Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = aerodynamic resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6729 KB  
Article
Integrated Sail–Hull–Turbine Assessment for Wind Power Generation Ship Using Experiment and CFD
by Nguyen Thi Huyen Trang, Taiga Mitsuyuki, Yoshiaki Hirakawa, Thi Pham-Truong and Shun Yokota
J. Mar. Sci. Eng. 2026, 14(2), 111; https://doi.org/10.3390/jmse14020111 - 6 Jan 2026
Viewed by 251
Abstract
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship [...] Read more.
Wind power generation ships (WPG ships), which combine rigid sails for propulsion and underwater turbines for onboard power generation, have attracted increasing attention as a promising concept for utilizing renewable energy at sea. This study presents an integrated assessment of a WPG ship by combining towing-tank experiments, CFD simulations using ANSYS Fluent, and theoretical analysis to evaluate the coupled performance of sails, hull, and underwater turbines. First, sail thrust and bare-hull resistance were quantified to identify the effective operating-speed range under Beaufort 6–8 wind conditions, and the optimal number of rigid sails was determined. Based on a thrust–resistance balance at a representative rated operating point, two turbine configurations (two and four turbines) were preliminarily sized. The results show that ten rigid sails can provide near-maximum thrust without excessive aerodynamic interference, and the installation of turbines significantly reduces the feasible operating range compared to the bare-hull case. For the two-turbine configuration, a common effective ship-speed range of 6.58–8.0 m/s is obtained, whereas the four-turbine configuration is restricted to 6.58–7.44 m/s due to wake losses, additional appendage drag, and near-free-surface effects. The four-turbine configuration exhibits approximately 30% lower total power output than the two-turbine configuration. These findings demonstrate that an integrated, system-level evaluation is essential for WPG ship design and indicate that the two-turbine configuration offers a more favorable balance between power generation capability and operational flexibility. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2802 KB  
Article
In Vitro and In Silico Evaluation of Polymyxin B Aerosol Delivery in Adult Mechanical Ventilation
by Shengnan Zhang, Guanlin Wang, Jingjing Liu, Xuejuan Zhang and Qi Pei
Pharmaceutics 2026, 18(1), 58; https://doi.org/10.3390/pharmaceutics18010058 - 31 Dec 2025
Viewed by 371
Abstract
Background: Nebulized polymyxin B (PMB) therapy is widely used in intensive care units for treating hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria, yet its pulmonary delivery performance during invasive mechanical ventilation remains poorly characterized. Methods: An in vitro adult mechanical ventilation [...] Read more.
Background: Nebulized polymyxin B (PMB) therapy is widely used in intensive care units for treating hospital-acquired and ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria, yet its pulmonary delivery performance during invasive mechanical ventilation remains poorly characterized. Methods: An in vitro adult mechanical ventilation model was used. We evaluated two nebulizers (vibrating mesh nebulizer [VMN] and jet nebulizer [JN]) at three positions (standalone nebulizer, 15 cm from the Y-piece, and the humidifier’s dry end) with two artificial airway types (endotracheal and tracheostomy tubes). Lung deposition was predicted using the multiple-path particle dosimetry model, incorporating the Yeh/Schum five-lobe adult lung model. Results: In the standalone setup, the percentage of delivered dose of VMN and JN was approximately 40% and 34%, respectively. Mechanical ventilation significantly reduced the delivered dose (all p ≤ 0.0085), with VMN at the humidifier’s dry end delivering only 2.14–2.99% of the nominal dose. In all the tested ventilation scenarios, both the use of the JN and positioning the nebulizer 15 cm from the Y-piece significantly increased aerosol delivery (all p ≤ 0.021). While the ventilator circuit reduced the total drug amount, it filtered larger aerosols. This resulted in a smaller mass median aerodynamic diameter and a higher fine particle fraction (all p < 0.0001), which doubled the predicted alveolar deposition fraction (from 13–14% in standalone to 23–28% in ventilation scenarios) and eliminated extrathoracic deposition. Conclusions: This study provides the first in vitro and in silico assessment of PMB aerosol delivery during invasive mechanical ventilation. Nebulizer type, its placement within the circuit, and the artificial airway are critical factors that significantly alter the pulmonary delivery of PMB aerosol and subsequently impact its lung deposition. Full article
(This article belongs to the Special Issue Optimizing Aerosol Therapy: Strategies for Pulmonary Drug Delivery)
Show Figures

