Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,184)

Search Parameters:
Keywords = air forces studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 856 KiB  
Article
Impact of Sex on Lung Function in Adult Langerhans Cell Histiocytosis
by Antonio Fabozzi, Gianluca Paciucci, Giulia de Rose, Roberto Romiti, Giovanna Palumbo, Gregorino Paone, Matteo Bonini and Paolo Palange
Life 2025, 15(8), 1258; https://doi.org/10.3390/life15081258 (registering DOI) - 7 Aug 2025
Abstract
Background: Langerhans Cell Histiocytosis (LCH) is a rare histiocytic hematological disorder that frequently involves the lungs. Due to a lack of data about sex-related differences in LCH, the aim of this study is to evaluate sex-related differences in pulmonary function in a cohort [...] Read more.
Background: Langerhans Cell Histiocytosis (LCH) is a rare histiocytic hematological disorder that frequently involves the lungs. Due to a lack of data about sex-related differences in LCH, the aim of this study is to evaluate sex-related differences in pulmonary function in a cohort of patients with LCH. Methods: We retrospectively analyzed data from 79 adult patients diagnosed with LCH. Demographic, clinical, and spirometric data were collected and compared by sex. Continuous variables were analyzed using the Mann–Whitney test and categorical variables were analyzed with the Chi-square test. Results: Out of 79 patients, 47 (59.5%) were females and 32 (40.5%) were males. Women showed significantly lower diffusing capacity of the lungs for carbon monoxide (DLCO%) and lower diffusing capacity of the lungs for carbon monoxide per unit of alveolar volume (DLCO/VA%) compared to men. Females showed a trend toward lower small airway indices, including maximal expiratory flow at 25 (MEF25%) and forced expiratory flow at 25–75% (FEF25–75%), though this was not statistically significant, while the residual volume-to-total lung capacity (RV/TLC) ratio was significantly higher in women. Among the functional parameters, DLCO% showed the highest accuracy (AUC 0.70) in the identification of lung involvement after multivariate regression analysis. Conclusions: Our findings suggest that the combination of lower gas exchange efficiency and increased peripheral air trapping secondary to small airway involvement in female patients may reflect the presence of a distinct functional LCH phenotype in women characterized by early small airway involvement and altered ventilation–perfusion dynamics, which may influence the clinical management of these patients. Furthermore, the moderate predictive value of DLCO% for lung involvement at baseline in LCH women suggests that DLCO may contribute to the detection of LCH women with lung involvement, although it should not be considered a definitive diagnostic test without a prospective and independent external validation. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

10 pages, 1801 KiB  
Article
Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix
by Jiaziyi Wang, Yong Liu, Dapeng Liu, Yong Mu and Xilai Jia
Coatings 2025, 15(8), 921; https://doi.org/10.3390/coatings15080921 - 7 Aug 2025
Abstract
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid [...] Read more.
Traditional forced-air cooling systems suffer from excessive energy consumption and noise pollution. This study proposes an innovative passive cooling strategy through developing aqueous radiative cooling coatings made from a combination of TiO2-decorated carbon nanotube (TiO2-CNT) hybrids and polyacrylic acid (PAA), designed to simultaneously enhance the heat dissipation and improve the mechanical strength of the coating films. Based on CNTs’ exceptional thermal conductivity and record-high infrared emissivity, bead-like TiO2-CNT architectures have been prepared as the filler in PAA. The TiO2 nanoparticles were in situ grown on CNTs, forming a rough surface that can produce asperity contacts and enhance the strength of the TiO2-CNT/PAA composite. Moreover, this composite enhanced heat dissipation and achieved remarkable cooling efficiency at a small fraction of the filler (0.1 wt%). The optimized coating demonstrated a temperature reduction of 23.8 °C at an operation temperature of 180.7 °C, coupled with obvious mechanical reinforcement (tensile strength from 13.7 MPa of pure PAA to 17.1 MPa). This work achieves the combination of CNT and TiO2 nanoparticles for strong radiative cooling coating, important for energy-efficient thermal management. Full article
Show Figures

