Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
Abstract
1. Introduction
2. Material and Methods
2.1. Target Species, Study Area, and Methodological Framework
2.2. Bioclimatic Variables
2.3. Modeling of Species Distribution
2.4. Resistance Layer and Input for Restoration Planning Analyses
2.5. Planning the Restoration of Connectivity for the Scenarios of Analysis
3. Results
3.1. Model Selection and Results of the Species Distribution
3.2. Restoration of Connectivity Under Different Climate Change Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Code | Description |
---|---|
BIO1 | Annual Mean Temperature |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp–min temp)) |
BIO3 | Isothermality (BIO2/BIO7) (*100) |
BIO4 | Temperature Seasonality (standard deviation *100) |
BIO5 | Max Temperature of Warmest Month |
BIO6 | Min Temperature of Coldest Month |
BIO7 | Temperature Annual Range (BIO5-BIO6) |
BIO10 | Mean Temperature of Warmest Quarter |
BIO11 | Mean Temperature of Coldest Quarter |
BIO12 | Annual Precipitation |
BIO13 | Precipitation of Wettest Month |
BIO14 | Precipitation of Driest Month |
BIO15 | Precipitation Seasonality (Coefficient of Variation) |
BIO16 | Precipitation of Wettest Quarter |
BIO17 | Precipitation of Driest Quarter |
CLC 2018 Code | Resistance Values |
---|---|
111 | 1000 |
112 | 1000 |
121 | 1000 |
122 | 1000 |
124 | 1000 |
131 | 1000 |
132 | 1000 |
133 | 1000 |
141 | 1000 |
142 | 1000 |
211 | 60 |
212 | 60 |
213 | 60 |
221 | 60 |
222 | 60 |
223 | 60 |
231 | 40 |
241 | 60 |
242 | 60 |
243 | 60 |
244 | 60 |
311 | 1 |
312 | 1 |
313 | 1 |
321 | 30 |
322 | 5 |
323 | 5 |
324 | 5 |
332 | 40 |
333 | 40 |
334 | 40 |
411 | 100 |
511 | 100 |
512 | 100 |
Traffic | Resistance Values |
---|---|
<1000 | 80 |
1000–5000 | 100 |
5000–10,000 | 300 |
>10,000 Not fenced | 700 |
>10,000 Fenced | 900 |
>20,000 Not fenced | 800 |
>20,000 Fenced | 1000 |
Range of Resistance Values | Reclassification Values for Resistance (%) | Input Values for Restoration Planner |
---|---|---|
0–100 | 0 | 3 |
100–200 | 10 | 10 |
200–300 | 20 | 20 |
300–400 | 30 | 30 |
400–500 | 40 | 40 |
500–600 | 50 | 50 |
600–700 | 60 | 60 |
700–800 | 70 | 70 |
800–900 | 80 | 80 |
900–1000 | 90 | 90 |
>1000 | 100 | 100 |
Background | 0 | |
Foreground | 2 |
SCENARIO | RESTORE | REST_PIX | AVDIST_RP | EFFIC | DELTA_ECA |
---|---|---|---|---|---|
Current | 1 <-> 2 | 16 | 2.12 | 38.18 | 34.36 |
Current | 1 <-> 3 | 110 | 7.30 | 13.33 | 57.05 |
Current | 1 <-> 4 | 83 | 6.04 | 11.90 | 38.08 |
Current | 1 <-> 5 | 42 | 5.50 | 17.65 | 35.11 |
Current | 2 <-> 3 | 94 | 8.18 | 23.38 | 79.04 |
Current | 2 <-> 4 | 67 | 6.98 | 0.54 | 12.47 |
Current | 2 <-> 5 | 36 | 6.25 | 0.18 | 25.49 |
Current | 3 <-> 4 | 161 | 7.68 | 17.19 | 97.62 |
Current | 3 <-> 5 | 130 | 7.64 | 17.19 | 82.85 |
Current | 4 <-> 5 | 47 | 6.61 | 0.02 | 22.93 |
2021–2040 ssp245 | 1 <-> 2 | 204 | 7.62 | 5.23 | 39,099.27 |
2021–2040 ssp245 | 1 <-> 3 | 10 | 2.88 | 41.21 | 14,011.93 |
2021–2040 ssp245 | 1 <-> 4 | 87 | 5.75 | 5.57 | 18,220.09 |
2021–2040 ssp245 | 1 <-> 5 | 116 | 8.79 | 2.49 | 10,525.61 |
2021–2040 ssp245 | 2 <-> 3 | 213 | 7.43 | 6.93 | 53,922.41 |
2021–2040 ssp245 | 2 <-> 4 | 117 | 9.02 | 0.67 | 2832.69 |
2021–2040 ssp245 | 2 <-> 5 | 228 | 7.64 | 1.12 | 9237.95 |
2021–2040 ssp245 | 3 <-> 4 | 96 | 5.50 | 9.12 | 32,635.49 |
2021–2040 ssp245 | 3 <-> 5 | 125 | 8.38 | 5.46 | 24,805.88 |
2021–2040 ssp245 | 4 <-> 5 | 111 | 6.19 | 0.70 | 2865.33 |
2021–2040 ssp370 | 1 <-> 2 | 206 | 7.94 | 5.37 | 40,556.99 |
2021–2040 ssp370 | 1 <-> 3 | 11 | 3.80 | 38.76 | 13,564.45 |
2021–2040 ssp370 | 1 <-> 4 | 96 | 6.03 | 5.55 | 19,687.80 |
