Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Field Methods
2.3. Statistical Analysis
3. Results
3.1. Physical and Chemical Parameters
3.2. Hydromorphological Variables
3.3. Macroinvertebrates
3.4. Diversity Profiles
3.5. The Relationship Between Environmental Variables, Land Use, and Macroinvertebrates
4. Discussion
5. Conclusions
- The physical and chemical parameters showed limited sensitivity to land use impacts. Only the mineral content indicators (TDS, conductivity, total hardness) exhibited significant differences among zones (p ≤ 0.04), while pH, dissolved oxygen, nutrients, and the microbiological parameters showed no significant variations (all p > 0.15) despite diverse anthropogenic pressures.
- The hydromorphological characteristics were significantly altered by land use. Conserved zones maintained their natural features (riparian forest: 100%; riffles: 76.67%; rocky substrates: 83.33%), while urban/agricultural zones showed extensive transformation (crops: 75%; slow currents: 65%; macrophytes: 71.3%), and mining zones exhibited the most severe alterations (pools: 76.67%; reduced riparian forest: 31.67%).
- Macroinvertebrate communities responded strongly to the land use gradients. Of 84 genera collected (9288 individuals), 67 genera (79.8%) showed significant differences among zones. Conserved zones supported the highest diversity (68 species, Shannon index: 16.07), with sensitive taxa (Simulium, Smicridea), while the disturbed zones were dominated by tolerant species (Melanoides, Pyrgophorus).
- Land use was the primary driver of community structure. The multivariate analysis explained 63.5% of the variation in the macroinvertebrate community composition, with the land use types accounting for 24.1% of the pure variance, exceeding the contributions of the physical and chemical (19.5%) and land cover (19.2%) characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Order | Family | Genus | CZ | UAZ | MZ | p-Value |
---|---|---|---|---|---|---|
Neotaenioglossa | Thiaridae | Melanoides | 0.0 ± 0.0 b | 131.82 ± 159.91 a | 138.33 ± 150.36 a | <0.001 |
Hydrobiidae | Pyrgophorus | 0.0 ± 0.0 b | 7.80 ± 9.59 a | 6.67 ± 3.19 a | 0.003 | |
Architaenioglossa | Ampullariidae | Pomacea | 0.0 ± 0.0 c | 1.25 ± 0.58 a | 10.00 ± 5.66 b | <0.001 |
Basommatophora | Planorbidae | Marisa | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.50 ± 0.71 b | 0.012 |
Gyraulus | 2.67 ± 0.58 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.001 | ||
Ancylidae | Ancylidae | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 5.00 ± 0.00 b | 0.001 | |
Physidae | Physa | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 | |
Sphaeriida | Sphaeriidae | Pisidium | 2.00 ± 0.00 a | 2.33 ± 0.58 a | 13.00 ± 0.00 b | 0.023 |
Ephemeroptera | Baetidae | Americabaetis | 4.25 ± 0.84 a | 4.30 ± 2.50 a | 4.86 ± 3.31 a | 0.872 |
Camelobaetidius | 3.00 ± 1.00 a | 4.80 ± 2.77 a | 5.43 ± 7.94 a | 0.752 | ||
Baetodes | 20.25 ± 8.62 a | 14.00 ± 0.00 a | 1.00 ± 0.00 b | 0.031 | ||
Leptohyphidae | Tricorythodes | 22.33 ± 16.76 a | 25.15 ± 18.71 a | 31.67 ± 34.19 a | 0.690 | |
Leptohyphes | 51.38 ± 51.15 b | 13.30 ± 13.62 a | 13.50 ± 12.45 a | 0.019 | ||
Cabecar | 9.00 ± 6.00 c | 0.0 ± 0.0 a | 20.00 ± 0.00 b | 0.041 | ||
