Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
Abstract
1. Introduction
2. Data Set
3. Numeric Models
3.1. Ocean Wave Model
3.2. Numeric Models of Circulation
4. Performance of Wave Simulation by WW3 and SWAN
4.1. Performance of Various Parameterizations
4.2. Influence of Current and Sea Level on Waves
5. Effect of Wave on Water Temperature
6. Conclusions and Outlook
- (1)
- Nonlinear interactions between waves play a vital role in achieving precise high-resolution wave modeling during TCs. Four nonlinear interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT), within WW3 were assessed in simulating SWH across 20 TC cases. It was found that the GMD2 provides a superior performance compared to DIA and WRT. Therefore, GMD2 is more suitable for environments with complex bathymetry and shallow water conditions.
- (2)
- Conventional Cd schemes within WW3, including ST1 through ST6, tend to overpredict the wind drag at wind speeds exceeding 30 m/s, which leads to inflated wave growth and introduces notable biases in SWH. Recent developments have sought to overcome these shortcomings by implementing sea-state-dependent and wave boundary layer model (WBLM)-based parameterizations that dynamically incorporate factors such as wave age, spectral characteristics, and atmospheric stability. Among these advancements, a novel high-order Cd formulation derived from remote sensing observations was introduced and integrated into both WW3 and SWAN here. Within WW3, the updated ST6 scheme employing this Cd adjustment demonstrated superior accuracy over 20 TCs, lowering the RMSE to 0.7615 m and bias to −0.2552 m. Within SWAN, The updated ST6 scheme surpassed the default parameterization by achieving a correlation coefficient (COR) of 0.7647. These findings underscore the importance of adopting sophisticated, nonlinear Cd parameterizations specifically designed for cyclone environments, particularly under strong sea state–atmosphere feedback conditions. The ongoing refinement of Cd schemes is expected to improve the reliability of operational wave forecasts during extreme weather events.
- (3)
- Ocean currents influence relative wind speed, bend wave propagation paths, and redistribute wave energy, particularly in strong current regions with flows induced by TCs or the Kuroshio. These processes cause shifts in wave direction, changes the energy in long waves, and broaden the spectral distribution depending on the current direction relative to wave direction. The results from wave-current coupled modeling demonstrate that currents tend to lower SWH on the storm’s right side while increasing it on the left flank. Additionally, sea level rise—especially when exceeding one meter—intensifies coastal wave heights and alters nearshore hydrodynamics. Simulations conducted under different scenarios, including the presence or absence of currents and sea level variations, confirm these impacts. Therefore, accurately predicting SWH in shelf areas requires accounting for both wave–current interactions and sea level fluctuations. The incorporation of refined parameterizations, such as those representing Stokes drift and wave-induced radiation stresses, further improves the model performances during severe weather conditions.
- (4)
- Wave-induced forcings through breaking and nonbreaking waves, radiation stress, and Stokes drift, are fundamental to regulating air–sea exchanges of heat and momentum during TCs. These forcings, simulated by WW3, are integrated into sbPOM to enhance the representation of sea surface temperature (SST). It was found that heat transfer is affected by breaking waves and sea spray, whereas nonbreaking waves play a vital role in intensifying mixing within the upper ocean. Radiation stress influences storm surge behavior and wave–current coupling, while Stokes drift drives Langmuir circulation, contributing to deeper mixed layers. Recent incorporations of these wave forcings into ocean circulation frameworks have yielded substantial improvements in SST forecasts during TCs, with RMSE declining to approximately 1.39 m and the correlation reaching 0.9881. Importantly, when these combined wave effects are considered, vertical mixing can extend to around 100 m, leading to more precise depictions of thermal stratification under cyclone-forced conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Theoretical Expression of a Breaking Wave
Appendix A.2. Theoretical Expression of a Nonbreaking Wave
Appendix A.3. Theoretical Expression of Radiation Stress
Appendix A.4. Theoretical Expression of Stokes Drift
References
- Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquiniom, L. Tropical and extratropical cyclone damages under climate change. Clim. Change 2014, 127, 227–241. [Google Scholar] [CrossRef]
- Wang, H.J.; Sun, J.Q.; Fan, K. Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Sci. China Ser. D 2007, 50, 1409–1416. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Emanuel, K.; Chonabayashi, S.; Bakkensen, L. The impact of climate change on global tropical cyclone damage. Nat. Clim. Change 2012, 2, 205–209. [Google Scholar] [CrossRef]
- Zhao, X.B.; Shao, W.Z.; Hao, M.Y.; Jiang, X.W. Novel approach to wind retrieval from Sentinel-1 SAR in tropical cyclones. Can. J. Remote Sens. 2023, 49, 2254839. [Google Scholar] [CrossRef]
- Siegenthaler, T.D.T. Immediate impacts of a severe tropical cyclone on the microclimate of a rain-forest canopy in north-east Australia. J. Trop. Ecol. 2004, 20, 583–586. [Google Scholar]
- Hoque, A.A.; Phinn, S.; Roelfsema, C.; Childs, I. Tropical cyclone disaster management using remote sensing and spatial analysis: A review. Int. J. Disast. Risk Reduct. 2017, 22, 345–354. [Google Scholar] [CrossRef]
- Sampson, C.R.; Wittmann, P.A.; Serra, E.A.; Tolman, H.L.; Schauer, J.; Marchok, T. Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts. Wea. Forecast. 2012, 28, 287–294. [Google Scholar] [CrossRef]