2021–2040 ssp370 | 1 <-> 5 | 131 | 12.34 | 2.68 | 12,347.16 |
2021–2040 ssp370 | 2 <-> 3 | 216 | 7.77 | 6.99 | 55,005.19 |
2021–2040 ssp370 | 2 <-> 4 | 110 | 9.61 | 0.80 | 3214.21 |
2021–2040 ssp370 | 2 <-> 5 | 200 | 7.47 | 1.49 | 11,210.04 |
2021–2040 ssp370 | 3 <-> 4 | 106 | 5.85 | 8.71 | 33,724.44 |
2021–2040 ssp370 | 3 <-> 5 | 141 | 11.76 | 5.34 | 26,258.10 |
2021–2040 ssp370 | 4 <-> 5 | 90 | 4.84 | 1.09 | 3826.86 |
2021–2040 ssp585 | 1 <-> 2 | 328 | 64.10 | 1.88 | 20,714.13 |
2021–2040 ssp585 | 1 <-> 3 | 10 | 2.88 | 38.47 | 13,079.65 |
2021–2040 ssp585 | 1 <-> 4 | 97 | 5.44 | 5.51 | 18,739.61 |
2021–2040 ssp585 | 1 <-> 5 | 112 | 13.10 | 1.85 | 7362.74 |
2021–2040 ssp585 | 2 <-> 3 | 230 | 7.43 | 6.62 | 53,805.13 |
2021–2040 ssp585 | 2 <-> 4 | 123 | 9.38 | 0.73 | 3195.96 |
2021–2040 ssp585 | 2 <-> 5 | 202 | 7.45 | 1.52 | 11,621.66 |
2021–2040 ssp585 | 3 <-> 4 | 107 | 5.20 | 8.62 | 32,223.03 |
2021–2040 ssp585 | 3 <-> 5 | 122 | 12.27 | 4.78 | 20,613.10 |
2021–2040 ssp585 | 4 <-> 5 | 79 | 4.45 | 1.29 | 4222.24 |
2041–2060 ssp245 | 1 <-> 2 | 109 | 5.76 | 6.88 | 25,887.51 |
2041–2060 ssp245 | 1 <-> 3 | 379 | 62.62 | 1.45 | 18,900.61 |
2041–2060 ssp245 | 1 <-> 4 | 10 | 2.88 | 44.41 | 15,098.95 |
2041–2060 ssp245 | 1 <-> 5 | 165 | 4.53 | 2.65 | 16,772.40 |
2041–2060 ssp245 | 2 <-> 3 | 206 | 15.31 | 1.91 | 13,981.66 |
2041–2060 ssp245 | 2 <-> 4 | 119 | 5.52 | 10.29 | 42,191.77 |
2041–2060 ssp245 | 2 <-> 5 | 72 | 4.43 | 1.78 | 4804.67 |
2041–2060 ssp245 | 3 <-> 4 | 389 | 61.08 | 2.61 | 34,833.50 |
2041–2060 ssp245 | 3 <-> 5 | 134 | 21.15 | 0.64 | 2974.71 |
2041–2060 ssp245 | 4 <-> 5 | 175 | 4.43 | 4.87 | 32,505.51 |
2041–2060 ssp370 | 1 <-> 2 | 427 | 68.79 | 1.29 | 18,286.19 |
2041–2060 ssp370 | 1 <-> 3 | 108 | 6.84 | 4.82 | 17,240.82 |
2041–2060 ssp370 | 1 <-> 4 | 27 | 2.86 | 13.83 | 12,859.70 |
2041–2060 ssp370 | 1 <-> 5 | 198 | 6.11 | 5.00 | 34,474.62 |
2041–2060 ssp370 | 2 <-> 3 | 285 | 19.05 | 1.24 | 12,248.41 |
2041–2060 ssp370 | 2 <-> 4 | 454 | 64.87 | 2.10 | 31,685.04 |
2041–2060 ssp370 | 2 <-> 5 | 194 | 25.54 | 0.34 | 2248.17 |
2041–2060 ssp370 | 3 <-> 4 | 135 | 6.04 | 6.79 | 30,607.67 |
2041–2060 ssp370 | 3 <-> 5 | 91 | 5.19 | 1.38 | 4594.76 |
2041–2060 ssp370 | 4 <-> 5 | 225 | 5.72 | 6.15 | 48,054.63 |
2041–2060 ssp585 | 1 <-> 2 | 6 | 1.64 | 116.35 | 20,942.90 |
2041–2060 ssp585 | 1 <-> 3 | 88 | 5.16 | 7.28 | 20,593.88 |
2041–2060 ssp585 | 1 <-> 4 | 368 | 13.82 | 3.70 | 45,833.84 |
2041–2060 ssp585 | 1 <-> 5 | 17 | 3.03 | 15.71 | 10,526.75 |
2041–2060 ssp585 | 2 <-> 3 | 93 | 4.97 | 16.26 | 48,607.34 |
2041–2060 ssp585 | 2 <-> 4 | 438 | 79.12 | 0.66 | 9547.03 |
2041–2060 ssp585 | 2 <-> 5 | 22 | 2.70 | 42.09 | 34,931.28 |
2041–2060 ssp585 | 3 <-> 4 | 280 | 16.54 | 1.58 | 15,078.97 |
2041–2060 ssp585 | 3 <-> 5 | 105 | 4.81 | 9.86 | 34,497.92 |
2041–2060 ssp585 | 4 <-> 5 | 385 | 13.34 | 4.65 | 60,775.63 |
2061–2080 ssp245 | 1 <-> 2 | 102 | 6.00 | 5.51 | 19,460.40 |
2061–2080 ssp245 | 1 <-> 3 | 414 | 70.86 | 1.34 | 18,320.83 |
2061–2080 ssp245 | 1 <-> 4 | 15 | 2.47 | 27.67 | 15,492.43 |
2061–2080 ssp245 | 1 <-> 5 | 207 | 5.83 | 4.99 | 36,599.24 |
2061–2080 ssp245 | 2 <-> 3 | 287 | 17.10 | 1.31 | 13,219.65 |
2061–2080 ssp245 | 2 <-> 4 | 110 | 5.57 | 9.62 | 35,683.07 |
2061–2080 ssp245 | 2 <-> 5 | 113 | 5.36 | 1.25 | 5065.64 |
2061–2080 ssp245 | 3 <-> 4 | 429 | 68.47 | 2.42 | 34,492.55 |
2061–2080 ssp245 | 3 <-> 5 | 174 | 24.71 | 0.29 | 1778.65 |
2061–2080 ssp245 | 4 <-> 5 | 215 | 5.62 | 7.06 | 53,063.32 |
2061–2080 ssp370 | 1 <-> 2 | 4 | 1.50 | 146.10 | 21,915.29 |
2061–2080 ssp370 | 1 <-> 3 | 21 | 2.91 | 28.24 | 18,637.40 |