Leptophlebiidae | Thraulodes | 16.00 ± 0.00 a | 9.50 ± 5.68 a | 20.00 ± 24.14 a | 0.456 | |
Farrodes | 6.00 ± 2.83 a | 7.00 ± 0.00 a | 0.0 ± 0.0 b | 0.023 | ||
Oligoneuriidae | Lachlania | 25.83 ± 44.13 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.002 | |
Caenidae | Caenis | 0.0 ± 0.0 b | 3.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | |
Odonata | Coenagrionidae | Argia | 3.67 ± 1.15 b | 1.60 ± 1.41 a | 1.00 ± 0.00 a | 0.030 |
Ischnura | 0.0 ± 0.0 b | 6.50 ± 7.78 a | 3.00 ± 0.00 a | 0.048 | ||
Acanthagrion | 0.0 ± 0.0 b | 2.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | ||
Libellulidae | Brechmorhoga | 4.00 ± 0.00 a | 6.33 ± 5.03 a | 0.0 ± 0.0 b | 0.034 | |
Dythemis | 3.67 ± 1.30 c | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.039 | ||
Elasmothemis | 0.0 ± 0.0 c | 6.00 ± 0.00 a | 2.00 ± 0.00 b | 0.041 | ||
Macrodiplax | 0.0 ± 0.0 b | 1.00 ± 0.00 a | 0.0 ± 0.0 b | 0.032 | ||
Macrothemis | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 | ||
Calopterygidae | Hetaerina | 3.00 ± 1.00 ab | 6.67 ± 5.13 a | 1.00 ± 0.00 b | 0.045 | |
Gomphidae | Phyllogomphoides | 1.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | |
Progomphus | 1.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | ||
Hemiptera | Naucoridae | Limnocoris | 2.75 ± 1.50 a | 1.50 ± 0.58 a | 2.60 ± 2.16 a | 0.322 |
Ambrysus | 1.00 ± 0.00 a | 1.20 ± 0.50 a | 6.00 ± 6.14 b | 0.039 | ||
Cryphocricos | 0.0 ± 0.0 c | 1.00 ± 0.00 a | 3.00 ± 0.00 b | 0.001 | ||
Pelocoris | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.00 ± 0.00 b | 0.001 | ||
Veliidae | Rhagovelia | 9.00 ± 0.00 a | 6.50 ± 7.78 a | 2.00 ± 0.00 a | 0.354 | |
Microvelia | 9.00 ± 0.00 c | 1.00 ± 0.00 a | 0.0 ± 0.0 b | 0.041 | ||
Gerridae | Limnogonus | 3.67 ± 0.58 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.001 | |
Belostomatidae | Belostoma | 0.0 ± 0.0 b | 1.00 ± 0.00 a | 1.00 ± 0.00 a | 0.048 | |
Hidrometridae | Hydrometra | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 6.00 ± 0.00 b | 0.001 | |
Trichoptera | Hydroptilidae | Oxyethira | 8.00 ± 0.00 b | 1.50 ± 0.71 a | 2.00 ± 0.00 a | 0.023 |
Neotrichia | 7.00 ± 0.00 b | 0.0 ± 0.0 a | 4.75 ± 6.66 b | 0.038 | ||
Betrichia | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 | ||
Hydroptilidae | Mayatrichia | 2.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | |
Philopotamidae | Chimarra | 14.83 ± 11.58 b | 4.71 ± 3.95 a | 6.50 ± 6.98 a | 0.028 | |
Hydropsychidae | Smicridea | 63.67 ± 73.94 b | 24.33 ± 18.33 a | 37.80 ± 39.00 ab | 0.049 | |
Leptonema | 17.40 ± 15.39 b | 3.50 ± 2.12 a | 1.00 ± 0.00 a | 0.016 | ||
Glossosomatidae | Protoptila | 2.50 ± 2.12 a | 8.00 ± 4.24 a | 5.17 ± 4.03 a | 0.152 | |
Culoptila | 0.0 ± 0.0 b | 2.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | ||
Helicopsychidae | Helicopsyche | 0.0 ± 0.0 c | 3.00 ± 0.00 a | 5.00 ± 0.00 b | 0.001 | |
Calamoceratidae | Phylloicus | 2.00 ± 1.41 a | 3.00 ± 0.00 a | 0.0 ± 0.0 b | 0.045 | |
Leptoceridae | Oecetis | 4.00 ± 1.63 b | 0.0 ± 0.0 a | 4.00 ± 0.00 b | 0.001 | |
Nectopsyche | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 3.00 ± 0.00 b | 0.001 | ||
Atanatolica | 1.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | ||
Odontoceridae | Marilia | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 | |