- Jia, L.; Wu, S.; Han, B.; Cai, S.; Wu, R. Wave hindcast under tropical cyclone conditions in the south china sea: Sensitivity to wind fields. Acta Oceanol. Sin. 2023, 42, 36–53. [Google Scholar] [CrossRef]
- Krogstad, H.E.; Barstow, S.F.; Aasen, S.E. Some recent developments in wave buoy measurement technology. Coast. Eng. 1999, 37, 309–329. [Google Scholar] [CrossRef]
- Ananth, P.N.; Tatavarti, R.V.S.N.; Swain, J.; Rao, C.V.K.P. Observations of sea and swell using directional wave buoy. Proc. Indian Acad. Sci. Earth Planet. Sci. 1993, 102, 351–366. [Google Scholar] [CrossRef]
- Nappo, C.J.; Chun, H.Y.; Lee, H.J. A parameterization of wave stress in the planetary boundary layer for use in mesoscale models. Atmos. Environ. 2004, 38, 2665–2675. [Google Scholar] [CrossRef]
- Ye, X.M.; Liu, J.Q.; Lin, M.S.; Ding, J.; Zou, B.; Song, Q.J. Sea surface temperatures derived from COCTS onboard the HY-1C satellite. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1038–1047. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhao, C.; Jiang, X.W.; Sun, Z.F.; Wang, X.Q.; Wang, J.; Cai, L.N. Characteristics of suspended sediment in Sentinel-1 synthetic aperture radar observations. Remote Sens. Lett. 2021, 12, 1167–1179. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.; Zhang, M.; Wu, C. High-Resolution seawater salinity sensor based on temperature self-compensating optical interferometer. IEEE Sens. J. 2024, 24, 1374–1382. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. Oceans 1997, 102, 5767–5780. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J. Observation of tropical cyclones by high-resolution scatterometry. J. Geophys. Res. Oceans 1998, 103, 7767–7786. [Google Scholar] [CrossRef]
- Shao, W.Z.; Jiang, T.; Jiang, X.W.; Zhang, Y.G.; Zhou, W. Evaluation of sea surface winds and waves retrieved from the Chinese HY-2B data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 9624–9635. [Google Scholar] [CrossRef]
- Chen, J.L.; Hao, M.Y.; Shao, W.Z.; Marino, A.; Hu, Y.Y.; Song, X.G. Validation of wind speed retrieval from HY-2B calibration microwave radiometer data during tropical cyclones. Remote Sens. Lett. 2024, 15, 700–708. [Google Scholar] [CrossRef]
- Shao, W.Z.; Zhou, Y.H.; Hu, Y.Y.; Li, Y.; Zhou, Y.S.; Zhang, Q.J. Range current retrieval fromsentinel-1 SAR ocean product based on deep learning. Remote Sens. Lett. 2024, 15, 145–156. [Google Scholar] [CrossRef]
- Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Corcoral, N.; Castillan, P. SWIM: The first spaceborne wave scatterometer. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3000–3014. [Google Scholar] [CrossRef]
- Hao, M.; Hu, Y.; Shao, W.; Migliaccio, M.; Jiang, X.; Wang, Z. Advance in sea surface wind and wave retrieval from synthetic aperture radar image: An Overview. J. Ocean Univ. 2025, 24, 821–839. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Shao, W.Z.; Wei, M.; Jiang, X.W.; Li, Y. Preliminary analysis of calibration for Chinese civilian 1mC-SAR. Remote Sens. Lett. 2024, 15, 709–718. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Hao, M.Y.; Shao, W.Z.; Marino, A.; Song, X.G.; Jiang, X.W. Preliminary analysis of wind and wave retrieval from Chinese 1mC-SAR image. Eur. J. Remote Sens. 2024, 57, 2364706. [Google Scholar] [CrossRef]
- Jiang, T.; Shao, W.Z.; Hu, Y.Y.; Zheng, G.; Shen, W. L-band analysis of the effects of oil slicks on sea wave characteristics. J. Ocean Univ. China 2023, 22, 9–20. [Google Scholar] [CrossRef]
- The WAMDI Group. The WAM model-A third generation ocean wave prediction model. J. Phys. Oceanogr. 1998, 18, 1775–1810. [Google Scholar]
- Tolman, L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Holthuijsen, L. The Continued Development of the Third-Generation Shallow Water Wave Model ‘SWAN’; TU Delft Department of Hydraulic Engineering: Delft, The Netherlands, 2001; Volume 32, pp. 185–186. [Google Scholar]
- Xie, D.; Zou, Q.; Cannon, J.W. Application of SWAN+ADCIRC to tide-surge and wave smulation in Gulf of Maine during Patriot’s Day Storm. Water Sci. Eng. 2016, 9, 33–41. [Google Scholar] [CrossRef]
- Xie, D.; Zou, Q.P.; Mignone, A.; MacRae, J.D. Coastal flooding from wave overtopping and sea level rise adaptation in the Northeastern USA. Coast. Eng. 2019, 150, 39–58. [Google Scholar] [CrossRef]
- Zou, Q.; Xie, D. Tide-Surge and wave interaction in the Gulf of Maine during an extratropical storm. Ocean Dyn. 2016, 66, 1715–1732. [Google Scholar] [CrossRef]
- Liu, N.; Ling, T.J.; Wang, H.; Zhang, Y.F.; Gao, Z.Y.; Wang, Y. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. J. Ocean Univ. China 2015, 14, 199–209. [Google Scholar] [CrossRef]
- Nittis, K.; Perivoliotis, L.; Korres, G.; Tziavos, C.; Thanos, I. Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ. Model. Softw. 2006, 21, 243–257. [Google Scholar] [CrossRef]
- Jordi, A.; Wang, D.P. Sbpom: A parallel implementation of Princenton ocean model. Environ. Model. Softw. 2012, 38, 59–61. [Google Scholar] [CrossRef]
- Stepanov, V.N.; Haines, K. Mechanisms of Atlantic meridional overturning circulation variability simulated by the NEMO model. Ocean Sci. 2014, 10, 645–656. [Google Scholar] [CrossRef]
- Yao, F.C.; Johns, W.E. A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res. 2010, 115, C11017. [Google Scholar] [CrossRef]
- Wei, H.; Hainbucher, D.; Pohlmann, T.; Feng, S.; Suendermann, J. Tidal-induced Lagrangian and Eulerian mean circulation in the Bohai sea. J. Mar. Syst. 2004, 44, 141–151. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, W.; Wang, W.; Zhou, W.; Yu, W.; Shen, W. Analysis of wave-induced Stokes transport effects on sea surface temperature simulations in the Western Pacific Ocean. J. Mar. Sci. Eng. 2021, 9, 834. [Google Scholar] [CrossRef]
- Prasad, T.G.; Hogan, P.J. Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM. J. Geophys. Res. Oceans 2007, 112, C04013. [Google Scholar] [CrossRef]