2061–2080 ssp370 | 1 <-> 4 | 328 | 14.83 | 3.96 | 45,560.69 |
2061–2080 ssp370 | 1 <-> 5 | 21 | 4.50 | 12.30 | 9349.54 |
2061–2080 ssp370 | 2 <-> 3 | 23 | 2.77 | 65.31 | 48,332.26 |
2061–2080 ssp370 | 2 <-> 4 | 324 | 14.99 | 1.35 | 15,361.38 |
2061–2080 ssp370 | 2 <-> 5 | 25 | 4.02 | 38.73 | 35,244.45 |
2061–2080 ssp370 | 3 <-> 4 | 347 | 14.18 | 6.12 | 74,000.79 |
2061–2080 ssp370 | 3 <-> 5 | 40 | 3.81 | 23.24 | 31,372.64 |
2061–2080 ssp370 | 4 <-> 5 | 349 | 14.20 | 4.87 | 59,812.12 |
2061–2080 ssp585 | 1 <-> 2 | 14 | 2.37 | 57.70 | 26,540.32 |
2061–2080 ssp585 | 1 <-> 3 | 149 | 5.30 | 3.65 | 23,553.95 |
2061–2080 ssp585 | 1 <-> 4 | 11 | 3.80 | 40.20 | 14,069.53 |
2061–2080 ssp585 | 1 <-> 5 | 107 | 5.41 | 1.45 | 6625.07 |
2061–2080 ssp585 | 2 <-> 3 | 163 | 5.05 | 7.52 | 51,939.02 |
2061–2080 ssp585 | 2 <-> 4 | 25 | 3.00 | 51.68 | 41,857.53 |
2061–2080 ssp585 | 2 <-> 5 | 121 | 5.06 | 6.71 | 33,708.03 |
2061–2080 ssp585 | 3 <-> 4 | 160 | 5.19 | 5.66 | 38,517.57 |
2061–2080 ssp585 | 3 <-> 5 | 42 | 5.01 | 0.74 | 1401.27 |
2061–2080 ssp585 | 4 <-> 5 | 118 | 5.26 | 4.27 | 20,957.18 |
2081–2100 ssp245 | 1 <-> 2 | 242 | 17.39 | 3.33 | 28,108.07 |
2081–2100 ssp245 | 1 <-> 3 | 15 | 3.81 | 30.27 | 16,647.43 |
2081–2100 ssp245 | 1 <-> 4 | 99 | 5.99 | 2.40 | 8821.37 |
2081–2100 ssp245 | 1 <-> 5 | 8 | 1.71 | 1.22 | 707.62 |
2081–2100 ssp245 | 2 <-> 3 | 257 | 16.60 | 5.03 | 45,187.68 |
2081–2100 ssp245 | 2 <-> 4 | 143 | 25.29 | 0.28 | 1323.23 |
2081–2100 ssp245 | 2 <-> 5 | 250 | 16.89 | 3.20 | 28,828.07 |
2081–2100 ssp245 | 3 <-> 4 | 114 | 5.70 | 6.05 | 25,597.15 |
2081–2100 ssp245 | 3 <-> 5 | 23 | 3.08 | 15.37 | 17,363.83 |
2081–2100 ssp245 | 4 <-> 5 | 107 | 5.67 | 2.24 | 9532.33 |
2081–2100 ssp370 | 1 <-> 2 | 19 | 4.00 | 31.02 | 22,336.34 |
2081–2100 ssp370 | 1 <-> 3 | 309 | 15.76 | 2.20 | 25,582.46 |
2081–2100 ssp370 | 1 <-> 4 | 15 | 3.81 | 24.66 | 13,562.36 |
2081–2100 ssp370 | 1 <-> 5 | 13 | 2.24 | 12.85 | 5524.33 |
2081–2100 ssp370 | 2 <-> 3 | 326 | 15.16 | 4.09 | 50,180.52 |
2081–2100 ssp370 | 2 <-> 4 | 32 | 4.07 | 31.43 | 37,400.66 |
2081–2100 ssp370 | 2 <-> 5 | 30 | 3.40 | 26.56 | 28,417.61 |
2081–2100 ssp370 | 3 <-> 4 | 324 | 15.21 | 3.32 | 40,428.15 |
2081–2100 ssp370 | 3 <-> 5 | 296 | 16.35 | 0.24 | 2688.03 |
2081–2100 ssp370 | 4 <-> 5 | 28 | 3.08 | 19.80 | 19,405.69 |
2081–2100 ssp585 | 1 <-> 2 | 43 | 4.60 | 14.53 | 21,800.42 |
2081–2100 ssp585 | 1 <-> 3 | 401 | 31.79 | 1.26 | 17,756.76 |
2081–2100 ssp585 | 1 <-> 4 | 21 | 4.50 | 15.73 | 11,957.10 |
2081–2100 ssp585 | 1 <-> 5 | 204 | 27.81 | 3.83 | 31,057.32 |
2081–2100 ssp585 | 2 <-> 3 | 449 | 81.77 | 0.46 | 7054.33 |
2081–2100 ssp585 | 2 <-> 4 | 60 | 4.64 | 16.90 | 35,489.82 |
2081–2100 ssp585 | 2 <-> 5 | 164 | 33.44 | 0.58 | 3905.92 |
2081–2100 ssp585 | 3 <-> 4 | 422 | 30.43 | 2.08 | 30,934.60 |
2081–2100 ssp585 | 3 <-> 5 | 514 | 80.30 | 0.15 | 2584.21 |
2081–2100 ssp585 | 4 <-> 5 | 221 | 26.04 | 5.16 | 44,974.35 |
References
- Paal, J. The Forests of the North-Estonian Klint; the North-Easternmost Representatives of the EU Habitat Directive Tilio? Acerion Forests of Slopes, Screes and Ravines. Ann. Bot. Fenn. 2009, 46, 525–540. [Google Scholar] [CrossRef]
- Campos, J.A.; García-Mijangos, I.; Herrera, M.; Loidi, J.; Biurrun, I. Ravine Forests (Tilio-Acerion) of the Iberian Peninsula. Plant Biosyst. 2011, 145, 172–179. [Google Scholar] [CrossRef]
- Yılmaz, E.; Çiçek, İ. Detailed Köppen-Geiger Climate Regions of Turkey Türkiye’nin Detaylandırılmış Köppen-Geiger Iklim Bölgeleri. J. Hum. Sci. 2018, 15, 225–242. [Google Scholar] [CrossRef]