Graphical abstract

15 pages, 9567 KB  
Article
Research on Aerodynamic Performance of Bionic Fan Blades with Microstructured Surface
by Meihong Gao, Xiaomin Liu, Meihui Zhu, Chun Shen, Zhenjiang Wei, Zhengyang Wu and Chengchun Zhang
Biomimetics 2026, 11(1), 19; https://doi.org/10.3390/biomimetics11010019 - 31 Dec 2025
Viewed by 244
Abstract
The frictional resistance of impeller machinery blades such as aircraft engines, gas turbines, and wind turbines has a decisive impact on their efficiency and energy consumption. Inspired by the micro-tooth structure on the surface of shark skin, microstructural drag reduction technology has become [...] Read more.
The frictional resistance of impeller machinery blades such as aircraft engines, gas turbines, and wind turbines has a decisive impact on their efficiency and energy consumption. Inspired by the micro-tooth structure on the surface of shark skin, microstructural drag reduction technology has become a cutting-edge research direction for improving aerodynamic performance and a continuous focus of researchers over the past 20 years. However, the significant difficulty in fabricating microstructures on three-dimensional curved surfaces has led to the limited widespread application of this technology in engineering. Addressing the issue of drag reduction and efficiency improvement for small axial flow fans (local Reynolds number range: (36,327–40,330), this paper employs Design of Experiments (DOE) combined with high-precision numerical simulation to clarify the drag reduction law of bionic microgroove surfaces and determine the dimensions of bionic microstructures on fan blade surfaces. The steady-state calculation uses the standard k-ω model and simpleFoam solver, while the unsteady Large Eddy Simulation (LES) employs the pimpleFoam solver and WALE subgrid-scale model. The dimensionless height (h+) and width (s+) of microgrooves are in the range of 8.50–29.75, and the micro-grooved structure achieves effective drag reduction. The microstructured surface is fabricated on the suction surface of the blade via a spray coating process, and the dimensions of the microstructures are determined according to the drag reduction law of grooved flat plates. Aerodynamic performance tests indicate that the shaft power consumed by the bionic fan blades during the tests is significantly reduced. The maximum static pressure efficiency of the bionic fan with micro-dimples is increased by 2.33%, while that of the bionic fan with micro-grooves is increased by 3.46%. The fabrication method of the bionic microstructured surface proposed in this paper is expected to promote the engineering application of bionic drag reduction technology. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Graphical abstract

17 pages, 5916 KB  
Article
Research on the Impact of Urban Extreme Wind Fields on UAVs’ Flight Stability in Typical Scenarios
by Jia Liu, Yu Li, Hao Yang, Jianghao Wu and Qiulin Qu
Appl. Sci. 2026, 16(1), 145; https://doi.org/10.3390/app16010145 - 23 Dec 2025
Viewed by 273
Abstract
To assess UAV (Unmanned Aerial Vehicle) flight stability in urban wind fields, this study conducted numerical simulations of urban scene and logistics UAV models and developed a wind field safety level evaluation model for UAV flight paths. First, urban wind field structures were [...] Read more.
To assess UAV (Unmanned Aerial Vehicle) flight stability in urban wind fields, this study conducted numerical simulations of urban scene and logistics UAV models and developed a wind field safety level evaluation model for UAV flight paths. First, urban wind field structures were analyzed with simulations of typical building clusters. Second, the UAV’s aerodynamic characteristics under vertical balance were elaborated. Third, sideslip angles and wind speeds were adjusted based on the UAV’s maximum wind resistance to explore aerodynamic performance variations across conditions. Finally, a safety level calculation method was proposed to determine the wind field safety distribution along target paths. The results show that building layouts significantly affect urban wind fields, forming wind acceleration zones beside high-rises and between some buildings. The acceleration effect at 25 m is stronger than at 10 m and 50 m. UAV aerodynamic moments vary greatly with wind sideslip angles, with the dangerous angle being around 150°. Flight stability and wind field structures differ notably by path and height. This evaluation method enables UAVs to avoid high-risk areas, improving urban flight stability. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