Hydrobiosidae | Atopsyche | 1.50 ± 0.71 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.023 | |
Coleoptera | Elmidae | Heterelmis | 10.20 ± 6.38 ab | 18.00 ± 11.15 a | 6.00 ± 5.66 b | 0.039 |
Austrolimnius | 35.50 ± 49.86 a | 22.14 ± 19.86 a | 14.50 ± 11.53 a | 0.364 | ||
Cylloepus | 8.50 ± 0.00 c | 0.0 ± 0.0 a | 39.00 ± 50.91 b | 0.034 | ||
Hexanchorus | 3.75 ± 1.92 a | 1.50 ± 0.71 a | 2.50 ± 1.73 a | 0.152 | ||
Macrelmis | 2.00 ± 0.00 c | 1.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | ||
Microcylloepus | 7.00 ± 0.00 c | 0.0 ± 0.0 a | 2.00 ± 0.00 b | 0.041 | ||
Phanocerus | 1.50 ± 0.71 a | 2.00 ± 0.00 a | 0.0 ± 0.0 b | 0.045 | ||
Stegoelmis | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 | ||
Stenelmis | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 2.00 ± 0.00 b | 0.001 | ||
Stenhelmoides | 0.0 ± 0.0 c | 8.00 ± 0.00 a | 23.00 ± 0.00 b | 0.041 | ||
Psephenidae | Psephenops | 1.00 ± 0.00 b | 4.50 ± 4.95 a | 9.00 ± 0.00 a | 0.045 | |
Dryopidae | Pelonomus | 2.00 ± 1.41 ab | 4.00 ± 0.00 a | 1.00 ± 0.00 b | 0.039 | |
Scirtidae | Elodes | 0.0 ± 0.0 b | 2.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | |
Staphylinidae | Staphylinidae | 0.0 ± 0.0 b | 4.00 ± 0.00 a | 0.0 ± 0.0 b | 0.001 | |
Diptera | Chironomidae | Chironomus | 0.0 ± 0.0 b | 1.00 ± 0.00 a | 0.0 ± 0.0 b | 0.032 |
Tanypodinae | 2.33 ± 1.15 ab | 4.20 ± 0.00 a | 1.83 ± 1.50 b | 0.029 | ||
Orthocladiinae | 10.67 ± 9.17 ab | 32.80 ± 39.59 a | 2.00 ± 1.26 b | 0.041 | ||
Chironominae | 8.50 ± 6.81 a | 16.40 ± 14.11 a | 4.50 ± 0.00 a | 0.152 | ||
Simuliidae | Simulium | 100.38 ± 92.94 b | 29.50 ± 57.95 a | 3.50 ± 1.95 a | 0.010 | |
Tabanidae | Tabanus | 2.00 ± 0.00 c | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.001 | |
Tipulidae | Tipula | 1.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | |
Ceratopogonidae | Bezzia | 0.0 ± 0.0 b | 1.00 ± 0.00 a | 0.0 ± 0.0 b | 0.032 | |
Psychodidae | Psychodidae | 1.00 ± 0.00 b | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 0.032 | |
Lepidoptera | Crambidae | Petrophila | 14.29 ± 14.36 a | 7.86 ± 4.65 a | 2.00 ± 1.26 b | 0.021 |
Plecoptera | Perlidae | Anacroneuria | 25.20 ± 44.21 b | 2.00 ± 2.12 a | 4.00 ± 0.00 a | 0.038 |
Megaloptera | Corydalidae | Corydalus | 1.67 ± 1.15 ab | 3.00 ± 0.00 a | 1.00 ± 0.00 b | 0.039 |
Decapoda | Palaemonidae | Macrobrachium | 1.00 ± 0.00 a | 1.00 ± 0.00 a | 5.67 ± 4.04 b | 0.029 |
Atyidae | Atya | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 11.50 ± 4.95 b | 0.001 | |
Trichodactylidae | Trichodactylus | 2.00 ± 0.00 c | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.001 | |
Hirudinida | Glossiphoniidae | Glossiphoniidae | 0.0 ± 0.0 a | 0.0 ± 0.0 a | 1.00 ± 0.00 b | 0.032 |
References
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Etter, A.; Wyngaarden, V. Patterns of Landscape Transformation in Colombia, with Emphasis in the Andean Region. Ambio 2000, 29, 412–439. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, I.P.; Gotelli, N.J. Water quality improvements offset the climatic debt for stream macroinvertebrates over twenty years. Nat. Commun. 2019, 10, 1956. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Van Klink, R.; Sagouis, A.; Petsch, D.K.; Abong’o, D.A.; Alahuhta, J.; Chase, J.M. FreshLanDiv: A Global Database of Freshwater Biodiversity Across Different Land Uses. Glob. Ecol. Biogeogr. 2024, 33, e13917. [Google Scholar] [CrossRef]