- Thomas, P.A.; Stone, D.; La Porta, N. Biological Flora of the British Isles: Ulmus glabra. J. Ecol. 2018, 106, 1724–1766. [Google Scholar] [CrossRef]
- Akkemik, Ü. Türkiye’nin Doğal Karağaç Taksonlarının (Ulmus L.) Morfolojil ve Palinolojik Özellikleri. Master’s Thesis, Istanbul University, Istanbul, Türkiye, 1994. [Google Scholar]
- Martín del Puerto, M.; Martínez García, F.; Mohanty, A.; Martín, J.P. Genetic Diversity in Relict and Fragmented Populations of Ulmus Glabra Hudson in the Central System of the Iberian Peninsula. Forests 2017, 8, 143. [Google Scholar] [CrossRef]
- Anşin, R. Orman Ağaçlarında Görülen Parazit ve Saprofit Mantarlar; Kaya Yayıncılık: Istanbul, Türkiye, 1987. [Google Scholar]
- Ar, B.; Velázquez, J.; Tonyaloğlu, E.E.; Sezgin, M.; Çorbacı, Ö.L.; Özcan, A.U.; Çiçek, K.; Mongil-Manso, J.; Alexandre Castanho, R.; Gülçin, D. Assessing Climate Change Impact on Habitat Suitability and Ecological Connectivity of Wych Elm (Ulmus Glabra Huds.) in Türkiye. Forests 2024, 15, 1894. [Google Scholar] [CrossRef]
- Karahan, O.; Maden, S. Orta Anadolu Bölgesinde Karaağaç (Ulmus spp.) ve Kavak (Populus spp.)’larda Görülen Kurumalar ve Buna Sebep Olan Etmenler. Bitki Koruma Bülteni 1974, 19, 175–180. [Google Scholar]
- Zhang, M.; Yiğit, İ.; Adigüzel, F.; Hu, C.; Chen, E.; Siyavuş, A.E.; Elmastaş, N.; Ustuner, M.; Kaya, A.Y. Impact of Urban Surfaces on Microclimatic Conditions and Thermal Comfort in Burdur, Türkiye. Atmosphere 2024, 15, 1375. [Google Scholar] [CrossRef]
- Moazzam, M.F.U.; Lee, B.G.; Kim, S. Impact of Sea Surface Temperature on City Temperature near Warm and Cold Ocean Currents in Summer Season for Northern Hemisphere. Atmosphere 2025, 16, 54. [Google Scholar] [CrossRef]
- Altman, J.; Fibich, P.; Trotsiuk, V.; Altmanova, N. Global Pattern of Forest Disturbances and Its Shift under Climate Change. Sci. Total Environ. 2024, 915, 170117. [Google Scholar] [CrossRef]
- Costanza, J.K.; Terando, A.J. Landscape Connectivity Planning for Adaptation to Future Climate and Land-Use Change. Curr. Landsc. Ecol. Rep. 2019, 4, 1–13. [Google Scholar] [CrossRef]
- Messier, C.; Bauhus, J.; Doyon, F.; Maure, F.; Sousa-Silva, R.; Nolet, P.; Mina, M.; Aquilué, N.; Fortin, M.-J.; Puettmann, K. The Functional Complex Network Approach to Foster Forest Resilience to Global Changes. For. Ecosyst. 2019, 6, 21. [Google Scholar] [CrossRef]
- Lines, E.R.; Coomes, D.A.; Purves, D.W. Influences of Forest Structure, Climate and Species Composition on Tree Mortality across the Eastern US. PLoS ONE 2010, 5, e13212. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Fons, F.; Segalés, J.; Gortázar, C. A Review of Viral Diseases of the European Wild Boar: Effects of Population Dynamics and Reservoir Rôle. Vet. J. 2008, 176, 158–169. [Google Scholar] [CrossRef]
- Prasad, A.; Pedlar, J.; Peters, M.; Matthews, S.; Iverson, L.; McKenney, D.; Adams, B. Chapter 8—Understanding Climate Change Dynamics of Tree Species: Implications for Future Forests. In Future Forests; McNulty, S.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 151–175. ISBN 978-0-323-90430-8. [Google Scholar]
- Keeley, A.T.H.; Ackerly, D.D.; Cameron, D.R.; Heller, N.E.; Huber, P.R.; Schloss, C.A.; Thorne, J.H.; Merenlender, A.M. New Concepts, Models, and Assessments of Climate-Wise Connectivity. Environ. Res. Lett. 2018, 13, 073002. [Google Scholar] [CrossRef]