15 pages, 6063 KB  
Article
Rubber-Induced Corrosion of Painted Automotive Steel: Inconspicuous Case of Galvanic Corrosion
by Kateryna Popova, Jan Švadlena and Tomáš Prošek
Corros. Mater. Degrad. 2026, 7(1), 2; https://doi.org/10.3390/cmd7010002 - 23 Dec 2025
Viewed by 277
Abstract
Rubber components filled with carbon black are widely used in vehicles for sealing, preventing water ingress, and reducing vibration and aerodynamic noise. However, carbon particles increase the electrical conductivity of rubber. When a carbon-filled rubber part comes into contact with the metal car [...] Read more.
Rubber components filled with carbon black are widely used in vehicles for sealing, preventing water ingress, and reducing vibration and aerodynamic noise. However, carbon particles increase the electrical conductivity of rubber. When a carbon-filled rubber part comes into contact with the metal car body, it may act as a cathode, accelerating metal corrosion via galvanic coupling. This study combined volume resistivity and zero-resistance ammeter (ZRA) measurements, resistometric corrosion monitoring, and accelerated corrosion testing to assess the effect of rubber conductivity on the corrosion degradation of painted car body panels in defects. More conductive rubber induced a higher galvanic current and accelerated paint delamination from defects. Real-time monitoring confirmed an earlier onset of corrosion and higher corrosion rates for steel coupled with conductive rubber. These findings emphasize the importance of using low-conductive rubber with resistivity from 104 Ω·m to minimize the risk of galvanic corrosion of the car body. Full article
Show Figures

Figure 1

21 pages, 12257 KB  
Article
The Characterization of the Installation Effects on the Flow and Sound Field of Automotive Cooling Modules
by Tayyab Akhtar, Safouane Tebib, Stéphane Moreau and Manuel Henner
Int. J. Turbomach. Propuls. Power 2026, 11(1), 1; https://doi.org/10.3390/ijtpp11010001 - 19 Dec 2025
Viewed by 243
Abstract
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to [...] Read more.
This study investigates the aerodynamic and aeroacoustics behavior of automotive cooling modules in both conventional internal combustion engine (ICE) vehicles and electric vehicles (EVs), with a particular focus on installation effects. Numerical simulations based on the Lattice Boltzmann Method (LBM) are conducted to analyze noise generation mechanisms and flow characteristics across four configurations. The study highlights the challenges of adapting classical cooling module components to EV setups, emphasizing the influence of heat exchanger (HE) placement and duct geometry on noise levels and flow dynamics. The results show that the presence of the HE smooths the upstream flow, improves rotor loading distribution and disrupts long, coherent vortical structures, thereby reducing tonal noise. However, the additional resistance introduced by the HE leads to increased rotor loading and enhanced leakage flow through the shroud-rotor gap. Despite these effects, the overall sound pressure level (OASPL) remains largely unchanged, maintaining a similar magnitude and dipolar directivity pattern as the configuration without the HE. In EV modules, the inclusion of ducts introduces significant flow disturbances and localized pressure fluctuations, leading to regions of high flow rate and rotor loading. These non-uniform flow conditions excite duct modes, resulting in troughs and humps in the acoustic spectrum and potentially causing resonance at the blade-passing frequency, which increases the amplitude in the lower frequency range. Analysis of the loading force components reveals that rotor loading is primarily driven by thrust forces, while duct loading is dominated by lateral forces. Across all configurations, fluctuations at the leading and trailing edges of the rotor are observed, originating from the blade tip and extending to approximately mid-span. These fluctuations are more pronounced in the EV module, identifying it as the dominant source of pressure disturbances. The numerical results are validated against experimental data obtained in the anechoic chamber at the University of Sherbrooke and show good agreement. The relative trends are accurately predicted at lower frequencies, with slight over-prediction, and closely match the experimental data at mid-frequencies. Full article
(This article belongs to the Special Issue Advances in Industrial Fan Technologies)
Show Figures