- Zamudio, L.; Hogan, P.J. Nesting the Gulf of Mexico in Atlantic HYCOM: Oceanographic processes generated by Hurricane Ivan. Ocean. Model. 2008, 21, 106–125. [Google Scholar] [CrossRef]
- Chen, C.S.; Liu, H.; Beardsley, R.C. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar] [CrossRef]
- Wang, J.; Kuang, C.; Fan, D.; Xing, W.; Qin, R.; Zou, Q. Spatio-Temporal variation in suspended sediment during Typhoon Ampil under wave-current interactions in the Yangtze River Estuary. Water 2024, 16, 1783. [Google Scholar] [CrossRef]
- Rezende, L.F.; Silva, P.A.; Cirano, M.; Peliz, Á.; Dubert, J. Mean circulation, seasonal cycle, and eddy interactions in the eastern Brazilian margin, a nested ROMS model. J. Coast. Res. 2011, 27, 329–347. [Google Scholar] [CrossRef]
- Marshall, J.; Hill, C.; Perelman, L.; Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. Oceans 1997, 102, 5733–5752. [Google Scholar] [CrossRef]
- Fringer, O.B.; Gerritsen, M.; Street, R.L. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean. Model. 2006, 14, 139–173. [Google Scholar] [CrossRef]
- Huang, H.; Song, P.Y.; Qiu, S.; Guo, Q.Y.; Chen, X.E. A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wave simulation. Geosci. Model Dev. 2023, 16, 109–133. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Jiang, C.B.; Deng, B.; Chen, J.; Cao, Y.G.; Li, L.J. Evaluation of numerical wave model for typhoon wave simulation in South China Sea. Water Sci. Eng. 2018, 11, 229–235. [Google Scholar] [CrossRef]
- Kong, C.Y.; Cao, H.S.; Pan, X.S.; Zhang, W.Y. Numerical simulation of typhoon waves along the offshore China Seas. Appl. Mech. Mater. 2013, 303–306, 2736–2739. [Google Scholar] [CrossRef]
- Wang, J.C.; Zhang, J.; Yang, J.G. Numerical simulation and preliminary analysis on ocean waves during typhoon nesat in south china sea and adjacent areas. Chin. J. Ocean. Limnol. 2014, 32, 665–680. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, K.; Zhong, X.; Zhou, Z.; Zhang, J. Assess the typhoon-driven extreme wave conditions in Manila bay through numerical simulation and statistical analysis. Appl. Ocean Res. 2021, 109, 102565. [Google Scholar] [CrossRef]
- Sheng, Y.P.; Zhang, Y.; Paramygin, V.A. Simulation of storm surge, wave, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004. Ocean. Model. 2010, 35, 314–331. [Google Scholar] [CrossRef]
- Huang, Y.; Weisberg, R.H.; Zheng, L.; Zijlema, M. Gulf of Mexico hurricane wave simulations using swan: Bulk formula-based drag coefficient sensitivity for Hurricane Ike. J. Geophys. Res. Oceans 2013, 118, 3916–3938. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Nayak, S.; Bonthu, S.R.; Murty, P.L.N.; Sen, D. Performance and validation of a coupled parallel ADCIRC–SWAN model for THANE cyclone in the Bay of Bengal. Environ. Fluid Mech. 2013, 13, 601–623. [Google Scholar] [CrossRef]
- Emanuel, K.; Solomon, S.; Folini, D.; Davis, S.; Cagnazzo, C. Influence of Tropical Tropopause Layer Cooling on Atlantic Hurricane Activity. J. Clim. 2013, 26, 2288–2301. [Google Scholar] [CrossRef]
- Emanuel, K. Contribution of Tropical Cyclones to Meridional Heat Transport by the Oceans. J. Geophys. Res.-Atmos. 2001, 106, 14771–14781. [Google Scholar] [CrossRef]
- Bruneau, N.; Toumi, R.; Wang, S. Impact of Wave Whitecapping on Land Falling Tropical Cyclones. Sci. Rep. 2018, 8, 652. [Google Scholar] [CrossRef]
- Stoney, L.; Walsh, K.; Babanin, A.V.; Ghantous, M.; Govekar, P.; Young, I. Simulated Ocean Response to Tropical Cyclones: The Effect of a Novel Parameterization of Mixing from Unbroken Surface Waves. J. Adv. Model. Earth Syst. 2017, 9, 759–780. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Nardelli, B.B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
- Mason, E.; Ruiz, S.; Bourdalle-Badie, R.; Reffray, G.; Garcia-Sotillo, M.; Pascual, A. New Insight into 3-D Mesoscale Eddy Properties from CMEMS Operational Models in the Western Mediterranean. Ocean Sci. 2019, 15, 1111–1131. [Google Scholar] [CrossRef]
- Schenkel, B.A.; Hart, R.E. An Examination of Tropical Cyclone Position, Intensity, and Intensity Life Cycle within Atmospheric Reanalysis Datasets. J. Clim. 2012, 25, 3453–3475. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Han, G.; Ren, L.; Zheng, G.; Chen, P.; Zhang, H. Tropical Cyclone Wind Field Reconstruction and Validation Using Measurements from SFMR and SMAP Radiometer. Remote Sens. 2022, 14, 3929. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Wong, A.P.S.; Wijffels, S.E.; Riser, S.C.; Pouliquen, S.; Hosoda, S.; Roemmich, D.; Gilson, J.; Johnson, G.C.; Martini, K.; Murphy, D.J.; et al. Argo Data 1999-2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats. Front. Mar. Sci. 2020, 7, 700. [Google Scholar] [CrossRef]
- Guerin, C.-A.; Poisson, J.-C.; Piras, F.; Amarouche, L.; Lalaurie, J.-C. Ku-/Ka-Band Extrapolation of the Altimeter Cross Section and Assessment with Jason2/AltiKa Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5679–5686. [Google Scholar] [CrossRef]
- Mukhlas, N.A.; Zaki, N.I.M.; Abu Husain, M.K.; Ahmad, S.Z.A.S.; Najafian, G. Numerical Formulation Based on Ocean Wave Mechanics for Offshore Structure Analysis—A Review. Ships Offshore Struct. 2022, 17, 1731–1742. [Google Scholar] [CrossRef]
- Chalikov, D.; Babanin, A.V. Comparison of Linear and Nonlinear Extreme Wave Statistics. Acta Oceanol. Sin. 2016, 35, 99–105. [Google Scholar] [CrossRef]
- Chalikov, D. Freak Waves: Their Occurrence and Probability. Phys. Fluids 2009, 21, 076602. [Google Scholar] [CrossRef]
- Crespo, A.J.C.; Gomez-Gesteira, M.; Carracedo, P.; Dalrymple, R.A. Hybridation of Generation Propagation Models and SPH Model to Study Severe Sea States in Galician Coast. J. Mar. Syst. 2008, 72, 135–144. [Google Scholar] [CrossRef]
