Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of USAF-Relevant Chemicals and Literature Review
2.2. In Silico Predictions—Derek Nexus® and QSAR Toolbox
2.3. k-DPRA
2.4. KeratinoSens™
2.5. h-CLAT
2.6. Evaluation of Sensitization Hazard Potential
2.7. Evaluating Sensitizastion Potency and Predicting EC3 Values from Assay Results
0.21 × log VPnorm
+ 0.06 × log IC50,norm − 0.12 × log VPnorm
0.023 × log IC50,norm − 0.151 × log VPnorm
2.8. Calculation of (PCSGs)
3. Results
3.1. In Silico Predictions of Sensitizer Potential
3.2. NAM Assay Results
3.3. Assessment of Sensitization Hazard and Potency
3.4. Preliminary Candidate Surface Guidelines
4. Discussion
4.1. Comparison of NAM-Based Sensitization Hazard Potential to In Vivo Evidence from the Literature
4.2. Calculating PCSGs from NAM-Derived EC3 Values
4.3. Limitations of NAM-Based Methods for Developing PCSGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
ACD | Allergic contact dermatitis |
ACGIH | American Conference of Governmental Industrial Hygienists |
AFE | Adjustment factor for exposure considerations |
AFH | Adjustment factor for translation to human effects |
AFIV | Adjustment factor for interindividual variability |
AOP | Adverse outcome pathway |
ARE | Antioxidant response element |
CASRN | Chemical Abstract Service Registry Number |
CD54 | Cluster of differentiation 54 |
CD86 | Cluster of differentiation 86 |
cm2 | Square centimeters |
CV75 | 75% cell viability |
DPRA | Direct Peptide Reactivity Assay |
EC1.5 | Concentration at 1.5-fold luciferase induction in KeratinoSens™ |
EC150 | Concentration at 150% relative fluorescence intensity in human cell line activation test |
EC200 | Concentration at 200% relative fluorescence intensity in human cell line activation test |
EC3 | Three-fold effective concentration in local lymph node assay |
EC3.0 | Concentration at 3.0-fold luciferase induction in KeratinoSens™ |
EESOH-MIS | Enterprise Environmental, Safety, and Occupational Health Management Information System |
FITC | fluorescein isothiocyanate |
GHS | Globally Harmonized System |
GPMT | Guinea pig maximization test |
HaCaT | Transfected immortalized human keratinocytes |
h-CLAT | Human cell line activation test |
IC30 | Concentration resulting in 30% reduction in cell viability in KeratinoSens™ |
IC50 | Concentration resulting in 50% reduction in cell viability in KeratinoSens™ |
Imax | Maximum fold luciferase induction in KeratinoSens™ |
k-DPRA | Kinetic direct peptide reactivity assay |
Keap1 | Kelch-like ECH-associated protein 1 |
kmax | Maximal rate of depletion in the kinetic direct peptide reactivity assay |
LLNA | Local lymph node assay |
mg/100 cm2 | Milligrams per 100 square centimeters |
mL | Milliliters |
mM | Millimolar |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide |
NAM | New approach methodology |
NESIL | No expected sensitization induction level |
NIOSH | National Institute for Occupational Safety and Health |
Nrf2 | Nuclear factor-erythroid 2-related factor 2 |
OECD | Organisation for Economic Co-operation and Development |
OSHA | Occupational Safety and Health Administration |
PCSG | Preliminary candidate surface guideline |
pEC3 | Preliminary three-fold effective concentration |
PI | propidium iodide |
POD | Point of departure |
QSAR | Quantitative structure-activity relationship |
RFI | Relative fluorescence intensity |
USAF | United States Air Force |
VP | Vapor pressure |
w/v % | Percent weight by volume |
WoE | Weight of evidence |
µg/100 cm2 | Micrograms per 100 square centimeters |
µg/mL | Micrograms per milliliter |
µM | Micromolar |
References