- Kremer, A.; Ronce, O.; Robledo-Arnuncio, J.J.; Guillaume, F.; Bohrer, G.; Nathan, R.; Bridle, J.R.; Gomulkiewicz, R.; Klein, E.K.; Ritland, K.; et al. Long-Distance Gene Flow and Adaptation of Forest Trees to Rapid Climate Change. Ecol. Lett. 2012, 15, 378–392. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.-J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive Forest Management in Central Europe: Climate Change Impacts, Strategies and Integrative Concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Yousefpour, R.; Jacobsen, J.B.; Thorsen, B.J.; Meilby, H.; Hanewinkel, M.; Oehler, K. A Review of Decision-Making Approaches to Handle Uncertainty and Risk in Adaptive Forest Management under Climate Change. Ann. For. Sci. 2012, 69, 1–15. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate Change Impacts and Adaptation in Forest Management: A Review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The Exceptional Value of Intact Forest Ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Koch, A.; Kaplan, J.O. Tropical Forest Restoration under Future Climate Change. Nat. Clim. Change 2022, 12, 279–283. [Google Scholar] [CrossRef]
- Noulèkoun, F.; Mensah, S.; Birhane, E.; Son, Y.; Khamzina, A. Forest Landscape Restoration under Global Environmental Change: Challenges and a Future Roadmap. Forests 2021, 12, 276. [Google Scholar] [CrossRef]
- Bustamante, M.M.C.; Silva, J.S.; Scariot, A.; Sampaio, A.B.; Mascia, D.L.; Garcia, E.; Sano, E.; Fernandes, G.W.; Durigan, G.; Roitman, I.; et al. Ecological Restoration as a Strategy for Mitigating and Adapting to Climate Change: Lessons and Challenges from Brazil. Mitig. Adapt. Strateg. Glob. Change 2019, 24, 1249–1270. [Google Scholar] [CrossRef]
- Schulz, J.J.; Schröder, B. Identifying Suitable Multifunctional Restoration Areas for Forest Landscape Restoration in Central Chile. Ecosphere 2017, 8, e01644. [Google Scholar] [CrossRef]
- Velázquez, J.; Gülçin, D.; Vogt, P.; Rincón, V.; Hernando, A.; Gutiérrez, J.; Özcan, A.U.; Çiçek, K. Planning Restoration of Connectivity and Design of Corridors for Biodiversity Conservation. Forests 2022, 13, 2132. [Google Scholar] [CrossRef]
- Rudge, M.L.M.; Levick, S.R.; Bartolo, R.E.; Erskine, P.D. Developing Landscape-Scale Forest Restoration Targets That Embrace Spatial Pattern. Landsc. Ecol. 2022, 37, 1747–1760. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Sánchez, I.; Herráez, F.; Gülçin, D.; Tang, T.; Perea, R.; Velázquez, J. Identifying Keystone Connectivity Spots under Climate Change: Implications to Conservation and Management of Riparian Systems. J. Environ. Manag. 2024, 351, 119782. [Google Scholar] [CrossRef]
- Thompson, I.; Mackey, B.; McNulty, S.; Mosseler, A. Forest Resilience, Biodiversity and Climate Change: A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems; Technical Series; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009; Volume 43, pp. 1–67. [Google Scholar]
- Cerioni, M.; Brabec, M.; Bače, R.; Bāders, E.; Bončina, A.; Brůna, J.; Chećko, E.; Cordonnier, T.; de Koning, J.H.C.; Diaci, J.; et al. Recovery and Resilience of European Temperate Forests after Large and Severe Disturbances. Glob. Change Biol. 2024, 30, e17159. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.; Liu, H.; Wang, F.; Dong, Y.; Wu, G.; Li, Y.; Wang, W.; Phan Tran, L.-S.; Li, W. Multi-Objective Ecological Restoration Priority in China: Cost-Benefit Optimization in Different Ecological Performance Regimes Based on Planetary Boundaries. J. Environ. Manag. 2024, 356, 120701. [Google Scholar] [CrossRef]
- Cannon, J.B.; Gannon, B.M.; Feinstein, J.A.; Padley, E.A.; Metz, L.J. Simulating Spatial Complexity in Dry Conifer Forest Restoration: Implications for Conservation Prioritization and Scenario Evaluation. Landsc. Ecol. 2020, 35, 2301–2319. [Google Scholar] [CrossRef]