- Korres, G.; Papadopoulos, A.; Katsafados, P.; Ballas, D.; Perivoliotis, L.; Nittis, K. A 2-Year Intercomparison of the WAM-Cycle4 and the WAVEWATCH-III Wave Models Implemented within the Mediterranean Sea. Mediterr. Mar. Sci. 2011, 12, 129–152. [Google Scholar] [CrossRef]
- Gaztelumendi, S.; Gonzalez, M.; Egana, J.; Rubio, A.; Gelpi, I.R.; Fontan, A.; Otxoa De Alda, K.; Ferrer, L.; Alchaarani, N.; Mader, J.; et al. Implementation of an Operational Oceano-Meteorological System for the Basque Country. Thalassas 2010, 26, 151–167. [Google Scholar]
- Pianca, C.; Mazzini, P.L.F.; Siegle, E. Brazilian Offshore Wave Climate Based on Nww3 Reanalysis. Braz. J. Oceanogr. 2010, 58, 53–70. [Google Scholar] [CrossRef]
- Lee, H.S.; Yamashita, T.; Hsu, J.R.-C.; Ding, F. Integrated Modeling of the Dynamic Meteorological and Sea Surface Conditions during the Passage of Typhoon Morakot. Dyn. Atmos. Oceans 2013, 59, 1–23. [Google Scholar] [CrossRef]
- The WAVEWATCH-III Development Group. User Manual and System Documentation of WAVEWATCH III Version 5.16; Technical Note 329; National Oceanic and Atmospheric Administration: College Park, MD, USA, 2016; Volume 276, p. 326. [Google Scholar]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions—1. Model Description and Validation. J. Geophys. Res.-Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef]
- Mulligan, R.P.; Perrie, W.; Toulany, B.; Smith, P.C.; Hay, A.E.; Bowen, A.J. Performance of Nowcast and Forecast Wave Models for Lunenburg Bay, Nova Scotia. Atmos.-Ocean 2011, 49, 1–7. [Google Scholar] [CrossRef]
- Ou, S.H.; Liau, J.M.; Hsu, T.W.; Tzang, S.Y. Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan. Ocean Eng. 2002, 29, 947–971. [Google Scholar] [CrossRef]
- Bolanos-Sanchez, R.; Sanchez-Arcilla, A.; Cateura, J. Evaluation of Two Atmospheric Models for Wind-Wave Modelling in the NW Mediterranean. J. Mar. Syst. 2007, 65, 336–353. [Google Scholar] [CrossRef]
- Rogers, W.E.; Kaihatu, J.M.; Petit, H.; Booij, N.; Holthuijsen, L.H. Diffusion Reduction in an Arbitrary Scale Third Generation Wind Wave Model. Ocean Eng. 2002, 29, 1357–1390. [Google Scholar] [CrossRef]
- Signell, R.P.; Carniel, S.; Cavaleri, L.; Chiggiato, J.; Doyle, J.D.; Pullen, J.; Sclavo, M. Assessment of Wind Quality for Oceanographic Modelling in Semi-Enclosed Basins. J. Mar. Syst. 2005, 53, 217–233. [Google Scholar] [CrossRef]
- Xu, F.; Perrie, W.; Toulany, B.; Smith, P.C. Wind-Generated Waves in Hurricane Juan. Ocean Model. 2007, 16, 188–205. [Google Scholar] [CrossRef]
- Jin, K.R.; Ji, Z.G. Calibration and Verification of a Spectral Wind-Wave Model for Lake Okeechobee. Ocean Eng. 2001, 28, 571–584. [Google Scholar] [CrossRef]
- Smagorinsky, J.; Manabe, S.; Holloway, J.L. Numerical Results from a Nine-Level General Circulation Model of the Atmosphere1. Mon. Weather. Rev. 1965, 93, 727–768. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Jpn. 2009, 87, 895–912. [Google Scholar] [CrossRef]
- Chen, W.; Chen, J.; Shi, J. Regional Differences in the Effects of Various Stokes Drifts on the Cooling of the Marine Environment under Different Wave Conditions. Environ. Res. 2024, 255, 119191. [Google Scholar] [CrossRef]
- Fang, S.-C. Research on a Numerical Simulation Model of Marine Drifting Debris: A Case Study of Penghu Waters. Ocean Sci. J. 2024, 59, 33. [Google Scholar] [CrossRef]
- Chen, C.; Beardsley, R.C.; Cowles, G. An unstructured grid, finite-volume coastal ocean model (FVCOM) system. Oceanography 2006, 19, 78–89. [Google Scholar] [CrossRef]
- Chen, C.; Huang, H.; Beardsley, R.C.; Liu, H.; Xu, Q.; Cowles, G. A Finite Volume Numerical Approach for Coastal Ocean Circulation Studies: Comparisons with Finite Difference Models. J. Geophys. Res.-Oceans 2007, 112, C03018. [Google Scholar] [CrossRef]
- Huang, H.; Chen, C.; Blanton, J.O.; Andrade, F.A. A Numerical Study of Tidal Asymmetry in Okatee Creek, South Carolina. Estuar. Coast. Shelf Sci. 2008, 78, 190–202. [Google Scholar] [CrossRef]
- Isobe, A.; Beardsley, R.C. An Estimate of the Cross-Frontal Transport at the Shelf Break of the East China Sea with the Finite Volume Coastal Ocean Model. J. Geophys. Res.-Oceans 2006, 111, C03012. [Google Scholar] [CrossRef]
- Lin, S.; Sheng, J. Assessing the Performance of Wave Breaking Parameterizations in Shallow Waters in Spectral Wave Models. Ocean Model. 2017, 120, 41–59. [Google Scholar] [CrossRef]
- Filipot, J.-F.; Ardhuin, F. A Unified Spectral Parameterization for Wave Breaking: From the Deep Ocean to the Surf Zone. J. Geophys. Res.-Oceans 2012, 117, C00J08. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Baydakov, G.; Dosaev, A.; Troitskaya, Y. Drag Coefficient Parameterization under Hurricane Wind Conditions. Water 2023, 15, 1830. [Google Scholar] [CrossRef]
- Makin, V.K. A Note on a Parameterization of the Sea Drag. Bound.-Layer Meteor. 2003, 106, 593–600. [Google Scholar] [CrossRef]
- Moon, I.-J.; Ginis, I.; Hara, T. Impact of the Reduced Drag Coefficient on Ocean Wave Modeling under Hurricane Conditions. Mon. Weather Rev. 2008, 136, 1217–1223. [Google Scholar] [CrossRef]
- Lin, S.; Sheng, J. Revisiting Dependences of the Drag Coefficient at the Sea Surface on Wind Speed and Sea State. Cont. Shelf Res. 2020, 207, 104188. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, W.; Shi, J.; Wu, J.; Wang, H.; Cao, X.; Wang, Q.; Zhao, Z. The Wave Period Parameterization of Ocean Waves and Its Application to Ocean Wave Simulations. Remote Sens. 2023, 15, 5279. [Google Scholar] [CrossRef]
- Mentaschi, L.; Perez, J.; Besio, G.; Mendez, F.J.; Menendez, M. Parameterization of Unresolved Obstacles in Wave Modelling: A Source Term Approach. Ocean Model. 2015, 96, 93–102. [Google Scholar] [CrossRef]
- Kuznetsova, A.M.; Dosaev, A.S.; Baydakov, G.A.; Sergeev, D.A.; Troitskaya, Y.I. Adaptation of the Parameterization of the Nonlinear Energy Transfer for Short Fetch Conditions in the WAVEWATCH III Wave Prediction Model. Izv. Atmos. Ocean. Phys. 2020, 56, 191–199. [Google Scholar] [CrossRef]
