Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of TiO2-CNT Hybrid Material
2.2. In Situ Polymerization of TiO2-CNT/PAA Composites
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Song, W.; Wang, Q.; Li, H.; Ding, X.; Liu, S. Optimizing cooling electronic chips at high altitude with consideration of solar radiation. Int. J. Therm. Sci. 2023, 183, 107879. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Xing, B.; Qu, W.; Li, Z.; Ren, J.; Zhang, J.; Zhao, J. Preparation and performance evaluation of graphene-based waterborne thermal conductive coatings. Surf. Coat. Technol. 2024, 478, 130422. [Google Scholar] [CrossRef]
- Sun, K.; Xie, Y.; Fang, X.; Li, H.; Lai, Q.; Tan, J. An experimental study of spectral radiative properties of multi-walled carbon nanotube coating for heat dissipation. Case Stud. Therm. Eng. 2023, 41, 102660–102670. [Google Scholar] [CrossRef]
- Li, X.; Xie, Z.; Chen, B.; Cai, L.; Zhao, D.; Du, K.; Qiu, M. Transparent radiative cooler with high thermal conductivity for heat dissipation in electronic devices. Cell Rep. Phys. Sci. 2025, 6, 102505. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef]
- Zeng, S.; Pian, S.; Su, M.; Wang, Z.; Wu, M.; Liu, X.; Chen, M.; Xiang, Y.; Wu, J.; Zhang, M.; et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 2021, 373, 692–696. [Google Scholar] [CrossRef]
- Zhou, L.; Song, H.; Liang, J.; Singer, M.; Zhou, M.; Stegenburgs, E.; Zhang, N.; Xu, C.; Ng, T.; Yu, Z.; et al. A polydimethylsiloxane-coated metal structure for all-day radiative cooling. Nat. Sustain. 2019, 2, 718–724. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Li, W.; Lin, Z.; Zhu, B.; Li, Z.; Li, J.; Li, B.; Fan, S.; Xie, J.; et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158. [Google Scholar] [CrossRef]
- Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C.Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84. [Google Scholar] [CrossRef]
- Cheng, Z.; Shuai, Y.; Gong, D.; Wang, F.; Liang, H.; Li, G. Optical properties and cooling performance analyses of single-layer radiative cooling coating with mixture of TiO2 particles and SiO2 particles. Sci. China Technol. Sci. 2020, 64, 1017–1029. [Google Scholar] [CrossRef]
- Eyassu, T.; Hsiao, T.J.; Henderson, K.; Kim, T.; Lin, C.T. Molecular cooling fan: Factors for optimization of heat dissipation devices and applications. Ind. Eng. Chem. Res. 2014, 53, 19550–19558. [Google Scholar] [CrossRef]
- Pakzad, E.; Ranjbar, Z.; Ghahari, M. Synthesized of octahedral cupper chromite spinel for spectrally selective absorber (SSA) coatings. Prog. Org. Coat. 2019, 132, 21–28. [Google Scholar] [CrossRef]
- Yang, Z.P.; Ci, L.; Bur, J.A.; Lin, S.-Y.; Ajayan, P.M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett. 2008, 8, 446–451. [Google Scholar] [CrossRef]
- Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D.N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Xu, H.; Wang, X.Q.; Ma, W.G.; Qiu, C.; An, M.; Zhang, G.; Wang, F.; Zhang, X.; Bermak, A. Effective surface emissivity and heat dissipation among integrated bamboo-like super-black vertical carbon nanotube array electrodes in silicon via holes. Carbon 2020, 158, 846–856. [Google Scholar] [CrossRef]
- Liu, X.; Tang, Y.; Liu, Y.; Cao, Z.; Wang, R.; Wang, B.; Wang, B. Enhanced low-temperature radiative cooling and marine durability of stainless steel with a novel multi-layered composite coating. Surf. Interfaces 2025, 62, 106260. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, F.; He, W.; Wang, Y.; Dai, B.; Zhang, X. Phase-change material- integrated dual-mode thermal management janus films with enhanced radiative cooling and solar heating. ACS Appl. Polym. Mater. 2025, 7, 3555–3563. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zhao, X.; Zhang, J.; Zou, Y.; Chen, G.; Wang, Y.; Huang, Y.; Ouyang, J.; Jia, D.; et al. TiO2-BN/CNTs coating with radiative cooling and reduced friction. Chem. Eng. J. 2024, 493, 152802. [Google Scholar] [CrossRef]