- Aerts, R.; Honnay, O. Forest Restoration, Biodiversity and Ecosystem Functioning. BMC Ecol. 2011, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Noss, R.F. Beyond Kyoto: Forest Management in a Time of Rapid Climate Change. Conserv. Biol. 2001, 15, 578–590. [Google Scholar] [CrossRef]
- Chen, X.; Kang, B.; Li, M.; Du, Z.; Zhang, L.; Li, H. Identification of Priority Areas for Territorial Ecological Conservation and Restoration Based on Ecological Networks: A Case Study of Tianjin City, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Rudnick, D.A.; Ryan, S.J.; Beier, P.; Cushman, S.A.; Dieffenbach, F.; Epps, C.W.; Gerber, L.R.; Hartter, J.; Jenness, J.S.; Kintsch, J.; et al. The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues Ecol. 2012, 16, 1–20. [Google Scholar]
- Ng, C.N.; Xie, Y.J.; Yu, X.J. Integrating Landscape Connectivity into the Evaluation of Ecosystem Services for Biodiversity Conservation and Its Implications for Landscape Planning. Appl. Geogr. 2013, 42, 1–12. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The Application of ‘Least-Cost’ Modelling as a Functional Landscape Model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Bunn, A.G.; Urban, D.L.; Keitt, T.H. Landscape Connectivity: A Conservation Application of Graph Theory. J. Environ. Manag. 2000, 59, 265–278. [Google Scholar] [CrossRef]
- Urban, D.; Keitt, T. Landscape Connectivity: A Graph-Theoretic Perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Galpern, P.; Manseau, M.; Fall, A. Patch-Based Graphs of Landscape Connectivity: A Guide to Construction, Analysis and Application for Conservation. Biol. Conserv. 2011, 144, 44–55. [Google Scholar] [CrossRef]
- Hashemi, R.; Darabi, H.; Hashemi, M.; Wang, J. Graph Theory in Ecological Network Analysis: A Systematic Review for Connectivity Assessment. J. Clean. Prod. 2024, 472, 143504. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal Digital Image Object Analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Carlier, J.; Doyle, M.; Finn, J.A.; Ó hUallacháin, D.; Ruas, S.; Vogt, P.; Moran, J. Modelling Enhancement of Ecosystem Services Provision through Integrated Agri-Environment and Forestry Measures. Sci. Total Environ. 2024, 948, 174509. [Google Scholar] [CrossRef] [PubMed]
- Carlier, J.; Doyle, M.; Finn, J.A.; Ó hUallacháin, D.; Ruas, S.; Moran, J. The Development and Potential Application of a Land Use Monitoring Programme for High Nature Value Farmland and Forest Quality and Quantity in the Republic of Ireland. Environ. Sci. Policy 2023, 146, 1–12. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Akkemik, Ü. Ülkemizde Doğal Yetişen Karaağaç (Ulmus L.) Taksonlarının Morfolojik Özellikleri. J. Fac. For. Istanb. Univ. 1995, 45, 93–116. [Google Scholar]
- Myking, T.; Skrøppa, T. Variation in Phenology and Height Increment of Northern Ulmus Glabra Populations: Implications for Conservation. Scand. J. For. Res. 2007, 22, 369–374. [Google Scholar] [CrossRef]
- Nielsen, L.R.; Kjær, E.D. Gene Flow and Mating Patterns in Individuals of Wych Elm (Ulmus glabra) in Forest and Open Land after the Influence of Dutch Elm Disease. Conserv. Genet. 2010, 11, 257–268. [Google Scholar] [CrossRef]
- Caudullo, G.; De Rigo, D. Ulmus-Elms in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; The Publications Office of the European Union: Luxembourg, 2016; pp. 186–188. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Maps for the Main European Woody Species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- GBIF. Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0036679-231002084531237 (accessed on 3 November 2023).