- Kimber, I.; Basketter, D.A.; Gerberick, G.F.; Dearman, R.J. Allergic contact dermatitis. Int. Immunopharmacol. 2002, 2, 201–211. [Google Scholar] [CrossRef]
- Stefaniak, A.B.; Day, G.A.; Virji, A.; Geer, L.A.; Bello, D. Chapter 20. The Skin and the Work Environment. In Occupational Environment: Its Evaluation, Control and Management; Anna, D.H., Ed.; American Industrial Hygiene Association Press: Fairfax, VA, USA, 2011; pp. 537–559. [Google Scholar]
- van Loveren, H.; Cockshott, A.; Gebel, T.; Gundert-Remy, U.; de Jong, W.H.; Matheson, J.; McGarry, H.; Musset, L.; Selgrade, M.J.K.; Vickers, C. Skin sensitization in chemical risk assessment: Report of a WHO/IPCs international workshop focusing on dose-response assessment. Regul. Toxicol. Pharmacol. 2008, 50, 155–199. [Google Scholar] [CrossRef]
- Rees, J.L.; Friedmann, P.S.; Matthews, J.N.S. The influence of area of application on sensitization by dinitrochlorobenzene. Br. J. Dermatol. 1990, 112, 29–31. [Google Scholar] [CrossRef] [PubMed]
- White, S.I.; Friedmann, P.S.; Moss, C.; Simpson, J.M. The effect of altering area of application and dose per unit area on the sensitization by DNCB. Br. J. Dermatol. 1986, 115, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Keebaugh, A.; Steele, M.; Clewell, R.; Chushak, Y.; Islas-Robles, A.; Raabe, H.; Hilberer, A.; Cantrell, K.; Merrill, E.; Mattie, D. Skin Sensitization Among Maintainers/Fabricators: Use of New Approach Methods to Identify Chemical Sensitizers and Determine Preliminary Candidate Surface Guidelines; Defense Technical Information Center: Fort Belvoir, VA, USA, 2023; AD1207810; Available online: https://apps.dtic.mil/sti/trecms/pdf/AD1207810.pdf (accessed on 14 January 2025).
- Keebaugh, A.; Steele, M.; Mills, L.; Hatch, J.; Bradford, R.; Mattie, D.R. Field Assessments of Potential Dermal Sensitizer Exposures at Air Force Aircraft Maintenance Shops; Defense Technical Information Center: Fort Belvoir, VA, USA, 2023; AD1218780. [Google Scholar]
- American Conference of Governmental Industrial Hygienists, ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; ACGIH: Cincinnati, OH, USA, 2024. [Google Scholar]
- Roberts, D.W.; Schultz, T.W.; Api, A.M. Chemical applicability domain of the Local Lymph Node Assay (LLNA) for skin sensitisation potency. Part 3. Apparent discrepancies between LLNA and GPMT sensitisation potential: False positives or differences in sensitivity? Regul. Toxicol. Pharmacol. 2016, 80, 260–267. [Google Scholar] [CrossRef]
- Kimber, I.; Dearman, R.J.; Basketter, D.A.; Ryan, C.A.; Gerberick, G.F. The local lymph node assay: Past, present and future. Contact Dermat. 2002, 47, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Cooperation Development, OECD. Guideline No. 429: Skin sensitization: Local lymph node assay. In OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD Publishing: Paris, France, 2010. [Google Scholar] [CrossRef]
- Basketter, D.A.; Lea, L.J.; Dickens, A.; Briggs, D.; Pate, I.; Dearman, R.J.; Kimber, I. A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose response. J. Appl. Toxicol. 1999, 19, 261–266. [Google Scholar] [CrossRef]
- United Nations. Globally Harmonized System of Classification and Labelling of Chemicals, 9th ed.; United Nations Publications: New York, NY, USA, 2021; Available online: https://unece.org/sites/default/files/2021-09/GHS_Rev9E_0.pdf (accessed on 14 January 2025).
- European Centre for Ecotoxicology and Toxicology of Chemicals, ECETOC. Contact Sensitization: Classification According to Potency. ECETOC Technical Report 87; ECETOC: Brussels, Belgium, 2003; Available online: https://www.ecetoc.org/wp-content/uploads/2014/08/ECETOC-TR-087.pdf (accessed on 14 January 2025).