Figure 1

24 pages, 6757 KiB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 159
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 489 KiB  
Article
Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
by Andrew J. Keebaugh, Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell and Elaine A. Merrill
Toxics 2025, 13(8), 660; https://doi.org/10.3390/toxics13080660 - 2 Aug 2025
Viewed by 208
Abstract
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may [...] Read more.
Allergic contact dermatitis (ACD) is an immunologic reaction to a dermal chemical exposure that, once triggered in an individual, will result in an allergic response following subsequent encounters with the allergen. Air Force epidemiological consultations have indicated that aircraft structural maintenance workers may experience ACD at elevated rates compared to other occupations. We aimed to better understand the utility of non-animal testing methods in characterizing the sensitization potential of chemicals used during Air Force operations by evaluating the skin sensitization hazard of Air Force-relevant chemicals using new approach methodologies (NAMs) in a case study. We also evaluated the use of NAM data to develop preliminary candidate surface guidelines (PCSGs, maximum concentrations of chemicals on workplace surfaces to prevent induction of dermal sensitization) for chemicals identified as sensitizers. NAMs for assessing skin sensitization, including in silico models and experimental assays, were leveraged into an integrated approach to predict sensitization hazard for 19 chemicals. Local lymph node assay effective concentration values were predicted from NAM assay data via previously published quantitative models. The derived values were used to calculate PCSGs, which can be used to compare the presence of these chemicals on work surfaces to better understand the risk of Airmen developing ACD from occupational exposures. Full article
Show Figures

Figure 1

19 pages, 10564 KiB  
Article
Comparing Nanomechanical Properties and Membrane Roughness Along the Aging of Human Erythrocytes
by Giovanni Longo, Simone Dinarelli, Federica Collacchi and Marco Girasole
Methods Protoc. 2025, 8(4), 86; https://doi.org/10.3390/mps8040086 - 1 Aug 2025
Viewed by 168
Abstract
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using [...] Read more.
Erythrocyte (RBC) aging involves significant structural and nanomechanical alterations crucial to their function. This study aims to bridge the gap between analyses based on statistical morphometric parameters, e.g., membrane roughness, and those based on point-dependent nanomechanical properties, e.g., stiffness or Young’s modulus. Using Atomic Force Microscopy, we investigated morphology, membrane roughness, and nanomechanical properties on the very same RBCs under dehydrated (air) and hydrated (physiological buffer) conditions. The cells were studied at different stages of in vitro aging: one, seven, and 12 days. Our results quantitatively show that across dehydration, as well as along the aging pathway, RBCs become progressively more rigid while their membrane roughness decreases, a trend observed in both environments. Notably, the differences between the hydrated and dehydrated states were large in young cells but diminished when erythrocytes aged. Despite these parallel trends, high-resolution mapping on the nanoscale revealed that roughness and Young’s modulus do not correlate, indicating that these parameters are linked to different properties. In conclusion, this work provides a comprehensive protocol for a biophysical description of RBC aging and establishes that the simultaneous measurement of membrane roughness and nanomechanical properties offers a complementary approach, yielding a more complete characterization of cellular properties. Full article
(This article belongs to the Special Issue Feature Papers in Methods and Protocols 2025)
Show Figures

Figure 1

17 pages, 5896 KiB  
Article
Simulation Study of the Effect of Oil Injection Speed on the Air Curtain of High-Speed Bearings
by Yanfang Dong, Botao Ye, Zibo Yan, Hai Zhang, Wei Yu, Jianyong Sun and Wenbo Zhou
Lubricants 2025, 13(8), 334; https://doi.org/10.3390/lubricants13080334 - 30 Jul 2025
Viewed by 225
Abstract
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and [...] Read more.
In order to improve the lubrication efficiency in the bearing cavity, this study establishes a simulation model of the fluid domain of the bearing cavity based on the computational fluid dynamics (CFD) method and systematically studies the flow characteristics of the lubricant and its lubrication mechanism in the high-speed rotary bearing. In the process of high-speed bearing operation, the lubricant is subject to the combined effect of centrifugal force and contact pressure, gradually spreads to both sides of the steel ball, and forms a stable oil film after injection from the nozzle. However, due to the influence of high pressure distribution in the contact area, the actual formation of the oil film coverage is relatively limited. In order to further optimize the lubrication effect, this study focuses on investigating the influence law of different injection speeds and rotational speeds on the bearing air curtain effect. The results of the study show that when the air curtain effect is enhanced, there will be significant shear interference on the trajectory of the lubricant, which is manifested in the phenomenon of “buckling” at the end of the lubricant, thus reducing the lubrication efficiency. To address this problem, this study innovatively proposes the air curtain obstruction coefficient K as a quantitative evaluation index, and through numerical simulation, it is found that the lubricant can effectively overcome the air curtain obstruction and achieve a better lubrication coverage when the value of K is reduced to below 0.4. Based on this finding, the study further confirmed that the lubrication efficiency of bearings can be significantly improved under different operating conditions by rationally regulating the injection rate. Full article
Show Figures