Figure 1

31 pages, 3254 KB  
Article
An Electric Vehicle Conversion for Rural Mobility in Sub-Saharan Africa
by Daneel Wasserfall, Stefan Botha and Marthinus Johannes Booysen
Energies 2025, 18(24), 6625; https://doi.org/10.3390/en18246625 - 18 Dec 2025
Viewed by 490
Abstract
Rural Sub-Saharan Africa (SSA) faces limited transport options, with many dispersed settlements dependent on poorly maintained roads. Light delivery vehicles (LDVs) can improve mobility, but conventional internal combustion engine vehicles are costly to operate and contribute to emissions. Electric vehicle (EV) conversions offer [...] Read more.
Rural Sub-Saharan Africa (SSA) faces limited transport options, with many dispersed settlements dependent on poorly maintained roads. Light delivery vehicles (LDVs) can improve mobility, but conventional internal combustion engine vehicles are costly to operate and contribute to emissions. Electric vehicle (EV) conversions offer a practical alternative by extending vehicle life and reducing energy, maintenance, and environmental costs. This study presents a simulation-based framework to guide LDV conversion design for rural SSA. The framework includes component sizing, subsystem modeling, and full-vehicle benchmarking under representative conditions. Scenario-based simulations include trips ranging from shorter local access routes to longer remote trips on both paved and dirt roads, allowing the conversion’s performance to be quantified under representative conditions. A sensitivity analysis indicates that road grade, aerodynamic drag, and rolling resistance are the primary factors driving energy use variation. Using the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) drive cycle, the conversion energy consumption (∼217 Wh/km) comparable to that of commercial electric vans, though the range is reduced relative to its battery capacity. The framework establishes a benchmark for EV conversion performance in SSA and supports broader adoption of sustainable rural mobility solutions. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

30 pages, 4190 KB  
Article
Reinventing a Mine Shaft for a Zero-G and Reduced-Gravity Space Research Facility: A Concept
by Dariusz Michalak, Jarosław Tokarczyk, Bartosz Orzeł, Magdalena Rozmus and Kamil Szewerda
Appl. Sci. 2025, 15(24), 13261; https://doi.org/10.3390/app152413261 - 18 Dec 2025
Viewed by 280
Abstract
This paper presents an innovative concept for the adaptive transformation of decommissioned coal mine shafts into advanced reduced-gravity research facilities, addressing both post-mining land management and continuous advancements in microgravity research. The proposed solution leverages existing underground infrastructure to create an exceptionally long [...] Read more.
This paper presents an innovative concept for the adaptive transformation of decommissioned coal mine shafts into advanced reduced-gravity research facilities, addressing both post-mining land management and continuous advancements in microgravity research. The proposed solution leverages existing underground infrastructure to create an exceptionally long drop tower, approximately 900 m, surpassing the operational capabilities of all current global facilities. The facility employs electromagnetic propulsion and braking systems compatible with maglev technology, enabling extended microgravity durations and the precise simulation of multiple planetary gravity environments. Comprehensive numerical simulations, taking into account realistic mining shaft geometries, aerodynamic resistance, and mechanical vibration isolation, demonstrate that the system achieves free-fall periods of at least 10 s, which will be longer in the case of a capsule drop for research in reduced-gravity conditions (controlled deceleration of the capsule during the drop). The six-point suspension system effectively isolates experimental payloads from vibrations generated during descent. Beyond technological innovation, the facility exemplifies multidimensional sustainability by integrating scientific advancement with regional economic revitalization, employment generation for mining communities, industrial heritage preservation, and alignment with European Green Deal objectives. This globally unique research center would provide unprecedented opportunities for materials science, space biology, and industrial experimentation, while demonstrating innovative repurposing of post-mining assets. Full article
Show Figures