- Pérez, J.I.; Nardini, A.G.; Galindo, A.A. Análisis Comparativo de Índices de Calidad del Agua Aplicados al Río Ranchería, La Guajira-Colombia. Inf. Tecnol. 2018, 29, 47–58. [Google Scholar] [CrossRef]
- Muruganandam, M.; Rajamanickam, S.; Sivarethinamohan, S.; Gaddam, M.K.R.; Velusamy, P.; Gomathi, R.; Muniasamy, S.K. Impact of climate change and anthropogenic activities on aquatic ecosystem—A review. Environ. Res. 2023, 238, 117233. [Google Scholar] [CrossRef]
- Springer, M. Biomonitoreo acuático. Rev. Biol. Trop. 2010, 58, 53–59. [Google Scholar]
- Nuñez, J.C.; Fragoso-Castilla, P.J. Uso de macroinvertebrados acuáticos como bioindicadores de contaminación del agua de la Ciénaga Mata de Palma (Colombia). Inf. Tecnol. 2019, 30, 319–330. [Google Scholar] [CrossRef]
- Sun, C.; Xia, L.; Zhang, M.; He, Q.; Yu, N.; Xiang, H.; Yang, H. The impacts of different seasons on macroinvertebrate community structure and functional diversity in the Jingui River, China. Glob. Ecol. Conserv. 2024, 51, e02876. [Google Scholar] [CrossRef]
- Duarte, C.; Antão, L.H.; Magurran, A.E.; de Deus, C.P. Shifts in fish community composition and structure linked to seasonality in a tropical river. Freshw. Biol. 2022, 67, 1789–1800. [Google Scholar] [CrossRef]
- Molina-Bolivar, G.; Jiménez-Pitré, I.; Bastidas-Barrannco, M. Distribution of Benthic Macro Invertebrates in the Estuarine Ecosystem the Riito, Riohacha-Colombian Guajira. Indian J. Sci. Technol. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Vásquez-Ramos, J.M.; Guevara, G.; Reinoso-Flórez, G. Environmental factors associated with habitat preferences by caddisfly larvae in tropical dry forest watersheds (Tolima, Colombia). Rev. Biol. Trop. 2014, 62, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Rodríguez, J.F.; Pinilla Agudelo, G.A.; Moncada Álvarez, L.I. Estructura de la comunidad de dípteros acuáticos en tramos de los cursos altos de los ríos Fucha y Bogotá. Acta Biol. Colomb. 2021, 26, 147–159. [Google Scholar] [CrossRef]
- Tobias, S.R.; Molina-Bolívar, G.; Jiménez-Pitre, I. Comprehensive analysis of water quality in the middle and lower basin of the Marquesote River Colombian. Data Metadata 2023, 2, 54. [Google Scholar] [CrossRef]
- Romero-Murillo, P.; Gallego, J.L.; Leignel, V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics 2023, 11, 631. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bao, S.; Heino, J.; Liu, Z.; Xie, P.; Zhong, X.; Zhou, Q. Interactive effects of aridity and local environmental factors on the functional trait composition and diversity of macroinvertebrate assemblages in dryland rivers. Sci. Total Environ. 2024, 954, 176671. [Google Scholar] [CrossRef] [PubMed]
- López-López, E. Editorial: Freshwater Ecosystems in Arid and Semiarid Zones Facing Multiple Stressors: Human Disturbances, Climate Change, and Dryland River Conservation. Front Environ Sci. 2021, 9, 814225. [Google Scholar] [CrossRef]
- Corpoguajira. Plan de Ordenación y Manejo de la Cuenca del río Ranchería. Corporación Autónoma Regional de La Guajira, 2012. Available online: https://www.corpoguajira.gov.co/web/attachments_Joom/article/897/Resolucion%201725%20del%2018%20de%20Diciembre%20de%202012.pdf (accessed on 15 January 2025).