Figure 1

34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 236
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 200
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

22 pages, 7901 KiB  
Article
Research on the Load Characteristics of Aerostatic Spindle Considering Straightness Errors
by Guoqing Zhang, Yu Guo, Guangzhou Wang, Wenbo Wang, Youhua Li, Hechun Yu and Suxiang Zhang
Lubricants 2025, 13(8), 326; https://doi.org/10.3390/lubricants13080326 - 26 Jul 2025
Viewed by 213
Abstract
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model [...] Read more.
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model of the unbalanced air film, considering the straightness errors of the rotor’s radial and thrust surfaces, was constructed. Unlike conventional studies that rely solely on idealized error assumptions, this research integrates actual straightness measurement data into the simulation process, enabling a more realistic and precise prediction of bearing performance. Rotors with different tolerance specifications were fabricated, and static performance simulations were carried out based on the measured geometry data. An experimental setup was built to evaluate the performance of the aerostatic spindle assembled with these rotors. The experimental results were compared with the simulation outcomes, confirming the validity of the proposed model. To further quantify the influence of straightness errors on the static characteristics of aerostatic spindles, ideal functions were used to define representative manufacturing error profiles. The results show that a barrel-shaped error on the radial bearing surface can cause a load capacity variation of up to 46.6%, and its positive effect on air film load capacity is more significant than that of taper or drum shapes. For the thrust bearing surface, a concave-shaped error can lead to a load capacity variation of up to 13.4%, and its enhancement effect is superior to those of the two taper and convex-shaped errors. The results demonstrate that the straightness errors on the radial and thrust bearing surfaces are key factors affecting the radial and axial load capacities of the spindle. Full article
Show Figures

Figure 1

25 pages, 5705 KiB  
Article
Application of Array Imaging Algorithms for Water Holdup Measurement in Gas–Water Two-Phase Flow Within Horizontal Wells
by Haimin Guo, Ao Li, Yongtuo Sun, Liangliang Yu, Wenfeng Peng, Mingyu Ouyang, Dudu Wang and Yuqing Guo
Sensors 2025, 25(15), 4557; https://doi.org/10.3390/s25154557 - 23 Jul 2025
Viewed by 237
Abstract
Gas–water two-phase flow in horizontal and inclined wells is significantly influenced by gravitational forces and spatial asymmetry around the wellbore, resulting in complex and variable flow patterns. Accurate measurement of water holdup is essential for analyzing phase distribution and understanding multiphase flow behavior. [...] Read more.
Gas–water two-phase flow in horizontal and inclined wells is significantly influenced by gravitational forces and spatial asymmetry around the wellbore, resulting in complex and variable flow patterns. Accurate measurement of water holdup is essential for analyzing phase distribution and understanding multiphase flow behavior. Water holdup imaging provides a valuable means for visualizing the spatial distribution and proportion of gas and water phases within the wellbore. In this study, air and tap water were used to simulate downhole gas and formation water, respectively. An array capacitance arraay tool (CAT) was employed to measure water holdup under varying total flow rates and water cuts in a horizontal well experimental setup. A total of 228 datasets were collected, and the measurements were processed in MATLAB (2020 version) using three interpolation algorithms: simple linear interpolation, inverse distance interpolation, and Lagrangian nonlinear interpolation. Water holdup across the wellbore cross-section was also calculated using arithmetic averaging and integration methods. The results obtained from the three imaging algorithms were compared with these reference values to evaluate accuracy and visualize imaging performance. The CAT demonstrated reliable measurement capabilities under low- to medium-flow conditions, accurately capturing fluid distribution. For stratified flow regimes, the linear interpolation algorithm provided the clearest depiction of the gas–water interface. Under low- to medium-flow rates with high water content, both inverse distance and Lagrangian methods produced more refined images of phase distribution. In dispersed flow conditions, the Lagrangian nonlinear interpolation algorithm delivered the highest accuracy, effectively capturing subtle variations within the complex flow field. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