- Mastai, Y.; Diamant, Y.; Aruna, S.T.; Zaban, A. TiO2 nanocrystalline pigmented polyethylene foils for radiative cooling applications: Synthesis and characterization. Langmuir 2001, 17, 7118–7123. [Google Scholar] [CrossRef]
- Mishra, B.R.; Sundaram, S.; Sasihithlu, K. Cooling performance of TiO2-based radiative cooling coating in tropical conditions. ACS Omega 2024, 9, 49494–49502. [Google Scholar] [CrossRef] [PubMed]
- Prashantha, K.; Soulestin, J.; Lacrampe, M.F.; Krawczak, P.; Dupin, G.; Claes, M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 2009, 69, 1756–1763. [Google Scholar] [CrossRef]
- Safadi, B.; Andrews, R.; Grulke, E.A. Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 2002, 84, 2660–2669. [Google Scholar] [CrossRef]
- Suryawanshi, C.N.; Lin, C.T. Radiative cooling: Lattice quantization and surface emissivity in thin coatings. ACS Appl. Mater. Interfaces 2009, 1, 1334–1338. [Google Scholar] [CrossRef]
- Yamabe, H. Stabilization of the polymer-metal interface. Prog. Org. Coat. 1996, 28, 9–15. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Q.; Gao, Y.; Han, L.; Zhang, R.; Zhang, C.; Jia, X. Preparation of carbon nanotube-reinforced polyethylene nanocomposites with better anti-scaling and corrosion-resistant properties. Ind. Chem. Mater. 2024, 2, 154–164. [Google Scholar] [CrossRef]
- GB/T 9286-2021; Paints and Varnishes—Cross-Cut Test. National Standard of the People’s Republic of China: Beijing, China, 2021.
- Sinani, V.A.; Gheith, M.K.; Yaroslavov, A.A.; Rakhnyanskaya, A.A.; Sun, K.; Mamedov, A.A.; Wicksted, J.P.; Kotov, N.A. Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J. Am. Chem. Soc. 2005, 127, 3463–3472. [Google Scholar] [CrossRef]
- Gao, Y.; Li, L.; Tan, P.; Liu, L.; Zhang, Z. Application of Raman spectroscopy in carbon nanotube-based polymer composites. Chin. Sci. Bull. 2010, 55, 3978–3988. [Google Scholar] [CrossRef]
- Kotsilkova, R.; Angelova, P.; Batakliev, T.; Angelov, V.; Di Maio, R.; Silvestre, C. Study on aging and recover of poly (lactic) acid composite films with graphene and carbon nanotubes produced by solution blending and extrusion. Coatings 2019, 9, 359. [Google Scholar] [CrossRef]
- Cui, C.; Qian, W.; Zhao, M.; Xu, G.; Nie, J.; Jia, X.; Wei, F. High-yield synthesis of nanohybrid shish-kebab polyethylene-carbon nanotube structure. Chin. J. Chem. Eng. 2013, 21, 37–43. [Google Scholar] [CrossRef]
- Cui, C.; Qian, W.; Zhao, M.; Ding, F.; Jia, X.; Wei, F. High strength composites using interlocking carbon nanotubes in a polyimide matrix. Carbon 2013, 60, 102–108. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, Y.; Liu, D.; Mu, Y.; Jia, X. Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix. Coatings 2025, 15, 921. https://doi.org/10.3390/coatings15080921
Wang J, Liu Y, Liu D, Mu Y, Jia X. Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix. Coatings. 2025; 15(8):921. https://doi.org/10.3390/coatings15080921
Chicago/Turabian StyleWang, Jiaziyi, Yong Liu, Dapeng Liu, Yong Mu, and Xilai Jia. 2025. "Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix" Coatings 15, no. 8: 921. https://doi.org/10.3390/coatings15080921
APA StyleWang, J., Liu, Y., Liu, D., Mu, Y., & Jia, X. (2025). Strong Radiative Cooling Coating Containing In Situ Grown TiO2/CNT Hybrids and Polyacrylic Acid Matrix. Coatings, 15(8), 921. https://doi.org/10.3390/coatings15080921