Feature Papers for Land–Climate Interactions Section: Integration of Remote Sensing and GIS

A special issue of Land (ISSN 2073-445X). This special issue belongs to the section "Land–Climate Interactions".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 172

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

The interaction between land and climate processes is a critical area of research regarding global environmental change. Land surfaces play a pivotal role in regulating climate through energy fluxes, biogeochemical cycles (such as carbon and nitrogen), and hydrological processes. Understanding these interactions is essential for predicting and managing the impacts of climate change on ecosystems and human activities. The integration of remote aensing and geographic information systems (GISs) has emerged as a powerful tool for monitoring and analyzing these complex interactions at various spatial and temporal scales. By leveraging satellite imagery, ground-based measurements, and advanced computational techniques, researchers can gain deeper insights into the dynamics of land–climate interactions, leading to more informed decision-making and sustainable land management practices.

This Special Issue will compile cutting-edge research that highlights the application of remote sensing and GIS technologies in studying land–climate interactions. This Special Issue will provide a comprehensive overview of the latest advancements and applications in this interdisciplinary field, emphasizing the importance of integrating these technologies to enhance our understanding of the complex relationships between land and climate.

This Special Issue will welcome manuscripts that link the following themes, including but not limited to the topics below:

  1. Remote sensing of land surface processes;
  2. Carbon and biogeochemical cycles with remote sensing and GIS;
  3. Land use/land cover change and climate feedbacks;
  4. New methods for the fusion of multi-sensor data to improve land–climate interaction studies.

We look forward to receiving your original research articles and reviews.

Dr. Adrianos Retalis
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Land is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • land–climate interactions
  • remote sensing
  • GIS
  • biogeochemical cycles
  • land use/land cover change
  • environmental impact assessment
  • data fusion
  • sustainable land management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 6077 KiB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

29 pages, 9775 KiB  
Article
Identifying Extreme Heat and Moisture Zones for Vulnerable Populations in Athens: A Geospatial Analysis
by George Faidon D. Papakonstantinou
Land 2025, 14(7), 1375; https://doi.org/10.3390/land14071375 - 30 Jun 2025
Abstract
Urban environments are increasingly affected by extreme weather conditions, posing significant risks to vulnerable populations, such as the homeless. This research applies geospatial analysis to identify areas of extreme heat and moisture within the Athens metropolitan area in Greece. The analysis utilizes satellite-derived [...] Read more.
Urban environments are increasingly affected by extreme weather conditions, posing significant risks to vulnerable populations, such as the homeless. This research applies geospatial analysis to identify areas of extreme heat and moisture within the Athens metropolitan area in Greece. The analysis utilizes satellite-derived land surface temperature (LST), vegetation density index (NDVI), build-up density index (NDBI), Topographic Wetness Index (TWI), and other terrain-based factors to develop high-fidelity risk zones. These zones are critical for informing targeted interventions and policy measures aimed at protecting vulnerable groups from heat waves and extreme moisture. This research integrates a geospatial analysis approach for mapping and evaluating heat and moisture vulnerability zones. This approach integrates remote sensing data, GIS-based modeling, and terrain analysis. The findings can provide local authorities and social services with the necessary information to design adaptive strategies for climate change resilience. Full article
Show Figures

Figure 1

Back to TopTop