16 pages, 2303 KiB  
Article
Analytical Modeling and Analysis of Halbach Array Permanent Magnet Synchronous Motor
by Jinglin Liu, Maixia Shang and Chao Gong
World Electr. Veh. J. 2025, 16(8), 413; https://doi.org/10.3390/wevj16080413 - 23 Jul 2025
Viewed by 255
Abstract
The Halbach array permanent magnet can improve the power density of motors. This paper uses analytical modeling to analyze and optimize the Halbach array permanent magnet synchronous motor (PMSM). Firstly, a general motor model is established to obtain the air gap flux density. [...] Read more.
The Halbach array permanent magnet can improve the power density of motors. This paper uses analytical modeling to analyze and optimize the Halbach array permanent magnet synchronous motor (PMSM). Firstly, a general motor model is established to obtain the air gap flux density. Secondly, the flux linkage and back electromotive force (EMF) were calculated. The analytical results are consistent with the finite element model (FEM) results. Thirdly, the effects of slot opening, magnetization angle, and main magnetic pole width on air gap flux density and back-EMF were studied. Finally, based on the optimization results, a prototype was manufactured, and performance testing was conducted successfully. Verification of the back-EMF of the prototype shows that the relative errors between FEM and the measured values are 1.1%, and the relative errors between the analytical values and measured values are 1.6%, which verifies the accuracy of the proposed analytical modeling. The proposed analytical model is universal and can be used to quickly adjust the magnetization form, magnetization angle, and pole width without remodeling in the finite element software, which is convenient for optimizing parameters in the early stage of motor design. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

16 pages, 11669 KiB  
Article
Design and Electromagnetic Performance Optimization of a MEMS Miniature Outer-Rotor Permanent Magnet Motor
by Kaibo Lei, Haiwang Li, Shijia Li and Tiantong Xu
Micromachines 2025, 16(7), 815; https://doi.org/10.3390/mi16070815 - 16 Jul 2025
Viewed by 323
Abstract
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can [...] Read more.
In this study, we present the design and electromagnetic performance optimization of a micro-electromechanical system (MEMS) miniature outer-rotor permanent magnet motor. With increased attention towards higher torque density and lower torque pulsations in MEMS micromotor designs, an adaptation of an external rotor can be highly attractive. However, with the design complexity involved in such high-performance MEMS outer-rotor motor designs, the ultra-miniature 3D coil structures and the thin-film topology surrounding the air gap have been one of the main challenges. In this study, an ultra-thin outer-rotor motor with 3D MEMS silicon-based coils and a MEMS-compatible manufacturing method for the 3D coils is presented. Additionally, finite element simulations are conducted for the thin-film topology around the air gap to optimize performance characteristics such as torque developed, torque pulsations, and back electromotive force amplitude. Ultimately, the average magnetic flux density increased by 37.1%, from 0.361 T to 0.495 T. The root mean square (RMS) value of the back EMF per phase rises by 14.4%. Notably, the average torque is improved by 11.3%, while the torque ripple is significantly reduced from 1.281 mNm to 0.74 mNm, corresponding to a reduction of 49.9% in torque ripple percentage. Full article
Show Figures