Figure 1

16 pages, 4436 KB  
Article
CFD Application to Poultry Crate Design Improving Internal Airflow Velocities
by Victor Abreu de Lima, Jasson Fernandez Gurgel, Daniel Gurgel Pinheiro, Nítalo André Farias Machado, José Antonio Delfino Barbosa Filho, Antonio Velarde, Iran José Oliveira da Silva and Marcos Vinícius da Silva
Animals 2025, 15(24), 3633; https://doi.org/10.3390/ani15243633 - 17 Dec 2025
Viewed by 398
Abstract
Poultry transport represents a significant animal welfare challenge, particularly when birds are exposed to heat stress during travel, a condition that can compromise physiological stability, performance, and survival. Despite the relevance of this issue, research on engineering improvements to poultry transport crates remains [...] Read more.
Poultry transport represents a significant animal welfare challenge, particularly when birds are exposed to heat stress during travel, a condition that can compromise physiological stability, performance, and survival. Despite the relevance of this issue, research on engineering improvements to poultry transport crates remains limited. In this study, four virtual models of poultry transport crates were evaluated to assess their potential to improve the thermal comfort internal airflow conditions. Computational Fluid Dynamics (CFD) simulations were conducted under three transport speeds, complemented by wind tunnel experiments using reduced-scale prototypes fabricated by additive manufacturing. The results demonstrated that the alternative crate 3 (AC3) model presented exhibited superior internal average airflow velocities (IAFV) across all speeds, including a 32.85% increase compared to the conventional crate at 60 km/h. Wind tunnel testing confirmed significant differences among crate designs. AC3 showed lower air temperature than AC1 and reduced relative humidity compared to CC and AC2. Thermal comfort indices supported these findings, with AC3 presenting the lowest THI and enthalpy, indicating a less stressful microclimate. In terms of airflow, AC2 and AC3 achieved higher IAFV (19.27 ± 8.49 m/s and 19.30 ± 4.80 m/s) than CC and AC1. AC3 also had the lowest dynamic pressure, suggesting reduced airflow resistance and more efficient aerodynamics. Therefore, improved crate geometry and increased ventilation surface can enhance airflow distribution, potentially reduce heat accumulation and improve animal welfare. However, further studies involving live birds, realistic stocking densities, and full-scale trailer simulations are required to validate these benefits under commercial transport conditions. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

26 pages, 8045 KB  
Article
Analyzing Added Wave and Superstructure Resistance Based on North Pacific Ocean Sea State
by Burak Göksu and Kadir Emrah Erginer
Sustainability 2025, 17(24), 11245; https://doi.org/10.3390/su172411245 - 15 Dec 2025
Viewed by 426
Abstract
It is recognized that a ship’s performance, speed, fuel consumption, and resistance are impacted by the marine environment. The magnitude of this effect, which can be altered by ship design and operational conditions, necessitates added resistance calculations for optimizing these phases. Ship designers [...] Read more.
It is recognized that a ship’s performance, speed, fuel consumption, and resistance are impacted by the marine environment. The magnitude of this effect, which can be altered by ship design and operational conditions, necessitates added resistance calculations for optimizing these phases. Ship designers can generate efficient hull forms and operators can make sound navigational decisions to reduce emissions within the service zone. For this research, air and wave resistances were calculated using the KCS hull form with a superstructure during a simulated voyage in the North Pacific Ocean. To verify the results, data from towing tank tests available in the literature were used, along with calm water resistance calculations obtained from a computational fluid dynamics (CFD) analysis conducted for this study. When transporting 3600 loaded containers, sea conditions at model-scale impact the ship’s power requirements, leading to air resistance from the superstructure (aerodynamic) and hull resistance from head waves. This research compares the increased wave and air resistance with calm water resistance to provide important insights into the main engine power requirements when traveling in this region. Cruising between 14 and 18 knots generates 8–11% added resistance when encountering head waves at Sea State 5. Full article
Show Figures