- Walsh, K.; Govekar, P.; Babanin, A.V.; Ghantous, M.; Spence, P.; Scoccimarro, E. The Effect on Simulated Ocean Climate of a Parameterization of Unbroken Wave-Induced Mixing Incorporated into the k-Epsilon Mixing Scheme. J. Adv. Model. Earth Syst. 2017, 9, 735–758. [Google Scholar] [CrossRef]
- Ji, C.; Jiang, Q.; Ma, D.; Wu, Y.; Ran, G.; Kong, X.; Zhang, Q. Parameterization of Surface Roller Evolution in Wave-Induced Current Modeling. Ocean Model. 2025, 196, 102522. [Google Scholar] [CrossRef]
- Ren, D.; Hua, F.; Yang, Y.; Sun, B. The Improved Model of Estimating Global Whitecap Coverage Based on Satellite Data. Acta Oceanol. Sin. 2016, 35, 66–72. [Google Scholar] [CrossRef]
- Kim, T.; Moon, J.-H.; Kang, K. Uncertainty and Sensitivity of Wave-Induced Sea Surface Roughness Parameterisations for a Coupled Numerical Weather Prediction Model. Tellus Ser. A-Dyn. Meteorol. Oceanol. 2018, 70, 1445379. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Möller, J.D.; Nicklas, C.T. Linear and Nonlinear Vortex Motion in an Asymmetric Balance Shallow Water Model. J. Atmos. Sci. 1999, 56, 749–768. [Google Scholar] [CrossRef]
- Young, I.R. Directional Spectra of Hurricane Wind Waves. J. Geophys. Res.-Oceans 2006, 111, C08020. [Google Scholar] [CrossRef]
- Shao, W.; Sheng, Y.; Li, H.; Shi, J.; Ji, Q.; Tan, W.; Zuo, J. Analysis of Wave Distribution Simulated by WAVEWATCH-III Model in Typhoons Passing Beibu Gulf, China. Atmosphere 2018, 9, 265. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, W.; Wei, Y.; Zuo, J. Analysis of Typhoon-Induced Waves along Typhoon Tracks in the Western North Pacific Ocean, 1998–2017. J. Mar. Sci. Eng. 2020, 8, 521. [Google Scholar] [CrossRef]
- Hasselmann, K. On the non-linear energy transfer in a gravity wave spectrum Part 1. General theory. J. Fluid Mech. 1962, 12, 481–500. [Google Scholar] [CrossRef]
- Xu, Y.; He, H.; Song, J.; Hou, Y.; Li, F. Observations and Modeling of Typhoon Waves in the South China Sea. J. Phys. Oceanogr. 2017, 47, 1307–1324. [Google Scholar] [CrossRef]
- Hasselmann, S.; Hasselmann, K.; Allender, J.H.; Barnett, T.P. Computations and parameterizations of the non-linear energy transfer in a gravity-wave spectrum, Part 2: Parameterizations of the non-linear energy transfer for application in wave models. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef]
- Hasselmann, K. On the Non-Linear Energy Transfer in a Gravity-wave Spectrum: Part 2. Conservation Theorems. J. Fluid Mech. 1963, 15, 273–281. [Google Scholar] [CrossRef]
- Hasselmann, K. On the Non-Linear Energy Transfer in a Gravity-wave Spectrum: Part 3. Evaluation of the Energy Flux and Swell-sea Interaction for a Neumann Spectrum. J. Fluid Mech. 1963, 15, 385–398. [Google Scholar] [CrossRef]
- Webb, D.J. Non-linear transfers between sea waves. Deep Sea Res. 1978, 25, 279–298. [Google Scholar] [CrossRef]
- Resio, D.T.; Perrie, W. A numerical study of non-linear energy fluxes due to wave-wave interactions. Part 1: Methodology and basic results. J. Fluid Mech. 1991, 223, 603–629. [Google Scholar] [CrossRef]
- Hsiao, S.C.; Wu, H.L.; Chen, W.B. Study of the Optimal Grid Resolution and Effect of Wave-Wave Interaction during Simulation of Extreme Waves Induced by Three Ensuing Typhoons. J. Mar. Sci. Eng. 2023, 11, 653. [Google Scholar] [CrossRef]
- Perrie, W.; Toulany, B.; Resio, D.T.; Roland, A.; Auclair, J.P. A Two-Scale Approximation for Wave-Wave Interactions in an Operational Wave Model. Ocean Model. 2013, 70, 38–51. [Google Scholar] [CrossRef]
- Tolman, H.L. Validation of WAVEWATCH III Version 1.15 for a Global Domain; NO-AA/NWS/NCEP/OMB Tech. Note 213. 2002, p. 33. Available online: https://www.scribd.com/doc/250066669/Validation-of-WAVEWATCH-III-version-1-15-for-a-global-domain-pdf (accessed on 22 July 2025).
- Wu, J. Wind-stress coefficients over sea surfaces near neutral conditions: A revisit. J. Phys. Oceanogr. 1980, 10, 727–740. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 1991, 21, 1631–1642. [Google Scholar] [CrossRef]
- Hwang, P.A. A note on the ocean surface roughness spectrum. J. Atmos. Ocean. Technol. 2011, 28, 436–443. [Google Scholar] [CrossRef]
- Chalikov, D.; Babanin, A.V. Parameterization of the wave boundary layer. Atmosphere 2019, 10, 686. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzman, E.S. On the Limiting Aerodynamic Roughness of the Ocean in Very Strong Winds. Geophys. Res. Lett. 2004, 31, L18306. [Google Scholar] [CrossRef]
- Moon, I.J.; Ginis, I.; Hara, T. Effect of Surface Waves on Air-Sea Momentum Exchange. Part II: Behavior of Drag Coefficient under Tropical Cyclones. J. Atmos. Sci. 2004, 61, 2334–2348. [Google Scholar] [CrossRef]
- Emanuel, K.A. A similarity hypothesis for air–sea exchange at extreme wind speeds. J. Atmos. Sci. 2003, 60, 1420–1428. [Google Scholar] [CrossRef]
- Alamaro, M.; Emanuel, K.; Colton, J.; McGillis, W.; Edson, J.B. Experimental investigation of air–sea transfer of momentum and enthalpy at high wind speed. In Preprints, 25th Conference on Hurricanes and Tropical Meteorology, San Diego, CA, USA, 29 April 2002; American Meteorological Society: Boston, MA, USA, 2002; Volume 667, p. 668. [Google Scholar]
- Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Bottom-up Determination of Air-Sea Momentum Exchange under a Major Tropical Cyclone. Science 2007, 315, 1707–1709. [Google Scholar] [CrossRef]
- Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D. Wind and Waves in Extreme Hurricanes. J. Geophys. Res.-Oceans 2012, 117, C09003. [Google Scholar] [CrossRef]
- Moon, I.-J.; Kwon, J.-I.; Lee, J.-C.; Shim, J.-S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the Surface Wind Stress Parameterization on the Storm Surge Modeling. Ocean Model. 2009, 29, 115–127. [Google Scholar] [CrossRef]