Figure 1

21 pages, 8804 KiB  
Article
Non-Magnetic Assembly Technology and Mechanical Performance Analysis of Permanent Magnet Integrated Motor for Ball Mills
by Jun Gao, Xueyan Han, Zhongliang An and Zhanyang Yu
Energies 2025, 18(14), 3730; https://doi.org/10.3390/en18143730 - 15 Jul 2025
Viewed by 194
Abstract
The permanent magnet integrated motor (PMIM) for ball mills has the problems of difficult assembly and poor air gap uniformity adjustment due to the magnetic pull force in the conventional magnetic assembly. In this study, a non-magnetic assembly technology based on the installation [...] Read more.
The permanent magnet integrated motor (PMIM) for ball mills has the problems of difficult assembly and poor air gap uniformity adjustment due to the magnetic pull force in the conventional magnetic assembly. In this study, a non-magnetic assembly technology based on the installation of a permanent magnet after assembly was first proposed, and the analytical models of conventional magnetic assembly and non-magnetic assembly were established. On this basis, combined with the finite element method, the mechanical performance difference between the two assembly methods in the assembly, lifting, and centering stages were compared and analyzed. In addition, a device for adjusting the air gap was designed for the non-magnetic assembly technology, and the stress and deformation of the structure of this device were analyzed. The results showed that the total assembly load by using the non-magnetic assembly technique was significantly reduced by 71.8%, the maximum stress in the assembly process was reduced by 66.3%, and the maximum deformation was reduced by 66.7%, which significantly reduced the difficulty of assembly. Finally, a 210 W permanent magnet integrated motor for ball mills was designed and successfully assembled, which proves the effectiveness of the assembly technology. Full article
Show Figures

Figure 1

23 pages, 5743 KiB  
Article
Impact of Low-Pressure in High-Altitude Area on the Aging Characteristics of NCM523/Graphite Pouch Cells
by Xiantao Chen, Zhi Wang, Jian Wang, Yichao Lin and Jian Li
Batteries 2025, 11(7), 261; https://doi.org/10.3390/batteries11070261 - 13 Jul 2025
Viewed by 391
Abstract
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, [...] Read more.
With the development and application of electric vehicles powered by lithium-ion batteries (LIBs) at high altitude, the lack of research on the aging laws and mechanisms of LIBs under a low-pressure aviation environment has become an important obstacle to their safe application. Herein, the influences and mechanisms of high-altitude and low-pressure environment (50 kPa) on the cycling performance of commercial pouch LIBs were systematically studied. The results showed that low air pressure caused a sharp decrease in battery capacity to 46.6% after 200 cycles, with a significant increase in charge transfer impedance by 70%, and the contribution rate of active lithium loss reached 74%. Low air pressure led to irreversible deformation of the battery, resulting in the expansion of the gap between the electrodes, poor electrolyte infiltration, and reduction of the effective lithium insertion area, which in turn induced multiple synergistic accelerated decay mechanisms, including obstructed lithium-ion transmission, reduced interfacial reaction efficiency, increased active lithium consumption, changes in heat generation structure, and a significant increase in heat generation. After applying external force, the deformation of the electrode was effectively suppressed, and the cycle capacity retention rate increased to 87.6%, which significantly alleviated the performance degradation of LIBs in low pressure environment. This work provides a key theoretical basis and engineering solutions for the design of power batteries in high-altitude areas. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire: 2nd Edition)
Show Figures

Figure 1

17 pages, 6852 KiB  
Article
Performance Evaluation of Static and Dynamic Compressed Air Reservoirs for Energy Storage
by Alfred Rufer
Energies 2025, 18(14), 3666; https://doi.org/10.3390/en18143666 - 10 Jul 2025
Viewed by 341
Abstract
The concept of static and dynamic reservoirs is presented, and their performances are evaluated. The static reservoir is a simple reservoir with constant volume, and the dynamic one has a volume which varies as a function of the position of an internal piston [...] Read more.
The concept of static and dynamic reservoirs is presented, and their performances are evaluated. The static reservoir is a simple reservoir with constant volume, and the dynamic one has a volume which varies as a function of the position of an internal piston coupled to a spring. The spring is compressed when the pressure in the chamber rises and exerts a proportional force on it. The two reservoirs are components to be used in compressed air energy storage systems. The study comprises a model of the compression machine as well as models of the two reservoirs. The filling processes are simulated, and the different variables are represented as a function of time. A reduced scale experimentation set-up is presented, and its behavior is first simulated. Then. the results are compared to the experimental records. Full article
Show Figures

Figure 1

Back to TopTop