- Api, A.M.; Basketter, D.A.; Bridges, J.; Cadby, P.; Ellis, G.; Gilmour, N.; Greim, H.; Griem, P.; Kern, P.; Khaiat, A.; et al. Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regul. Toxicol. Pharmacol. 2020, 118, 104805. [Google Scholar] [CrossRef]
- Naumann, B.D.; Arnold, S.F. Setting surface wipe limits for skin sensitizers. Toxicol. Ind. Health 2019, 35, 614–625. [Google Scholar] [CrossRef]
- Organisation for Economic Cooperation Development, OECD. The adverse outcome pathway for skin sensitization initiated by covalent binding to proteins. In OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 168; OECD Publishing: Paris, France, 2014. [Google Scholar] [CrossRef]
- Gerberick, G.F.; Vassallo, J.D.; Bailey, R.E.; Chaney, J.G.; Morrall, S.W.; Lepoittevin, J.P. Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci. 2004, 81, 332–343. [Google Scholar] [CrossRef]
- Wareing, B.; Kolle, S.N.; Birk, B.; Alépée, N.; Haupt, T.; Kathawala, R.; Kern, P.S.; Nardelli, L.; Raabe, H.; Rucki, M.; et al. The kinetic direct peptide reactivity assay (kDPRA): Intra- and inter-laboratory reproducibility in a seven-laboratory ring trial. ALTEX 2020, 37, 639–651. [Google Scholar] [CrossRef]
- Natsch, A.; Emter, R. Skin sensitizers induce antioxidant response element dependent genes: Application to the in vitro testing of the sensitization potential of chemicals. Toxicol. Sci. 2008, 102, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R.; Ellis, G. Filling the concept with data: Integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol. Sci. 2009, 107, 106–121. [Google Scholar] [CrossRef]
- Nukada, Y.; Ashikaga, T.; Sakaguchi, H.; Sono, S.; Mugita, N.; Hirota, M.; Miyazawa, M.; Ito, Y.; Sasa, H.; Nishiyama, N. Predictive performance for human skin sensitizing potential of the human cell line activation test (h-CLAT). Contact Dermat. 2011, 65, 343–353. [Google Scholar] [CrossRef]
- Golden, E.; MacMillan, D.S.; Dameron, G.; Kern, P.; Hartung, T.; Maertens, A. Evaluation of the Global Performance of Eight In Silico Skin Sensitization Models Using Human Data. ALTEX 2021, 38, 33–48. [Google Scholar] [CrossRef]
- Organisation for Economic Cooperation Development, O.E.C.D. Guideline No. 497: Guideline on defined approaches for skin sensitization. In OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Na, M.; O’Brien, D.; Lavelle, M.; Lee, I.; Gerberick, G.F.; Api, A.M. Weight of evidence approach for skin sensitization potency categorization of fragrance ingredients. Dermatitis 2022, 33, 161–175. [Google Scholar] [CrossRef]
- Natsch, A.; Gerberick, G.F. Integrated skin sensitization assessment based on OECD methods (I): Deriving a point of departure for risk assessment. ALTEX 2022, 39, 636–646. [Google Scholar] [CrossRef]
- Natsch, A.; Gerberick, G.F. Integrated skin sensitization assessment based on OECD methods (II): Hazard and potency by combining kinetic peptide reactivity and the “2 out of 3” Defined Approach. ALTEX 2022, 39, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Steele, M.; Flory, L.E.; Barrett, A.; Merrill, E.; Mattie, D.R. Literature Search for Chemical Exposures Impacting Human Physiological Attributes: Methods; Defense Technical Information Center: Fort Belvoir, VA, USA, 2021; AD1152027; Available online: https://apps.dtic.mil/sti/pdfs/AD1152027.pdf (accessed on 14 January 2025).