- Zhao, W.; Guan, S.; Hong, X.; Li, P.; Tian, J. Examination of Wind-Wave Interaction Source Term in WAVEWATCH III with Tropical Cyclone Wind Forcing. Acta Oceanol. Sin. 2011, 30, 1–13. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad. Navk 1954, 24, 163–187. [Google Scholar]
- Chalikov, D. The parameterization of the wave boundarylayer. J. Phys. Oceanogr. 1995, 25, 1333–1349. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong wind. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; DeCosmo, J.; Katsaros, K.B.; Davidson, K.L.; Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The HEXOS results. Bound. Layer Meteor. 1992, 60, 109142. [Google Scholar] [CrossRef]
- Rizza, U.; Canepa, E.; Ricchi, A.; Bonaldo, D.; Carniel, S.; Morichetti, M.; Passerini, G.; Santiloni, L.; Puhales, F.S.; Miglietta, M.M. Influence of Wave State and Sea Spray on the Roughness Length: Feedback on Medicanes. Atmosphere 2018, 9, 301. [Google Scholar] [CrossRef]
- Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013–2014) in the South-West Indian Ocean. J. Adv. Model. Earth Syst. 2018, 10, 801–825. [Google Scholar] [CrossRef]
- Moon, I.J.; Hara, T.; Ginis, I.; Belcher, S.E.; Tolman, H.L. Effect of Surface Waves on Air-Sea Mo-mentum Exchange. Part I: Effect of Mature and Growing Seas. J. Atmos. Sci. 2004, 61, 2321–2333. [Google Scholar] [CrossRef]
- Hara, T.; Belcher, S.E. Wind Forcing in the Equilibrium Range of Wind-Wave Spectra. J. Fluid Mech. 2002, 470, 223–245. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J. Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. J. Phys. Oceanogr. 2009, 39, 2097–2116. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, X. Enhancement of Wind Stress Evaluation Method under Storm Conditions. Clim. Dyn. 2016, 47, 3833–3843. [Google Scholar] [CrossRef]
- Reichl, B.G.; Hara, T.; Ginis, I. Sea State Dependence of the Wind Stress over the Ocean under Hurricane Winds. J. Geophys. Res.-Oceans 2014, 119, 30–51. [Google Scholar] [CrossRef]
- Qiao, W.; Song, J.; He, H.; Li, F. Application of Different Wind Field Models and Wave Boundary Layer Model to Typhoon Waves Numerical Simulation in WAVEWATCH III Model. Tellus Ser. A-Dyn. Meteorol. Oceanol. 2019, 71, 1657552. [Google Scholar] [CrossRef]
- Shankar, C.G.; Behera, M.R. Improved Wind Drag Formulation for Numerical Storm Wave and Surge Modeling. Dyn. Atmos. Oceans 2021, 93, 101193. [Google Scholar] [CrossRef]
- Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom Friction and Wind Drag for Wave Models. Coast. Eng. 2012, 65, 19–26. [Google Scholar] [CrossRef]
- Peng, S.; Li, Y. A Parabolic Model of Drag Coefficient for Storm Surge Simulation in the South China Sea. Sci. Rep. 2015, 5, 15496. [Google Scholar] [CrossRef]
- Gao, Z.; Peng, W.; Gao, C.Y.; Li, Y. Parabolic Dependence of the Drag Coefficient on Wind Speed from Aircraft Eddy-Covariance Measurements over the Tropical Eastern Pacific. Sci. Rep. 2020, 10, 1805. [Google Scholar] [CrossRef]
- Moon, I.J. Impact of a coupled ocean wave-tide-circulation system on coastal modeling. Ocean Model. 2005, 8, 203–236. [Google Scholar] [CrossRef]
- Ardhuin, F.; Roland, A.; Dumas, F.; Bennis, A.; Sentchev, A.; Forget, P.; Wolf, J.; Girard, F.; Osuna, P.; Benoit, M. Numerical wave modeling in conditions with strong currents: Dissipation, refraction, and relative wind. J. Phys. Oceanogr. 2012, 42, 2101–2120. [Google Scholar] [CrossRef]
- Samiksha, V.; Vethamony, P.; Antony, C.; Bhaskaran, P.; Nair, B. Wave–current interaction during Hudhud cyclone in the bay of bengal. Nat. Hazards Earth Syst. Sci. 2017, 17, 2059–2074. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, W.; Shi, J.; Sun, J.; Ji, Q.; Cai, L. Analysis of the Typhoon Wave Distribution Simulated in WAVEWATCH- III Model in the Context of Kuroshio and Wind-Induced Current. J. Oceanol. Lim-nol. 2020, 38, 1692–1710. [Google Scholar] [CrossRef]
- Donelan, M.A.; Dobson, F.W.; Smith, S.D.; Anderson, R.J. On the Dependence of Sea Surface Rough-ness on Wave Development. J. Phys. Oceanogr. 1993, 23, 2143–2149. [Google Scholar] [CrossRef]
- Rusu, L.; Soares, C.G. Modelling the wave–current interactions in an offshore basin using the SWAN model. Ocean Eng. 2011, 38, 63–76. [Google Scholar] [CrossRef]
- Tolman, H.L.; Hasselmann, S.H.; Graber, H.; Jensen, R.E.; Cavaleri, L. Application to the open ocean. In Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1996; pp. 355–359. [Google Scholar]
- Kenyon, K.E.; Sheres, D. Wave force on an ocean current. J. Phys. Oceanogr. 2006, 36, 212–221. [Google Scholar] [CrossRef]
- Holthuijsen, L.; Tolman, H. Effects of the Gulf Stream on ocean waves. J. Geophys. Res. 1991, 96, 12755–12771. [Google Scholar] [CrossRef]
- Wang, D.; Liu, A.; Peng, C.; Meindl, E. Wave-current interaction near the Gulf Stream during the Surface Wave Dynamics Experiment. J. Geophys. Res. 1994, 99, 5065–5079. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T. The Effect of Wind-Wave-Current Interaction on Air-Sea Mo-mentum Fluxes and Ocean Response in Tropical Cyclones. J. Phys. Oceanogr. 2009, 39, 1019–1034. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.; Stewart, R. Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Res. Oceanogr. Abstr. 1964, 11, 529–562. [Google Scholar] [CrossRef]
- Mellor, G.L. The three-dimensional current and surface wave equations. J. Phys. Oceanogr. 2003, 33, 1978–1989. [Google Scholar] [CrossRef]
- McWilliams, J.; Restrepo, J.; Lane, E. An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 2004, 511, 135–178. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rascle, N.; Belibassakis, K. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell. 2008, 20, 35–60. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Shao, W.Z.; Shen, W.; Zuo, J.C.; Jiang, T.; Hu, S. Analysis of Sea Surface Temperature Cooling in Typhoon Events Passing the Kuroshio Current. J. Ocean Univ. 2024, 23, 287–303. [Google Scholar] [CrossRef]