- González-Martínez, M.D.; Huguet, C.; Pearse, J.; McIntyre, N.; Camacho, L.A. Assessment of potential contamination of Paramo soil and downstream water supplies in a coal-mining region of Colombia. Appl. Geochem. 2019, 108, 104382. [Google Scholar] [CrossRef]
- Argumedo, C.D.; Aguas, L.J.V. Fuentes terrestres de contaminación en la zona costera de La Guajira, Colombia. Rev. Investig. Agrar. Ambient. 2016, 7, 123–138. [Google Scholar] [CrossRef]
- Díaz Chávez, L.; Espinosa Romero, A.P.; Molina Bolivar, G. Salud ambiental del río Ranchería a través de macroinvertebrados acuáticos en el área de influencia del complejo carbonífero El Cerrejón. Tecnura 2020, 24, 49–63. [Google Scholar] [CrossRef]
- Granados-Martínez, C.; Guevara-Mora, M.; Rincón, J.; Herrera, E. Effects of human disturbance gradient on aquatic macroinvertebrate diversity: A study in a river of the Sierra Nevada de Santa Marta. Ambiente Água 2025, 20, e3019. [Google Scholar] [CrossRef]
- Barletta, M.; Melo, R.C.; Whitfield, A.K. Past and present conservation of south American estuaries. Estuar. Coast. Shelf Sci. 2023, 295, 108542. [Google Scholar] [CrossRef]
- Malits, A.; Ibarbalz, F.M.; Martín, J.; Flombaum, P. Higher biotic than abiotic natural variability of the plankton ecosystem revealed by a time series along a subantarctic transect. J. Mar. Syst. 2023, 238, 103843. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Leal, C.G.; Pompeu, P.S.; Gardner, T.A.; Leitão, R.P.; Hughes, R.M.; Kaufmann, P.R.; Barlow, J. Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landsc. Ecol. 2016, 31, 1725–1745. [Google Scholar] [CrossRef]
- Sponseller, R.A.; Benfield, E.F.; Valett, H.M. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshw. Biol. 2001, 46, 1409–1424. [Google Scholar] [CrossRef]
- Jiménez-Valencia, J.; Kaufmann, P.R.; Sattamini, A.; Mugnai, R.; Baptista, D.F. Assessing the ecological condition of streams in a southeastern Brazilian basin using a probabilistic monitoring design. Environ. Monit. Assess. 2014, 186, 4685–4695. [Google Scholar] [CrossRef] [PubMed]
- Chará, J. Manual para la Evaluación Biológica de Ambientes Acuáticos en Microcuencas Ganaderas, 2nd ed.; CIPAV: Cali, Colombia, 2004. [Google Scholar]
- Domínguez, E.; Molineri, C.; Pescador, M.L.; Hubbard, M.D.; Nieto, C. Ephemeroptera of South America; Pensoft Publishers: Sofia, Moscow, 2006; 646p. [Google Scholar]
- Posada-García, J.A. Clave ilustrada para la identificación de los géneros de larvas de Trichoptera en el nor-occidente de Sudamérica. Caldasia 2003, 25, 169–192. [Google Scholar]
- Roldán, G. Guía para el estudio de los macroinvertebrados acuáticos del Departamento de Antioquia; Fondo FEN Colombia-Colciencias-Universidad de Antioquia, Editorial Presencia Ltda: Bogotá, Colombia, 1988; pp. 1–217. [Google Scholar]
- Hamada, N.; Nessimian, J.L.; Querino, R.B. (Eds.) Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia, 1st ed.; Editora do INPA: Manaus, Brazil, 2014; 724p. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed.; Environmental Protection Agency, Office of Water: Washington, DC, USA, 1999. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Legendre, P.; Legendre, L. Numerical Ecology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 January 2025).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R package version 2.6-10; CRAN: Vienna, Austria, 2024; Available online: https://vegandevs.github.io/vegan/ (accessed on 15 January 2025).