- Tübives. Turkish Plants Data Service. Ulmus Glabra Huds. Distribution of the Taxon over Turkey. Available online: http://194.27.225.161/yasin/tubives/index.php?sayfa=1&tax_id=8429 (accessed on 12 November 2023).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Campbell, L.P.; Luther, C.; Moo-Llanes, D.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate Change Influences on Global Distributions of Dengue and Chikungunya Virus Vectors. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140135. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A Review of Methods to Deal with It and a Simulation Study Evaluating Their Performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and Uncertainties in Bioclimatic Envelope Modelling under Climate Change. Prog. Phys. Geogr. Earth Environ. 2006, 30, 751–777. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W.; Zimmermann, N.E. Habitat Suitability and Distribution Models: With Applications in R; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Naimi, B.; USDM: Uncertainty Analysis for Species Distribution Models. R Package Version 1.1–15. R. Doc. 2015. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://cran.r-project.org/web/packages/usdm/usdm.pdf&ved=2ahUKEwivn5C5uoaNAxVqqVYBHXNYC2wQFnoECBYQAQ&usg=AOvVaw03AwuXkBUw0hoaGeEAQE6d (accessed on 3 February 2025).
- Wu, T.; Lu, Y.; Fang, Y.; Xin, X.; Li, L.; Li, W.; Jie, W.; Zhang, J.; Liu, Y.; Zhang, L.; et al. The Beijing Climate Center Climate System Model (BCC-CSM): The Main Progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Voldoire, A.; Saint-Martin, D.; Sénési, S.; Decharme, B.; Alias, A.; Chevallier, M.; Colin, J.; Guérémy, J.-F.; Michou, M.; Moine, M.-P.; et al. Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019, 11, 2177–2213. [Google Scholar] [CrossRef]
- Séférian, R.; Nabat, P.; Michou, M.; Saint-Martin, D.; Voldoire, A.; Colin, J.; Decharme, B.; Delire, C.; Berthet, S.; Chevallier, M.; et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in Present-Day and Future Climate. J. Adv. Model. Earth Syst. 2019, 11, 4182–4227. [Google Scholar] [CrossRef]
- Swart, R.; Celliers, L.; Collard, M.; Prats, A.G.; Huang-Lachmann, J.-T.; Sempere, F.L.; de Jong, F.; Máñez Costa, M.; Martinez, G.; Velazquez, M.P.; et al. Reframing Climate Services to Support Municipal and Regional Planning. Clim. Serv. 2021, 22, 100227. [Google Scholar] [CrossRef]
- Shiogama, H.; Tatebe, H.; Hayashi, M.; Abe, M.; Arai, M.; Koyama, H.; Imada, Y.; Kosaka, Y.; Ogura, T.; Watanabe, M. MIROC6 Large Ensemble (MIROC6-LE): Experimental Design and Initial Analyses. Earth Syst. Dyn. 2023, 14, 1107–1124. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble. J. Clim. 2015, 28, 5171–5194. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-source Release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. Kuenm: An R Package for Detailed Development of Ecological Niche Models Using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, A.; Anderson, R.P. Making Better Maxent Models of Species Distributions: Complexity, Overfitting and Evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Anderson, D.R.; Burnham, K.P. Avoiding Pitfalls When Using Information-Theoretic Methods. J. Wildl. Manag. 2002, 66, 912–918. [Google Scholar] [CrossRef]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting Thresholds of Occurrence in the Prediction of Species Distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Lamigueiro, O.P.; Hijmans, R. rasterVis: Visualization Methods for Raster Data. 2021. Available online: https://oscarperpinan.github.io/rastervis/ (accessed on 20 January 2025).
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-Based Approach for Incorporating the Connectivity of Ecological Networks into Regional Planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- de la Fuente, B.; Mateo-Sánchez, M.C.; Rodríguez, G.; Gastón, A.; Pérez de Ayala, R.; Colomina-Pérez, D.; Melero, M.; Saura, S. Natura 2000 Sites, Public Forests and Riparian Corridors: The Connectivity Backbone of Forest Green Infrastructure. Land Use Policy 2018, 75, 429–441. [Google Scholar] [CrossRef]
- EEA. CORINE Land Cover 2018 (Raster 100 m), Europe, 6-Yearly—Version 2020_20u1. May 2020. Available online: https://sdi.eea.europa.eu/catalogue/copernicus/api/records/960998c1-1870-4e82-8051-6485205ebbac (accessed on 27 March 2025).