- Alinaghi, F.; Bennike, N.H.; Egeberg, A.; Thyssen, J.P.; Johansen, J.D. Prevalence of contact allergy in the general population: A systematic review and meta-analysis. Contact Dermat. 2019, 80, 77–85. [Google Scholar] [CrossRef]
- Wang, C.C.; Lin, Y.C.; Wang, S.S.; Shih, C.; Lin, Y.H.; Tung, C.W. SkinSensDB: A curated database for skin sensitization assays. J. Cheminform 2017, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Canipa, S.J.; Chilton, M.L.; Hemingway, R.; MacMillan, D.S.; Myden, A.; Plante, J.P.; Tennant, R.E.; Vessey, J.D.; Steger-Hartmann, T.; Gould, J.; et al. A quantitative in silico model for predicting skin sensitization using a nearest neighbors approach with expert-derived structure-activity alert spaces. J. Appl. Toxicol. 2017, 37, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Cooperation Development, OECD. Guideline No. 442C: Assays addressing the adverse outcome pathway key event on covalent binding to proteins. In OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S.; McCoy, K.D.; Wang, R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996, 4, 14–19. [Google Scholar]
- Organization for Economic Cooperation Development, OECD. Guideline No. 442D: In vitro skin sensitization: ARE-Nrf2 Luciferase Test Method. In OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Natsch, A.; Bauch, C.; Foertsch, L.; Gerberick, F.; Norman, K.; Hilberer, A.; Inglis, H.; Landsiedel, R.; Onken, S.; Reuter, H.; et al. The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSensTM assay to predict skin sensitizers in vitro: Results of a ring-study in five laboratories. Toxicol Vitr. 2011, 25, 733–774. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation Development, OECD. Guideline No. 442E: In Vitro Skin Sensitization assays addressing the Key Event on activation of dendritic cells on Adverse Outcome Pathway for Skin Sensitization. In OECD Guidelines for the Testing of Chemicals, Section 4: Health Effects; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Natsch, A.; Emter, R.; Gfeller, H.; Haupt, T.; Ellis, G. Predicting skin sensitizer potency based on in vitro data from KeratinoSens and kinetic peptide binding: Global versus domain-based assessment. Toxicol. Sci. 2015, 143, 319–332. [Google Scholar] [CrossRef]
- Fukushima, A.; Hayashi, T.; Takeyoshi, M. Acceptable surface limits of skin sensitizers derived from the local lymph node assay (LLNA): BrdU-ELISA EC1.6 values and their relationships to known sensitizer potency information. J. Appl. Toxicol. 2022, 42, 1723–1730. [Google Scholar] [CrossRef]
- Natsch, A.; Emter, R.; Haupt, T.; Ellis, G. Deriving a no expected sensitization induction level for fragrance ingredients without animal testing: An integrated approach applied to specific case studies. Toxicol. Sci. 2018, 165, 170–185. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 7013, N-phenyl-1-naphthylamine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N-Phenyl-1-naphthylamine (accessed on 13 June 2024).
- National Institute of Occupational Safety Health, NIOSH; Bisphenol, A. Department of Health and Human Services Publication No. 2011-144. In NIOSH Skin Notation Profiles; USA Department of Health and Human Services, Centers for Disease Control and Prevention: Cincinnati, OH, USA, 2011. Available online: https://www.cdc.gov/niosh/docs/2011-144/pdfs/2011-144.pdf?id=10.26616/NIOSHPUB2011144 (accessed on 14 January 2025).
- European Chemicals Agency Committee for Risk Assessment. Opinion Proposing Harmonized Classification Labeling at EUlevel of P-Tert-Butylphenol. ECHA/RAC/CLH-O-0000002629-66-01/F; European Chemicals Agency: Helsinki, Finland, 2012; Available online: https://echa.europa.eu/documents/10162/e5388923-9221-c8d3-5ed2-3e61c1119288 (accessed on 14 January 2025).