- Dray, S.; Dufour, A. The ade4 Package: Implementing the Duality Diagram for Ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef]
- Hsieh, T.; Ma, K.; Chao, A. iNEXT: Interpolation and Extrapolation for Species Diversity. R package version 3.0.1. 2024. Available online: http://chao.stat.nthu.edu.tw/wordpress/software_download/ (accessed on 15 January 2025).
- Chao, A.; Hsieh, T.C. iNEXT.4steps: Four-Step Biodiversity Analysis Based on iNEXT [software]. Version 1.0.1. CRAN: Vienna, Austria. Available online: https://cran.r-project.org/web/packages/iNEXT.4steps/index.html (accessed on 12 July 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 15 January 2025)ISBN 978-3-319-24277-4.
- Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’. R package version 0.9.3. 2023. Available online: https://CRAN.R-project.org/package=ggrepel (accessed on 15 January 2025).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.1.2. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 15 January 2025).
- Larson, D.M.; Dodds, W.K.; Veach, A.M. Removal of woody riparian vegetation substantially altered a stream ecosystem in an otherwise undisturbed Grassland watershed. Ecosystems 2019, 22, 64–76. [Google Scholar] [CrossRef]
- Giglou, K.S.; Nazari, R.; Karimi, M.; Museru, M.L.; Opare, K.N.; Nikoo, M.R. Future eco-hydrological dynamics: Urbanization and climate change effects in a changing landscape: A case study of Birmingham’s river basin. J. Clean. Prod. 2024, 447, 141320. [Google Scholar] [CrossRef]
- Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 2006, 79, 423–447. [Google Scholar] [CrossRef]
- López-Giraldo, A.T.; Ríos-Pulgarín, M.I.; Gil-Guarín, I.C. Características del hábitat que regulan la estructura de las comunidades de macroinvertebrados en ríos tropicales de montaña (Antioquía, Colombia). Rev. Biol. Trop. 2023, 71, 52093. [Google Scholar] [CrossRef]
- Wohl, E.; Kramer, N.; Ruiz-Villanueva, V.; Scott, D.N.; Comiti, F.; Gurnell, A.M.; Piégay, H.; Lininger, K.B.; Jaeger, K.L.; Walters, D.M.; et al. The natural wood regime in rivers. BioScience 2019, 69, 259–273. [Google Scholar] [CrossRef]
- Kaden, S.; Schramm, M. Control model Spree/Schwarze Elster—A tool to optimise rehabilitation of water resources in the Lusatian mining district. Landsc. Urban Plan. 2000, 51, 101–108. [Google Scholar] [CrossRef]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Soller, J.; Bartrand, T.; Ravenscroft, J.; Molina, M.; Whelan, G.; Schoen, M.; Ashbolt, N. Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material. Environ. Modell. Softw. 2015, 72, 21–32. [Google Scholar] [CrossRef]
- Parris, K. Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects. Int. J. Water Resour. Dev. 2011, 27, 33–52. [Google Scholar] [CrossRef]
