, yet few studies have integrated these drivers in a single vulnerability assessment. Here, we examine the endemic flora of Evvia, the second-largest Aegean island in Greece and an important biodiversity hotspot, as a model system to address how these disturbances may reshape species distributions, community composition, and phylogenetic diversity patterns. We used species distribution models under the Ensemble of Small Models and the ENphylo framework, specifically designed to overcome parameter uncertainty in rare species with inherently limited occurrence records. By integrating climate projections and dynamic land use data, we forecasted potential range shifts, habitat fragmentation, and biodiversity patterns for 114 endemic taxa through the year 2100. We addressed transferability uncertainty, a key challenge in projecting distributions under novel conditions, using the Shape framework extrapolation analysis, thus ensuring robust model projections. Our findings reveal pronounced projected range contractions and increased habitat fragmentation for all studied taxa, with more severe impacts on single-island endemics. Our models demonstrated high concordance with established IUCN Red List assessments, validating their ecological relevance despite the sample size limitations of single-island endemics. Current biodiversity hotspots, primarily located in mountainous regions, are expected to shift towards lowland areas, probably becoming extinction hotspots due to projected species losses, especially for Evvia’s single-island endemics. Emerging hotspot analysis identified new biodiversity centres in lowland zones, while high-altitude areas showed sporadic hotspot patterns. Temporal beta diversity analysis indicated higher species turnover of distantly related taxa at higher elevations, with closely related species clustering at lower altitudes. This pattern suggests a homogenisation of plant communities in lowland areas. The assessment of protected area effectiveness revealed that while 94.6% of current biodiversity hotspots are within protected zones, this coverage is projected to decline by 2100. Our analysis identified conservation gaps, highlighting areas requiring urgent protection to preserve future biodiversity. Our study reveals valuable information regarding the vulnerability of island endemic floras to global change, offering a framework applicable to other insular systems. Our findings demonstrate that adaptive conservation strategies should account for projected biodiversity shifts and serve as a warning for other insular biodiversity hotspots, urging immediate actions to maintain the unique evolutionary heritage of islands. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

Back to TopTop