- Rao, K.S.; Betso, J.E.; Olson, K.J. A collection of guinea pig sensitization test results—Grouped by chemical class. Drug Chem. Toxicol. 1981, 4, 331–351. [Google Scholar] [CrossRef] [PubMed]
- van Joost, T.; Roesyanto, I.D.; Satyawan, I. Occupational sensitization to epichlorohydrin (ECH) and bisphenol-A during the manufacture of epoxy resin. Contact Dermat. 1990, 22, 125–126. [Google Scholar] [CrossRef]
- Karlberg, A.T.; Boman, A.; Melin, B. Animal experiments on the allergenicity of d-limonene—The citrus solvent. Ann. Occup. Hyg. 1991, 35, 419–426. [Google Scholar] [CrossRef]
- Boman, A.; Hagelthorn, G.; Jeannson, I.; Karlberg, A.-T.; Rystedt, I.; Wahlberg, J.E. Phenyl-alpha-naphthylamine—Case report and guinea pig studies. Contact Dermat. 1980, 6, 299–300. [Google Scholar] [CrossRef]
- Carmichael, A.J.; Foulds, I.S. Isolated naphthylamine allergy to phenyl-alpha-naphthylamine. Contact Dermat. 1990, 22, 298–299. [Google Scholar] [CrossRef]
- Takenouchi, O.; Miyazawa, M.; Saito, K.; Ashikaga, T.; Sakaguchi, H. Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J. Toxicol. Sci. 2013, 38, 599–609. [Google Scholar] [CrossRef]
- Lamm, M.; Sadowski, N.; Norman, K. Combining in silico and in vitro methods to improve the accuracy of skin sensitization predictions for chemicals. Poster 2209. In The Toxicologist, A Supplement to Toxicological Sciences, Proceedings of the 2016 Society of Toxicology Annual Meeting, New Orleans, LA, USA, 13–17 March 2016; SOT: Reston, VA, USA, 2016. [Google Scholar]
- van der Zalm, A.J.; Barroso, J.; Browne, P.; Casey, W.; Gordon, J.; Henry, T.R.; Kleinstreuer, N.C.; Lowit, A.B.; Perron, M.; Clippinger, A.J. A framework for establishing scientific confidence in new approach methodologies. Arch. Toxicol. 2022, 96, 2865–2879. [Google Scholar] [CrossRef]
- Ruparel, N.; Islas-Robles, A.; Hilberer, A.; Cantrell, K.; Madrid, M.; Ryan, C.; Gerberick, G.F.; Persaud, R. Deriving a point of departure for assessing the skin sensitization risk of wearable device constituents with in vitro methods. Food Chem. Toxicol. 2024, 189, 114725. [Google Scholar] [CrossRef]
- Bil, W.; Schuur, A.G.; Ezendam, J.; Bokkers, B.G.H. Probabilistic derivation of the interspecies assessment factor for skin sensitization. Regul. Toxicol. Pharmacol. 2017, 88, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A.; Natsch, A.; Ellis, G.; Api, A.M.; Irizar, A.; Safford, B.; Ryan, C.; Kern, P. Interspecies assessment factors and skin sensitization risk assessment. Regul. Toxicol. Pharmacol. 2018, 97, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Bohme, A.; Moldrickx, J.; Schuurman, G. Amino reactivity of glutardialdehyde and monaldehydes-chemoassay profile versus skin sensitization potency. Chem. Res. Toxicol. 2021, 34, 2353–2365. [Google Scholar] [CrossRef] [PubMed]