- Chen, S.S.; Price, J.F.; Zhao, W.; Donelan, M.A.; Walsh, E.J. The CBLAST-hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Am. Meteor. Soc. 2007, 88, 311–317. [Google Scholar] [CrossRef]
- Moon, I.-J.; Ginis, I.; Hara, T.; Thomas, B. A physics-based parameterization of air–sea momentum flux at high wind speeds and its impact on hurricane intensity predictions. Mon. Weather Rev. 2007, 135, 2869–2878. [Google Scholar] [CrossRef]
- Xie, L.; Wu, K.; Pietrafesa, L.; Zhang, C. A numerical study of wave–current interaction through surface and bottom stresses: Wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res. 2001, 106, 16841–16855. [Google Scholar] [CrossRef]
- Xie, L.; Pietrafesa, L.J.; Wu, K. A numerical study of wave–current interaction through surface and bottom stresses: Coastal ocean response to Hurricane Fran of 1996. J. Geophys. Res. 2003, 108, 3049. [Google Scholar] [CrossRef]
- Xie, L.; Liu, H.; Peng, M. The effect of wave–current interactions on the storm surge and inun-dation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modell. 2008, 20, 252–269. [Google Scholar] [CrossRef]
- Wang, P.; Sheng, J. A comparative study of wave-current interactions over the eastern Ca-nadian shelf under severe weather conditions using a coupled wave-circulation model. J. Geophys. Res. Oceans 2016, 121, 5252–5281. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.; Nunn, P.D. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Jevrejava, S.; Moore, J.C.; Grinsted, A.; Woodworth, P.L. Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 2008, 35, 8–11. [Google Scholar] [CrossRef]
- Church, J.A.; Gregory, J.M.; Huybrechts, P.; Kuhn, M.; Lambeck, C.; Nhuan, M.T.; Qin, D.; Wood-worth, P.L. Changes in sea level. In Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Chapter 11; pp. 639–694. [Google Scholar]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Burkett, V.; Kusler, J. Climate change: Potential impacts and interactions in wetlands of United States. J. Am. Water Resour. Assoc. 2000, 36, 313–320. [Google Scholar] [CrossRef]
- Baldwin, A.H.; Egnotovich, M.S.; Clarke, E. Hydrologic change and vegetation of tidal freshwater marshes: Field, greenhouse, and seed-bank experiments. Wetlands 2001, 21, 519–531. [Google Scholar] [CrossRef]
- Cheon, S.H.; Suh, K.D. Effect of sea level rise on nearshore significant waves and coastal structures. Ocean Eng. 2016, 114, 280–289. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Liu, H.; Xu, H.; Shen, J. Comparison of three methods for estimating the sea level rise effect on storm surge flooding. Clim. Chang. 2013, 118, 487–500. [Google Scholar] [CrossRef]
- Bigalbal, A.; Rezaie, A.M.; Garzon, J.L.; Ferreira, C.M. Potential Impacts of Sea Level Rise and Coarse Scale Marsh Migration on Storm Surge Hydrodynamics and Waves on Coastal Protected Areas in the Chesapeake Bay. J. Mar. Sci. Eng. 2018, 6, 86. [Google Scholar] [CrossRef]
- Wu, L.; Chen, C.; Guo, P. A FVCOM-based unstructured grid wave, current, sediment transport model, I. Model description and validation. J. Ocean Univ. China 2011, 10, 1–8. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, W.; Hu, Y.; Ji, Q.; Li, H.; Zhou, W. Revisit of a Case Study of Spilled Oil Slicks Caused by the Sanchi Accident (2018) in the East China Sea. J. Mar. Sci. Eng. 2021, 9, 279. [Google Scholar] [CrossRef]
- Gall, J.S.; Frank, W.M.; Kwon, Y. Effects of Sea Spray on Tropical Cyclones Simulated under Idealized Conditions. Mon. Weather Rev. 2008, 136, 1686–1705. [Google Scholar] [CrossRef]
- Emanuel, K.A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci. 1995, 52, 3969–3976. [Google Scholar] [CrossRef]
- Sullivan, P.P.; McWilliams, J.C. Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 2010, 42, 19–42. [Google Scholar] [CrossRef]
- Chalikov, D.V.; Belevich, M.Y. One-dimensional theory of the wave boundary layer. Boundary Layer Meteorol. 1993, 63, 65–96. [Google Scholar] [CrossRef]
- Baumert, H.Z.; Simpson, J.; Sündermann, J. Marine Turbulence—Theory, Observations, and Models; Cambridge University Press: Cambridge, UK, 2005; p. 652. [Google Scholar]
- Huang, C.J.; Qiao, F.; Song, Z.; Ezer, T. Improving simulations of the upper ocean by inclusion of sur-face waves in the Mellor-Yamada turbulence scheme. J. Geophys. Res. 2011, 116, C01007. [Google Scholar] [CrossRef]
- Rapp, R.J.; Melville, W.K. Laboratory measurements of deep water breaking waves. Philos. Trans. R. Soc. Lond. Ser. 1990, 331, 735–780. [Google Scholar]
- Li, Y.; Peng, S.; Wang, J.; Yan, J. Impacts of Nonbreaking Wave-Stirring-Induced Mixing on the Up-per Ocean Thermal Structure and Typhoon Intensity in the South China Sea. J. Geophys. Res.-Oceans 2014, 119, 5052–5070. [Google Scholar] [CrossRef]
- Babanin, A.V. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett. 2006, 33, L20605. [Google Scholar] [CrossRef]
- Babanin, A.V.; Haus, B.K. On the existence of water turbulence induced by nonbreaking surface waves. J. Phys. Oceanogr. 2009, 39, 2675–2679. [Google Scholar] [CrossRef]
- Qiao, F.; Yeli, Y.; Yang, Y.; Zheng, Q.; Xia, C.; Ma, J. Wave induced mixing in the upper ocean: Dis-tribution and application to a global ocean circulation model. Geophys. Res. Lett. 2004, 31, L11303. [Google Scholar] [CrossRef]
- Aijaz, S.; Ghantous, M.; Babanin, A.V.; Ginis, I.; Thomas, B.; Wake, G. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling. J. Geophys. Res.-Oceans 2017, 122, 3939–3963. [Google Scholar] [CrossRef]
- Mellor, G.L. The depth-dependent current and wave interaction equations: A revision. J. Phys. Oceanogr. 2008, 38, 2587–2596. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L. A numerical study on the effects of wave current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor during Hurricane Hugo 1989. Cont. Shelf Res. 2009, 29, 1454–1463. [Google Scholar] [CrossRef]