- Chaves, L.R.B.; Franco, G.M.R. Diversidad de macroinvertebrados acuáticos en dos ecosistemas lóticos en El Doncello, Caquetá. Rev. Fac. Cienc. Básicas 2021, 17, 57–72. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Peters, K.; Kiesel, J.; Welti, E.A.; Gillmann, S.M.; Lorenz, A.W.; Haase, P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. Sci. Total Environ. 2024, 929, 172659. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.A.; Molineri, C.; Reynaga, M.C.; Basualdo, C. Which index is the best to assess stream health? Ecol Indic. 2011, 11, 582–589. [Google Scholar] [CrossRef]
- Akamagwuna, F.C.; Ntloko, P.; Edegbene, A.O.; Odume, O.N. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi-urban pollution in the Tsitsa River, Eastern Cape Province of South Africa? Environ. Monit. Assess. 2021, 193, 309. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, M.O.; Alhassan, A.B. Spatial variation of metallic contamination and its ecological risk in sediment and freshwater mollusk: Melanoides tuberculata (Müller, 1774) (Gastropoda: Thiaridae). Water 2020, 12, 206. [Google Scholar] [CrossRef]
- Purnama, M.F.; Salwiyah, S. Short Communication: Invasive mollusks Melanoides tuberculata, and Achatina fulica in Southeast Sulawesi, Indonesia. Biodiversitas 2022, 23, d230944. [Google Scholar] [CrossRef]
- Alonso-EguíaLis, P.; Mora, J.M.; Campbell, B.; Springer, M. Diversidad, Conservación y Uso de Los Macroinvertebrados Dulceacuícolas de México, Centroamérica, Colombia, Cuba y Puerto Rico; IMTA Press: Jiutepec, México, 2014. [Google Scholar]
- Dedieu, N.; Vigouroux, R.; Cerdan, P.; Céréghino, R. Invertebrate communities delineate hydro-ecoregions and respond to anthropogenic disturbance in East-Amazonian streams. Hydrobiologia 2015, 742, 95–105. [Google Scholar] [CrossRef]
- Fierro, P.; Bertrán, C.; Tapia, J.; Hauenstein, E.; Peña-Cortés, F.; Vergara, C.; Cerna, C.; Vargas-Chacoff, L. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 2017, 609, 724–734. [Google Scholar] [CrossRef] [PubMed]
Variable | CZ | UAZ | MZ | p-Value |
---|---|---|---|---|
Physical and chemical | ||||
pH | 8.17 ± 0.21 a | 8.30 ± 0.15 a | 8.43 ± 0.40 a | 0.36 |
TEMP (°C) | 27.17 ± 1.65 a | 24.83 ± 2.38 a | 26.00 ± 2.30 a | 0.36 |
TDS (mg/L) | 317.33 ± 132.01 a | 83.00 ± 24.97 b | 305.67 ± 330.31 ab | 0.03 * |
COND (μS/cm) | 318.67 ± 133.10 a | 83.10 ± 24.88 b | 296.63 ± 324.40 ab | 0.03 * |
DO (mg/L) | 6.23 ± 1.33 a | 7.25 ± 0.79 a | 6.53 ± 1.29 a | 0.49 |
Flow (m3/s) | 7.10 ± 1.44 a | 10.33 ± 2.75 a | 8.23 ± 2.14 a | 0.13 |
Nutrients | ||||
NO2 (mg/L) | 0.0487 ± 0.0143 a | 0.0340 ± 0.0010 a | 0.0350 ± 0.0020 a | 0.15 |
NO3 (mg/L) | 0.1253 ± 0.1029 a | 0.0253 ± 0.0051 a | 0.1195 ± 0.0759 a | 0.36 |
PO4 (mg/L) | 0.2883 ± 0.0390 a | 0.4483 ± 0.3050 a | 0.3490 ± 0.1644 a | 0.80 |
Cl (mg/L) | 34.7333 ± 24.9833 a | 15.7333 ± 1.4434 a | 26.0000 ± 22.5055 a | 0.80 |
