CFD Application to Poultry Crate Design Improving Internal Airflow Velocities
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Conception, Characterization and Determination of Models
2.2. Computational Domain, Grids and Numerical Simulation
2.3. Wind Tunnel Tests
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangoremi, A.A.; Olayanju, O.K.; Koko, D.T.; Bamigboye, O.; Alfred, M.O. Management of Poultry and Poultry Wastewater. In Strategic Management of Wastewater from Intensive Rural Industries; Springer Nature: Cham, Switzerland, 2025; pp. 233–255. [Google Scholar]
- Weeks, C.A.; Tuyttens, F.A.M.; Grandin, T. Poultry Handling and Transport. In Livestock Handling and Transport; CABI: Wallingford, UK, 2019; pp. 404–426. [Google Scholar]
- Benincasa, N.C.; Sakamoto, K.S.; Da Silva, I.J.O.; Lobos, C.M.V. Animal Welfare: Impacts of Pre-Slaughter Operations on the Current Poultry Industry. J. Anim. Behav. Biometeorol. 2020, 8, 104–110. [Google Scholar] [CrossRef]
- Allen, V.M.; Burton, C.H.; Wilkinson, D.J.; Whyte, R.T.; Harris, J.A.; Howell, M.; Tinker, D.B. Evaluation of the Performance of Different Cleaning Treatments in Reducing Microbial Contamination of Poultry Transport Crates. Br. Poult. Sci. 2008, 49, 233–240. [Google Scholar] [CrossRef]
- Wurtz, K.E.; Herskin, M.S.; Riber, A.B. Water Deprivation in Poultry in Connection with Transport to Slaughter—A Review. Poult. Sci. 2024, 103, 103419. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.Y.; Ahmed, A.A.; Jammaa, M.H.; AL Makhmari, M.R.; Husien, H.M.; Essa, M.O.A.; Elwan, H.; Shehab-El-Deen, M.; Elnesr, S.S.; Saleh, A.A.; et al. Traditional Transportation Methods and Their Influence on Local Chicken Welfare, Behavior, and Blood Profiles: A Policy Considerations. Vet. Sci. 2025, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, V.M.; Dallago, B.S.L.; Racanicci, A.M.C.; Santana, P.; Bernal, F.E.M. Effects of Season and Distance during Transport on Broiler Chicken Meat. Poult. Sci. 2017, 96, 4270–4279. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, Y.; Jiang, N.; Li, K.; Xing, T.; Chen, L.; Wang, X.; Tang, Y.; Xu, X. Effects of Water-Misting Spray Combined with Forced Ventilation on Heat Induced Meat Gelation in Broiler after Summer Transport. Poult. Sci. 2016, 95, 2441–2448. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; Herskin, M.; et al. Welfare of Domestic Birds and Rabbits Transported in Containers. EFSA J. 2022, 20, e07441. [Google Scholar] [CrossRef]
- Abidin, Z.Z.; Sulaiman, N.F.A.; Ramiah, S.K.; Awad, E.A.; Idrus, Z. The Effect of Water Shower Spray on Stress Physiology and Mortality in Broiler Chickens Subjected to Road Transportation under the Hot and Humid Tropical Condition. Trop. Anim. Health Prod. 2022, 54, 354. [Google Scholar] [CrossRef]
- dos Santos, V.M.; Dallago, B.S.L.; Racanicci, A.M.C.; Santana, Â.P.; Cue, R.I.; Bernal, F.E.M. Effect of Transportation Distances, Seasons and Crate Microclimate on Broiler Chicken Production Losses. PLoS ONE 2020, 15, e0232004. [Google Scholar] [CrossRef]
- Miftakhutdinov, A.V.; Sayfulmulukov, E.R.; Ponomareva, T.A. Heat and Transport Stress in Industrial Poultry: Problems and Solution. Russ. Agric. Sci. 2022, 48, 405–412. [Google Scholar] [CrossRef]
- Di Martino, G.; Capello, K.; Russo, E.; Mazzucato, M.; Mulatti, P.; Ferrè, N.; Garbo, A.; Brichese, M.; Marangon, S.; Bonfanti, L. Factors Associated with Pre-Slaughter Mortality in Turkeys and End of Lay Hens. Animal 2017, 11, 2295–2300. [Google Scholar] [CrossRef]
- Jacobs, L.; Delezie, E.; Duchateau, L.; Goethals, K.; Ampe, B.; Lambrecht, E.; Gellynck, X.; Tuyttens, F.A.M. Effect of Post-Hatch Transportation Duration and Parental Age on Broiler Chicken Quality, Welfare, and Productivity. Poult. Sci. 2016, 95, 1973–1979. [Google Scholar] [CrossRef]