Figure 1

16 pages, 3130 KB  
Article
Mechanical, Structural, and Electrochemical Performance of Polyurethane Coatings for Corrosion Protection in Wind Energy Systems
by Oscar Xosocotla, María del Pilar Rodríguez-Rojas, Rafael Campos-Amezcua, Horacio Martínez, Victoria Bustos-Terrones and Oscar Guadarrama Pérez
Coatings 2025, 15(12), 1476; https://doi.org/10.3390/coatings15121476 - 15 Dec 2025
Cited by 1 | Viewed by 392
Abstract
Erosion of the leading edge is one of the most severe forms of damage in wind turbine blades, particularly in offshore wind farms. This degradation, mainly caused by rain, sand, and airborne particles through droplet impingement wear, significantly decreases blade aerodynamic efficiency and [...] Read more.
Erosion of the leading edge is one of the most severe forms of damage in wind turbine blades, particularly in offshore wind farms. This degradation, mainly caused by rain, sand, and airborne particles through droplet impingement wear, significantly decreases blade aerodynamic efficiency and power output. Since blades, typically made of fiber-reinforced polymer composites, are the most expensive components of a turbine, developing protective coatings is essential. In this study, polyurethane (PU) composite coatings reinforced with titanium dioxide (TiO2) particles were added on glass fiber substrates by spray coating. The incorporation of TiO2 improved the mechanical and electrochemical performance of the PU coatings. FTIR and XRD confirmed that low TiO2 loadings (1 and 3 wt%) were well dispersed within the PU matrix due to hydrogen bonding between TiO2 –OH groups and PU –NH groups. The PU/TiO2 3% coating exhibited ~61% lower corrosion current density (I_corr) compared to neat PU, indicating superior corrosion resistance. Furthermore, uniform TiO2 dispersion resulted in statistically significant improvements (p < 0.05) in hardness, yield strength, elastic modulus, and adhesion strength. Overall, the PU/TiO2 coatings, particularly at 3 wt% loading, show strong potential as protective materials for wind turbine blades, given their enhanced mechanical integrity and corrosion resistance. Full article
Show Figures

Figure 1

31 pages, 11128 KB  
Article
Passenger Car Aerodynamic Drag, Thermal Cooling: A Perspective for Energy Saving and Improving Environment
by Firoz Alam, Simon Watkins, Yingai Jin and Xingjun Hu
Energies 2025, 18(24), 6433; https://doi.org/10.3390/en18246433 - 9 Dec 2025
Viewed by 504
Abstract
Passenger cars, sports utility vehicles (SUVs), and light trucks/vans, constituting the overwhelming majority of all road vehicles globally, burn about 25% of all fossil fuels, emit significant amounts of greenhouse gas emissions (CO2), and deteriorate the environment. Nearly three-quarters of the [...] Read more.
Passenger cars, sports utility vehicles (SUVs), and light trucks/vans, constituting the overwhelming majority of all road vehicles globally, burn about 25% of all fossil fuels, emit significant amounts of greenhouse gas emissions (CO2), and deteriorate the environment. Nearly three-quarters of the engine power generated by burning fossil fuels is required to overcome aerodynamic resistance (drag) at highway driving speeds. Streamlining the body shape, especially the projected frontal area, can lead to a decrease in aerodynamic drag. Even though drag coefficients have plateaued since the late 1990s, further altering body shape might worsen vehicle cooling. Thus, the primary objective of this study is to explore the potential for aerodynamic drag reduction and improved cooling performance through careful component design unaffected by stylistic restraints. A variety of strategies for protecting the cooling intakes to reduce the drag coefficient are considered. The potential cooling drag reduction was found to be around 7% without compromising the cooling performance, which is in line with predictions for roughly 2.9% and 1.7% fuel consumption reductions for highway and city driving conditions, respectively. The study also reveals that passenger electric cars designed for city driving conditions possess a battery-to-kerb weight ratio of around one-quarter of the kerb weight, and vehicles designed for higher ranges have significantly higher ratios (nearly one-third), resulting in higher rolling resistance and energy consumption. The reduction of battery weight for EVs, streamlining vehicle shapes, and applying active and passive airflow management can help reduce aerodynamic drag and rolling resistance further, enhance driving range, and reduce energy consumption and greenhouse gas emissions. Full article
Show Figures