CaCO3 (total hardness, mg/L) | 67.13 ± 23.35 a | 30.70 ± 3.50 b | 42.63 ± 27.32 ab | 0.04 * |
CaCO3 (alkalinity, mg/L) | 127.50 ± 38.81 a | 76.57 ± 12.49 b | 107.28 ± 67.12 ab | 0.26 |
Microbiological | ||||
TCs (MPN/100 mL) | 840.00 ± 66.86 a | 689.50 ± 289.31 a | 819.33 ± 91.79 a | 0.68 |
FCs (MPN/100 mL) | 121.33 ± 71.54 a | 118.25 ± 79.89 a | 70.00 ± 28.16 a | 0.68 |
Variable | CZ | UAZ | MZ | p-Value |
---|---|---|---|---|
Riparian characteristics | ||||
Average riparian width (m) | 89.50 ± 81.28 a | 56.50 ± 28.37 a | 42.80 ± 9.97 a | 0.801 |
% Bare soil | 23.33 ± 5.77 a | 23.75 ± 13.77 a | 28.33 ± 22.55 a | 0.962 |
% Crops | 2.33 ± 0.58 a | 75.00 ± 10.00 b | 6.00 ± 3.61 a | 0.027 * |
% Riparian grasses | 0.67 ± 1.15 a | 35.00 ± 20.82 b | 16.67 ± 5.77 b | 0.041 * |
% Riparian forest | 100.00 ± 0.00 a | 55.00 ± 5.77 b | 31.67 ± 2.89 c | 0.027 * |
% Riparian shrubs | 70.00 ± 10.00 a | 62.50 ± 12.58 a | 43.33 ± 5.77 b | 0.053 |
% Urban riparian areas | 0.00 ± 0.00 a | 100.00 ± 0.00 b | 30.00 ± 20.00 c | 0.027 * |
% Livestock areas | 0.00 ± 0.00 a | 45.00 ± 12.91 b | 30.00 ± 20.00 b | 0.027 * |
% Mining areas | 0.00 ± 0.00 a | 12.50 ± 25.00 a | 100.00 ± 0.00 b | 0.027 * |
Hydromorphology | ||||
Bankfull width (m) | 13.33 ± 2.89 a | 19.80 ± 7.85 a | 58.00 ± 61.52 a | 0.264 |
Depth (cm) | 76.33 ± 24.42 a | 87.50 ± 20.92 ab | 116.33 ± 8.08 b | 0.069 |
% Riffles | 76.67 ± 15.28 a | 33.75 ± 4.79 b | 13.33 ± 5.77 c | 0.027 * |
% Slow currents | 15.00 ± 5.00 a | 65.00 ± 17.32 b | 83.33 ± 5.77 b | 0.027 * |
% Pools | 0.00 ± 0.00 a | 26.25 ± 29.26 b | 76.67 ± 5.77 c | 0.023 * |
% Rocks | 83.33 ± 11.55 a | 41.25 ± 27.80 b | 8.33 ± 2.89 c | 0.027 * |
% Macrophytes | 15.00 ± 5.00 a | 71.25 ± 15.48 b | 0.00 ± 0.00 c | 0.026 * |
% Substrates | 40.00 ± 10.00 a | 35.00 ± 20.82 a | 26.67 ± 20.82 a | 0.497 |
% Sand | 20.00 ± 10.00 a | 42.50 ± 17.08 b | 43.33 ± 11.55 b | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granados-Martínez, C.; Guevara-Mora, M.; López-López, E.; Rincón Ramírez, J. Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia. Water 2025, 17, 2142. https://doi.org/10.3390/w17142142
Granados-Martínez C, Guevara-Mora M, López-López E, Rincón Ramírez J. Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia. Water. 2025; 17(14):2142. https://doi.org/10.3390/w17142142
Chicago/Turabian StyleGranados-Martínez, Cristian, Meyer Guevara-Mora, Eugenia López-López, and José Rincón Ramírez. 2025. "Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia" Water 17, no. 14: 2142. https://doi.org/10.3390/w17142142
APA StyleGranados-Martínez, C., Guevara-Mora, M., López-López, E., & Rincón Ramírez, J. (2025). Changes in Macroinvertebrate Community Structure Associated with Land Use in Sierra Nevada de Santa Marta, Colombia. Water, 17(14), 2142. https://doi.org/10.3390/w17142142