- Rui, B.R.; de Angrimani, D.S.R.; Silva, M.A.A. da Pontos Críticos No Manejo Pré-Abate de Frango de Corte: Jejum, Captura, Carregamento, Transporte e Tempo de Espera No Abatedouro. Ciênc. Rural. 2011, 41, 1290–1296. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.S.; Faucitano, L.; Dadgar, S.; Shand, P.; González, L.A.; Crowe, T.G. Road Transport of Cattle, Swine and Poultry in North America and Its Impact on Animal Welfare, Carcass and Meat Quality: A Review. Meat. Sci. 2012, 92, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Hussnain, F.; Mahmud, A.; Mehmood, S.; Jaspal, M.H. Effect of Transportation Distance and Crating Density on Preslaughter Losses and Blood Biochemical Profile in Broilers during Hot and Humid Weather. Turk. J. Vet. Anim. Sci. 2020, 44, 418–426. [Google Scholar] [CrossRef]
- Baker, C.J. Aerodynamics of Poultry Transporters: Implications for Environmental Control. Worlds Poult. Sci. J. 1994, 50, 62–63. [Google Scholar] [CrossRef]
- Randall, J.M.; Streader, W.V.; Meehan, A.M. Vibration on Poultry Transporters. Worlds Poult. Sci. J. 1994, 50, 64–65. [Google Scholar] [CrossRef]
- Vinco, L.J.; Archetti, I.L.; Giacomelli, S.; Lombardi, G. Influence of Crate Height on the Welfare of Broilers during Transport. J. Vet. Behav. 2016, 14, 28–33. [Google Scholar] [CrossRef]
- Pinheiro, D.G.; Machado, N.A.F.; Barbosa Filho, J.A.D.; Da Silva, I.J. Computational Analysis of Load Ventilation in Broiler Transport. Eng. Agrícola 2021, 41, 9–18. [Google Scholar] [CrossRef]
- Saeed, M.; Abbas, G.; Alagawany, M.; Kamboh, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Chao, S. Heat Stress Management in Poultry Farms: A Comprehensive Overview. J. Therm. Biol. 2019, 84, 414–425. [Google Scholar] [CrossRef]
- Spurio, R.S.; Soares, A.L.; Carvalho, R.H.; Silveira Junior, V.; Grespan, M.; Oba, A.; Shimokomaki, M. Improving Transport Container Design to Reduce Broiler Chicken PSE (Pale, Soft, Exudative) Meat in Brazil. Anim. Sci. J. 2016, 87, 277–283. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Barbosa-Filho, J.A.D.; Ramalho, G.L.B.; Pandorfi, H.; Silva, I.J.O. Trailer Heat Zones and Their Relation to Heat Stress Ing Pig Transport. Eng. Agrícola 2021, 4430, 427–437. [Google Scholar] [CrossRef]
- Pinheiro, D.G.; Barbosa Filho, J.A.D.; Machado, N.A.F. Impact of Load Layout on Internal Ventilation During the Transport of Broilers. Eng. Agrícola 2022, 42, e20220017. [Google Scholar] [CrossRef]
- Gilkeson, C.A.; Thompson, H.M.; Wilson, M.C.T.; Gaskell, P.H. Quantifying Passive Ventilation within Small Livestock Trailers Using Computational Fluid Dynamics. Comput. Electron. Agric. 2016, 124, 84–99. [Google Scholar] [CrossRef]
- Li, H.; Rong, L.; Zhang, G. Study on Convective Heat Transfer from Pig Models by CFD in a Virtual Wind Tunnel. Comput. Electron. Agric. 2016, 123, 203–210. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Guo, S.; Zhang, J.; Wei, B.; Sun, J.; Shu, S. Ventilation Optimization of Solar Greenhouse with Removable Back Walls Based on CFD. Comput. Electron. Agric. 2018, 149, 16–25. [Google Scholar] [CrossRef]
- Ilangovan, A.; Curto, J.; Gaspar, P.D.; Silva, P.D.; Alves, N. CFD Modelling of the Thermal Performance of Fruit Packaging Boxes—Influence of Vent-Holes Design. Energies 2021, 14, 7990. [Google Scholar] [CrossRef]
- Ahmadi Babadi, K.; Khorasanizadeh, H.; Aghaei, A. CFD Modeling of Air Flow, Humidity, CO2 and NH3 Distributions in a Caged Laying Hen House with Tunnel Ventilation System. Comput. Electron. Agric. 2022, 193, 106677. [Google Scholar] [CrossRef]
- Conselho Nacional de Trânsito. Resolução CONTRAN No 961, de 17 de Maio de 2022; Conselho Nacional de Trânsito: Brasília, DF, Brazil, 2022; Volume 98.