- Tomar, P.; Fowkes, A.; Modlin, C.; Chilton, M. Best practice for conducting expert review of sensitization data and prediction. Poster 4395. In The Toxicologist, A Supplement to Toxicological Sciences, Proceedings of the 2024 Society of Toxicology Annual Meeting, Salt Lake City, UT, USA, 10–14 March 2024; SOT: Reston, VA, USA, 2024. [Google Scholar]
CASRN | Chemical Name | Preliminary Assignment from Literature Review | Derek Nexus® Predicted Assignment | Derek Nexus® Predicted EC3 | QSAR Toolbox Measured Assignment | QSAR Toolbox Predicted Assignment |
---|---|---|---|---|---|---|
5989-27-5 | d-Limonene | Sensitizer | Sensitizer 1 | 8.7% (1B) | Sensitizer | Sensitizer |
1330-20-7 | Xylene | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer |
108-10-1 | Methyl Isobutyl Ketone | Insufficient Data | Non-Sensitizer | Non-Sensitizer | Non-Sensitizer | Sensitizer |
123-38-6 | Propionaldehyde | Insufficient Data | Sensitizer 2 | 0.19% (1A) | Non-Sensitizer | Sensitizer |
100-52-7 | Benzaldehyde | Sensitizer | Sensitizer 3 | 0.04% (1A) | Sensitizer 4 | Non-Sensitizer |
91-20-3 | Naphthalene | Sensitizer | Non-Sensitizer | Non-Sensitizer | ND | Sensitizer |
90-30-2 | n-Phenyl-1-naphthylamine | Sensitizer | Non-Sensitizer | Non-Sensitizer | Sensitizer | Non-Sensitizer |
78-98-8 | Methylglyoxal | Sensitizer | Sensitizer 2 | 4.8% (1B) | ND | Non-Sensitizer |
134-32-7 | 1-Naphthylamine | Sensitizer | Sensitizer 3 | 35% (1B) | Non-Sensitizer | ND |
4170-30-3 | Crotonaldehyde | Sensitizer | Sensitizer 2 | 2.4% (1B) | ND | Sensitizer |
107-13-1 | Acrylonitrile | Sensitizer | Sensitizer 1 | ND | Sensitizer | Sensitizer |
106-89-8 | Epichlorohydrin | Sensitizer | Sensitizer 2 | 1.1% (1A) | ND | Sensitizer |
107-02-8 | Acrolein | Insufficient Data | Sensitizer 2 | 1.9% (1A) | ND | Sensitizer |
78-85-3 | Methacrolein | Insufficient Data | Sensitizer 2 | 2.7% (1B) | ND | Sensitizer |
80-05-7 | Bisphenol A | Sensitizer | Sensitizer 3 | 5.6% (1B) | Sensitizer | Non-Sensitizer |
98-54-4 | p-tert-Butylphenol | Sensitizer | Sensitizer 3 | 3.5% (1B) | Sensitizer 4 | Non-Sensitizer |
620-23-5 | m-Tolualdehyde | Insufficient Data | Sensitizer 3 | 0.05% (1A) | ND | Sensitizer |
110-62-3 | Valeraldehyde | Insufficient Data | Sensitizer 2 | 0.26% (1A) | ND | Sensitizer |
529-20-4 | o-Tolualdehyde | Insufficient Data | Sensitizer 3 | 0.05% (1A) | ND | ND |
Chemical Name | Literature LLNA EC3 | k-DPRA Peptide Depletion (%) | k-DPRA GHS Subcategory Prediction | KeratinoSens™ Results | h-CLAT Results | NAM-Based EC3 (GHS SubCat) | Determination |
---|---|---|---|---|---|---|---|
d-Limonene | 30% (1B) | 1.0 | Non-GHS 1A | Negative | N/A | N/A | Non-Sensitizer |
Xylene | 96% (1B) | 1.0 | Non-GHS 1A | Negative | N/A | N/A | Non-Sensitizer |
Methyl Isobutyl Ketone | N/A | 1.4 | Non-GHS 1A | Negative | N/A | N/A | Non-Sensitizer |
Propionaldehyde | N/A | 1.0 | Non-GHS 1A | Negative | N/A | N/A | Non-Sensitizer |
Benzaldehyde | >25% (1B) | 4.6 | Non-GHS 1A | Positive | Negative a | N/A | Non-Sensitizer |
Naphthalene | N/A | 7.3 | Non-GHS 1A | Inconclusive b | Negative | N/A | Non-Sensitizer |