- Vogt, P. User Guide of Guidostoolbox Release 3.3; European Commission Joint Research Centre (JRC): Ispra, Italy, 2024. [Google Scholar]
- Huang, J.; Ling, C.X. Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Napierala-Filipiak, A.; Filipiak, M.; Lakomy, P.; Kuzminski, R.; Gubanski, J. Changes in Elm (Ulmus) Populations of Mid-Western Poland during the Past 35 Years. Dendrobiology 2016, 76, 145–156. [Google Scholar] [CrossRef]
- Ruiz-Labourdette, D.; Nogués-Bravo, D.; Ollero, H.S.; Schmitz, M.F.; Pineda, F.D. Forest Composition in Mediterranean Mountains Is Projected to Shift along the Entire Elevational Gradient under Climate Change. J. Biogeogr. 2012, 39, 162–176. [Google Scholar] [CrossRef]
- Varol, T.; Cetin, M.; Ozel, H.B.; Sevik, H.; Zeren Cetin, I. The Effects of Climate Change Scenarios on Carpinus Betulus and Carpinus Orientalis in Europe. Water Air Soil. Pollut. 2022, 233, 45. [Google Scholar] [CrossRef]
- Tekin, O.; Cetin, M.; Varol, T.; Ozel, H.B.; Sevik, H.; Zeren Cetin, I. Altitudinal Migration of Species of Fir (Abies spp.) in Adaptation to Climate Change. Water Air Soil. Pollut. 2022, 233, 385. [Google Scholar] [CrossRef]
- McDonald-Madden, E.; Baxter, P.W.J.; Possingham, H.P. Making Robust Decisions for Conservation with Restricted Money and Knowledge. J. Appl. Ecol. 2008, 45, 1630–1638. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Thomas, C.D.; Wintle, B.A.; Moilanen, A. Climate Change, Connectivity and Conservation Decision Making: Back to Basics. J. Appl. Ecol. 2009, 46, 964–969. [Google Scholar] [CrossRef]
- Hausfather, Z.; Peters, G.P. Emissions—The ‘Business as Usual’ Story Is Misleading. Nature 2020, 577, 618–620. [Google Scholar] [CrossRef]
- Ritchie, J.; Dowlatabadi, H. Why Do Climate Change Scenarios Return to Coal? Energy 2017, 140, 1276–1291. [Google Scholar] [CrossRef]
- Opdam, P.; Wascher, D. Climate Change Meets Habitat Fragmentation: Linking Landscape and Biogeographical Scale Levels in Research and Conservation. Biol. Conserv. 2004, 117, 285–297. [Google Scholar] [CrossRef]
- Heller, N.E.; Zavaleta, E.S. Biodiversity Management in the Face of Climate Change: A Review of 22 Years of Recommendations. Biol. Conserv. 2009, 142, 14–32. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Walas, Ł.; Sobierajska, K.; Ok, T.; Dönmez, A.A.; Kanoğlu, S.S.; Dagher-Kharrat, M.B.; Douaihy, B.; Romo, A.; Stephan, J.; Jasińska, A.K.; et al. Past, Present, and Future Geographic Range of an Oro-Mediterranean Tertiary Relict: The Juniperus Drupacea Case Study. Reg. Environ. Change 2019, 19, 1507–1520. [Google Scholar] [CrossRef]
- Studinski, J.M.; Hartman, K.J.; Niles, J.M.; Keyser, P. The Effects of Riparian Forest Disturbance on Stream Temperature, Sedimentation, and Morphology. Hydrobiologia 2012, 686, 107–117. [Google Scholar] [CrossRef]
- Micheli, E.R.; Kirchner, J.W.; Larsen, E.W. Quantifying the Effect of Riparian Forest versus Agricultural Vegetation on River Meander Migration Rates, Central Sacramento River, California, USA. River Res. Appl. 2004, 20, 537–548. [Google Scholar] [CrossRef]
- Weigelhofer, G.; Fuchsberger, J.; Teufl, B.; Welti, N.; Hein, T. Effects of Riparian Forest Buffers on In-Stream Nutrient Retention in Agricultural Catchments. J. Environ. Qual. 2012, 41, 373–379. [Google Scholar] [CrossRef]
Metric | Definition | Computation |
---|---|---|
Restoration Pixels (REST_PIX) | The number of background pixels converted to foreground habitat class in each scenario. | Count of restoration pixels (n) |
Average Distance of Restoration Pixels from the Network (AVDIST_RP) | Average distance (in pixels) of restored areas from existing foreground components. | |
Change in Equivalent Connected Area (DELTA_ECA) | Gain in Equivalent Connected Area (ECA) resulting from the restored configuration. | |
Restoration Efficiency (EFFIC) | Efficiency of the restoration pathway, defined as gain in ECA per unit of resistance cost. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gülçin, D.; Velázquez, J.; Rincón, V.; Mongil-Manso, J.; Tonyaloğlu, E.E.; Özcan, A.U.; Ar, B.; Çiçek, K. Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye. Land 2025, 14, 1391. https://doi.org/10.3390/land14071391
Gülçin D, Velázquez J, Rincón V, Mongil-Manso J, Tonyaloğlu EE, Özcan AU, Ar B, Çiçek K. Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye. Land. 2025; 14(7):1391. https://doi.org/10.3390/land14071391
Chicago/Turabian StyleGülçin, Derya, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar, and Kerim Çiçek. 2025. "Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye" Land 14, no. 7: 1391. https://doi.org/10.3390/land14071391
APA StyleGülçin, D., Velázquez, J., Rincón, V., Mongil-Manso, J., Tonyaloğlu, E. E., Özcan, A. U., Ar, B., & Çiçek, K. (2025). Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye. Land, 14(7), 1391. https://doi.org/10.3390/land14071391