Figure 1

28 pages, 4434 KB  
Article
From Bacterial Extract to Breakthrough Therapy: Pseudomonas fluorescens-Enabled Green Synthesis of pH-Responsive Chitosan–Silver Hybrid Nanoparticles for Next-Generation Pulmonary Drug Delivery Anti-MDR Treatment
by Khulood Fahad Alabbosh, Alaa Elmetwalli, Naseh A. Algehainy and Faisal H. Altemani
Pharmaceutics 2025, 17(12), 1527; https://doi.org/10.3390/pharmaceutics17121527 - 27 Nov 2025
Viewed by 648
Abstract
Background: Multidrug-resistant (MDR) pulmonary infections represent a critical global health challenge, necessitating innovative therapeutic approaches. Green synthesis methodologies offer sustainable alternatives for nanoparticle fabrication while addressing antimicrobial resistance. Methods: Stimuli-responsive chitosan–silver hybrid nanoparticles (CS–Ag HNPs) were biosynthesized using Pseudomonas fluorescens bacterial extracts and [...] Read more.
Background: Multidrug-resistant (MDR) pulmonary infections represent a critical global health challenge, necessitating innovative therapeutic approaches. Green synthesis methodologies offer sustainable alternatives for nanoparticle fabrication while addressing antimicrobial resistance. Methods: Stimuli-responsive chitosan–silver hybrid nanoparticles (CS–Ag HNPs) were biosynthesized using Pseudomonas fluorescens bacterial extracts and loaded with ciprofloxacin for targeted pulmonary delivery. Comprehensive characterization included dynamic light scattering, transmission electron microscopy, UV–visible spectroscopy, and aerodynamic assessment via next-generation impactor. Antimicrobial efficacy was evaluated against MDR Pseudomonas aeruginosa and Klebsiella pneumoniae, including biofilm disruption studies, and biocompatibility was assessed. Molecular docking analysis elucidated binding mechanisms. Cytotoxicity and epithelial barrier integrity were evaluated using Calu-3 cell models. Results: The biosynthesized NPs exhibited optimal physicochemical properties (180 ± 20 nm, PDI 0.21 ± 0.04, ζ-potential + 32.4 ± 3.1 mV) with high encapsulation efficiency (68.2 ± 4.0%). Aerodynamic analysis revealed excellent inhalation characteristics (MMAD 2.6 μm, FPF 65 ± 5%). The hybrid system demonstrated 4-fold enhanced antimicrobial activity against MDR pathogens and significant biofilm disruption (70% for P. aeruginosa, 65% for K. pneumoniae) compared to free ciprofloxacin. Cell viability remained ≥85% at therapeutic concentrations. Molecular docking revealed enhanced drug-target binding affinity (−11.2 vs. −9.3 kcal/mol) and multi-residue interactions. Conclusions: Green-synthesized CS–Ag HNPs represent a promising sustainable platform for combating pulmonary MDR infections through enhanced antimicrobial efficacy and optimal aerodynamic properties. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Pulmonary Drug Delivery)
Show Figures