n-Phenyl-1-naphthylamine | N/A | 4.0 | Non-GHS 1A | Positive | Inconclusive | N/A | Inconclusive |
Methylglyoxal | 0.42% (1A) | 39.2 | GHS 1A | Positive | N/A | 3.6% (1B) | Sensitizer |
1-Naphthylamine | N/A | 21.0 | GHS 1A | Positive | N/A | 1.5% (1A) | Sensitizer |
Crotonaldehyde | N/A | 91.9 | GHS 1A | Positive | N/A | 0.37% (1A) | Sensitizer |
Acrylonitrile | N/A | 99.0 | GHS 1A | Positive | N/A | 7.7% (1B) | Sensitizer |
Epichlorohydrin | N/A | 91.8 | Non-GHS 1A | Positive | N/A | 7.7% (1B) | Sensitizer |
Acrolein | N/A | 99.0 | GHS 1A | Positive | N/A | 0.29% (1A) | Sensitizer |
Methacrolein | N/A | 96.0 | GHS 1A | Positive | N/A | 0.47% (1A) | Sensitizer |
Bisphenol A | N/A | 2.2 | Non-GHS 1A | Positive | Positive b | 1.5%, 1.6% (1A) | Sensitizer |
p-tert-Butylphenol | N/A | 1.0 | Non-GHS 1A | Positive a | Positive b | 3.3%, 7.9% (1B) c | Sensitizer |
m-Tolualdehyde | N/A | 1.0 | Non-GHS 1A | Positive | Positive b | 5.2%, 7.6% (1B) c | Sensitizer |
Valeraldehyde | N/A | 1.0 | Non-GHS 1A | Positive | Positive | 16%, 15.5% (1B) c | Sensitizer |
o-Tolualdehyde | N/A | 1.0 | Non-GHS 1A | Positive | Positive b | 5.4%, 7.7% (1B) c | Sensitizer |
Chemical Name | NAM POD (µg/cm2) | Composite Adjustment Factor | PCSG (mg/100 cm2) |
---|---|---|---|
Methylglyoxal | 900 | 180 | 0.5 |
Bisphenol A | 380 | 300 | 0.1 |
p-tert-Butylphenol | 830 | 300 | 0.3 |
1-Naphthylamine | 380 | 300 | 0.1 |
Crotonaldehyde | 93 | 300 | 0.03 |
Acrylonitrile | 1900 | 300 | 0.6 |
Epichlorohydrin | 1900 | 300 | 0.6 |
Acrolein | 73 | 300 | 0.02 |
Methacrolein | 120 | 300 | 0.04 |
m-Tolualdehyde | 1300 | 300 | 0.4 |
Valeraldehyde | 4000 | 180 | 2 |
o-Tolualdehyde | 1400 | 300 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keebaugh, A.J.; Steele, M.L.; Islas-Robles, A.; Phillips, J.; Hilberer, A.; Cantrell, K.; Chushak, Y.G.; Mattie, D.R.; Clewell, R.A.; Merrill, E.A. Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies. Toxics 2025, 13, 660. https://doi.org/10.3390/toxics13080660
Keebaugh AJ, Steele ML, Islas-Robles A, Phillips J, Hilberer A, Cantrell K, Chushak YG, Mattie DR, Clewell RA, Merrill EA. Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies. Toxics. 2025; 13(8):660. https://doi.org/10.3390/toxics13080660
Chicago/Turabian StyleKeebaugh, Andrew J., Megan L. Steele, Argel Islas-Robles, Jakeb Phillips, Allison Hilberer, Kayla Cantrell, Yaroslav G. Chushak, David R. Mattie, Rebecca A. Clewell, and Elaine A. Merrill. 2025. "Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies" Toxics 13, no. 8: 660. https://doi.org/10.3390/toxics13080660
APA StyleKeebaugh, A. J., Steele, M. L., Islas-Robles, A., Phillips, J., Hilberer, A., Cantrell, K., Chushak, Y. G., Mattie, D. R., Clewell, R. A., & Merrill, E. A. (2025). Development of Preliminary Candidate Surface Guidelines for Air Force-Relevant Dermal Sensitizers Using New Approach Methodologies. Toxics, 13(8), 660. https://doi.org/10.3390/toxics13080660