- Langmuir, I. Surface motion of water induced by wind. Science 1938, 87, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Craik, A.D.D.; Leibovich, S. A rational model for Langmuir circulations. J. Fluid Mech. 1976, 73, 401–442. [Google Scholar] [CrossRef]
- Yu, T.; Deng, Z.; Zhang, C.; Hamdi Ali, A. Detecting the Role of Stokes Drift under Typhoon Condition by a Fully Coupled Wave-Current Model. Front. Mar. Sci. 2024, 11, 1364960. [Google Scholar] [CrossRef]
- Reichl, B.G.; Wang, D.; Hara, T.; Ginis, I.; Kukulka, T. Langmuir turbulence parameterisation in tropical cyclone conditions. J. Phys. Oceanogr. 2016, 46, 863–886. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Q. Characteristics of Wave Breaking and Blocking by Spatially Varying Opposing Currents. J. Geophys. Res.-Oceans 2018, 123, 3761–3785. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, W.; Yu, W.; Li, J. A Study of Wave-Induced Effects on Sea Surface Temperature Simulations during Typhoon Events. J. Mar. Sci. Eng. 2021, 9, 622. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Q. Effects of Following and Opposing Vertical Current Shear on Nonlinear Wave Interactions. Appl. Ocean Res. 2019, 89, 23–35. [Google Scholar] [CrossRef]
ID | Name | Grade | Start Time | End Time | ID | Name | Grade | Start Time | End Time |
---|---|---|---|---|---|---|---|---|---|
1416 | Fung-Wong | TS | 17 September 2014 | 25 September 2014 | 2309 | Saola | TY | 22 August 2023 | 3 September 2023 |
1509 | Chan-Hom | TY | 29 June 2015 | 13 July 2015 | 2310 | Damrey | STS | 23 August 2023 | 30 August 2023 |
2203 | Chaba | TY | 28 June 2022 | 7 July 2022 | 2316 | Sanba | TD | 17 October 2023 | 20 October 2023 |
2207 | Mulan | TS | 8 August 2022 | 11 August 2022 | 2403 | Gaemi | TY | 19 July 2024 | 28 July 2024 |
2209 | Ma-On | STS | 21 August 2022 | 26 August 2022 | 2411 | Yagi | TY | 31 August 2024 | 9 September 2024 |
2216 | Noru | TY | 21 September 2022 | 29 September 2022 | 2418 | Krathon | TY | 26 September 2024 | 3 October 2024 |
2219 | Sonca | TS | 13 October 2022 | 15 October 2022 | 2421 | Kong-Rey | TY | 24 October 2024 | 2 November 2024 |
2304 | Talim | STS | 13 July 2023 | 18 July 2023 | 2422 | Yinxing | TY | 2 November 2024 | 12 November 2024 |
2307 | Lan | TY | 7 August 2023 | 18 August 2023 | 2424 | Man-Yi | TY | 7 November 2024 | 20 November 2024 |
2308 | Dora | TY | 12 August 2023 | 22 August 2023 | 2425 | Usagi | TY | 9 November 2024 | 16 November 2024 |
Forcing Fields | Output Resolution | Open Boundary Conditions | |
---|---|---|---|
WW3 | Reconstructed wind with the background of ECMWF wind; Current and water level fields from CMEMS | Temporal resolution of 1 h and spatial grid resolution of 1/10° | / |
SWAN | Reconstructed wind with the background of ECMWF wind; Current and water level fields from CMEMS | Temporal resolution of 1 h and the unstructured grid with the finest resolution of 8 km | / |
sbPOM | Reconstructed wind with the background of ECMWF wind; SODA sea surface temperature and salinity; Four Wave-induced effects | Temporal resolution of 1 h and spatial resolution of 1/4° | Downward longwave/solar radiation flux at surface, latent heat net flux at surface, sensible heat net flux at surface, upward longwave/solar radiation flux at surface from NCEP |
FVCOM | Reconstructed wind with the background of ECMWF wind; Water temperature and salinity from CMEMS | Temporal resolution of 1 h and the unstructured grid with the finest resolution of 8 km | Tide data from TPXO.7; Water temperature, salinity, elevation and current from CMEMS |
Statistical Indicator | ST2 | ST3 | ST4 | ST6 | |
---|---|---|---|---|---|
Proposed scheme | Bias (m) | −0.0185 | 0.2492 | 0.1700 | −0.2552 |
RMSE (m) | 1.2002 | 1.3692 | 1.1845 | 0.7615 | |
Existing scheme | Bias (m) | −0.0377 | 0.4054 | 0.2156 | 0.2823 |
RMSE (m) | 1.4400 | 1.8921 | 1.7252 | 1.7608 |
Proposed Method | RMSE (m) | TCs | Category |
---|---|---|---|
Zhao et al. [130] using field observations from Powell’s | 2.4 | Bonnie 1 (1998) | 3 |
Moon et al. [95] using WBLM | 0.96 | Katrina 1 (2005) | 5 |
Fan et al. [139] using WBLM from Moon’s | 1.18 | Ivan 1 (2004) | 5 |
Qiao et al. [142] using WBLM of Reichl’ | 0.6 | Kalmaegi 2 (2014) | TS |
Cd = (0.42 + 3.86U10 − 2.53U102 + 0.4U103) × 10−3/31.5 [143] | 0.25–0.8 | Katrina 1 (2005) | 5 |
Rita 1 (2005) | 5 | ||
Michael 1 (2018) | 5 | ||
Cd = –0.00215(U10 − 33)2 + 2.797 [145] | 0.095 | Conson 2 (2010) | TY |
0.065 | Meranti 2 (2010) | TY | |
0.112 | Megi 2 (2010) | TY | |
0.139 | Haima 2 (2011) | TS | |
0.04 | Nock-ten 2 (2011) | TS | |
0.11 | Nanmadol 2 (2011) | TY | |
0.168 | Nesat 2 (2011) | TY | |
0.142 | Nalgae 2 (2011) | TY | |
Cd = (10.42 − 1.237 U10 + 0.2415 U102 − 0.007996 U103 + 7.891 × 10−5 U104) × 10−4 [147] | 0.6 | - | - |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
RMSE | 1.1982 | 1.1983 | 0.9804 | 0.9695 |
Cor | 0.6769 | 0.6769 | 0.7291 | 0.7327 |
Wave Breaking | Nonbreaking Wave | Radiation Stress | Stokes Drift | All | |
---|---|---|---|---|---|
RMSE (°C) | 1.9687 | 1.7859 | 1.7864 | 1.7937 | 1.3909 |
Cor | 0.9752 | 0.9802 | 0.9802 | 0.9800 | 0.9881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Shao, W.; Hu, Y.; Xu, H.; Zou, Q. Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview. J. Mar. Sci. Eng. 2025, 13, 1450. https://doi.org/10.3390/jmse13081450
Yao R, Shao W, Hu Y, Xu H, Zou Q. Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview. Journal of Marine Science and Engineering. 2025; 13(8):1450. https://doi.org/10.3390/jmse13081450
Chicago/Turabian StyleYao, Ru, Weizeng Shao, Yuyi Hu, Hao Xu, and Qingping Zou. 2025. "Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview" Journal of Marine Science and Engineering 13, no. 8: 1450. https://doi.org/10.3390/jmse13081450
APA StyleYao, R., Shao, W., Hu, Y., Xu, H., & Zou, Q. (2025). Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview. Journal of Marine Science and Engineering, 13(8), 1450. https://doi.org/10.3390/jmse13081450