Figure 1

17 pages, 6575 KB  
Article
Wind Load Distribution Characteristics of a Semi-Enclosed Sound Barrier at the Junction of a Single-Track Bridge and Three-Track Bridge of a High-Speed Railway
by Botao Li, Yinhui Bao, Guoqing Hu and Xun Zhang
Vibration 2025, 8(4), 75; https://doi.org/10.3390/vibration8040075 - 24 Nov 2025
Viewed by 352
Abstract
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic [...] Read more.
Due to its effective noise reduction, the semi-enclosed noise barrier is increasingly being applied in the construction of high-speed railways. However, there is still a lack of systematic research on the wind load distribution characteristics under natural crosswind, especially for the complex aerodynamic behavior of the intersection section of multi-line bridges. Therefore, the wind load distribution characteristics on the surface of the sound barrier under crosswind conditions are explored within the engineering context of a semi-enclosed acoustic barrier at the junction of a single-track bridge and a three-track bridge, using a combination of wind tunnel testing and numerical simulation. A rigid-body model with a geometric scale of 1:10 is established for the wind tunnel test. The wind load distribution characteristics of the two acoustic barriers are analyzed from the perspectives of mean wind pressure, pulsating wind pressure, and extreme wind pressure, respectively. FLUENT 2022 software is utilized to model the flow field characteristics of the sound barrier under two working conditions: windward and leeward. The results show that under the action of crosswind, the surface wind load of the sound barrier at the junction of the single/three-line bridge is very prominent, the maximum negative pressure shape coefficient is −4.516, and its distribution is dominated by negative pressure; that is, the sound barrier mainly bears suction. Compared with the semi-closed sound barrier on the single-track bridge, the extreme wind pressure at the semi-closed sound barrier on the three-track bridge and the junction of the two is more significant, which shows that this kind of area needs special attention in wind-resistant design. Full article
(This article belongs to the Special Issue Railway Dynamics and Ground-Borne Vibrations)
Show Figures

Figure 1

21 pages, 18140 KB  
Article
Effect of Formation Flight on Flight Endurance Performance of Solar-Powered UAV
by Cili Qiang and Zhijin Wang
Symmetry 2025, 17(11), 1997; https://doi.org/10.3390/sym17111997 - 18 Nov 2025
Viewed by 374
Abstract
Traditional solar-powered unmanned aerial vehicles (SUAVs) universally adopt ultra-high aspect ratio designs to enhance aerodynamic efficiency, which unfortunately leads to significant issues such as reduced structural reliability and poor resistance to atmospheric disturbances. In contrast, SUAVs with low aspect ratios suffer from inferior [...] Read more.
Traditional solar-powered unmanned aerial vehicles (SUAVs) universally adopt ultra-high aspect ratio designs to enhance aerodynamic efficiency, which unfortunately leads to significant issues such as reduced structural reliability and poor resistance to atmospheric disturbances. In contrast, SUAVs with low aspect ratios suffer from inferior aerodynamic efficiency, making it challenging to achieve long-endurance flight. This study addresses the endurance performance of low-aspect-ratio SUAVs by proposing and demonstrating a formation flight strategy to improve their cruise efficiency. To investigate the endurance characteristics of SUAVs, an energy model was established, encompassing solar cell power generation, battery energy storage, avionics, and propulsion systems. Computational fluid dynamics (CFD) simulations and surrogate modeling techniques were employed to develop a proxy model correlating formation parameters with lift and drag characteristics. Using this surrogate model, the formation parameters were optimized to minimize cruise power consumption. Energy simulations were subsequently conducted for both solo and formation flight scenarios. The results indicate that the optimized formation configuration achieved a 15% increase in maximum lift-to-drag ratio. Energy simulation results indicate that the endurance performance of SUAVs under formation flight is enhanced by 92.7%, 43.3%, and 18.8% at latitudes of 45° N, 50° N, and 60° N, respectively. These findings confirm the feasibility of using formation flight to enable sustained operation for small SUAVs. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Dynamics and Control of Biomimetic Robots)
Show Figures

Figure 1

Back to TopTop