- Farouk, M. Comparative Study of Hexagon & Square Windcatchers Using CFD Simulations. J. Build. Eng. 2020, 31, 101366. [Google Scholar] [CrossRef]
- Berman, A.; Horovitz, T.; Kaim, M.; Gacitua, H. A Comparison of THI Indices Leads to a Sensible Heat-Based Heat Stress Index for Shaded Cattle That Aligns Temperature and Humidity Stress. Int. J. Biometeorol. 2016, 60, 1453–1462. [Google Scholar] [CrossRef]
- Rodrigues, V.C.; da Silva, I.J.O.; Vieira, F.M.C.; Nascimento, S.T. A Correct Enthalpy Relationship as Thermal Comfort Index for Livestock. Int. J. Biometeorol. 2011, 55, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Garcia Neto, M.; Perri, S.; Sandre, D.; Faria, M., Jr.; Oliveira, P.; Pinto, M.; Cassiano, R. Techniques to Minimize the Effects of Acute Heat Stress or Chronic in Broilers. Braz. J. Poult. Sci. 2019, 21, eRBCA-2018. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Martin, J.E.; Barbosa-Filho, J.A.D.; Dias, C.T.S.; Pinheiro, D.G.; Oliveira, K.P.L.; Souza-Junior, J.B.F. Identification of Trailer Heat Zones and Associated Heat Stress in Weaner Pigs Transported by Road in Tropical Climates. J. Therm. Biol. 2021, 97, 102882. [Google Scholar] [CrossRef] [PubMed]
- Emesu, P.; Chepete, J.H.; Thipe, E.L. Computational Fluid Dynamics Assessment of Natural Ventilation in Three Types of Large-Scale Broiler Poultry Houses in Botswana. Sci. Afr. 2025, 27, e02587. [Google Scholar] [CrossRef]
- Ma, H.; Tu, Y.; Yang, X.; Yang, Z.; Liang, C. Influence of Tunnel Ventilation on the Indoor Thermal Environment of a Poultry Building in Winter. Build Environ. 2022, 223, 109448. [Google Scholar] [CrossRef]
- Mitchell, M.A.; Kettlewell, P.J. Physiological Stress and Welfare of Broiler Chickens in Transit: Solutions Not Problems! Poult. Sci. 1998, 77, 1803–1814. [Google Scholar] [CrossRef]
- Tabase, R.K.; Van Linden, V.; Bagci, O.; De Paepe, M.; Aarnink, A.J.A.; Demeyer, P. CFD Simulation of Airflows and Ammonia Emissions in a Pig Compartment with Underfloor Air Distribution System: Model Validation at Different Ventilation Rates. Comput. Electron. Agric. 2020, 171, 105297. [Google Scholar] [CrossRef]
- Machado, N.A.F.; Barbosa Filho, J.A.D.; de Sousa, A.C.; de Sousa, A.M.; Corrêa, W.C.; Rodrigues, A.A.; Cunha, B.B. Numerical Evaluation of Aerodynamic Devices in Mitigating Heat Stress in Pigs During Transport. Eng. Agric. 2024, 44, e20230162. [Google Scholar] [CrossRef]
- Seedorf, J.; Schmidt, R.-G. The Simulated Air Flow Pattern around a Moving Animal Transport Vehicle as the Basis for a Prospective Biosecurity Risk Assessment. Heliyon 2017, 3, e00358. [Google Scholar] [CrossRef]
- Norton, T.; Kettlewell, P.; Mitchell, M. A Computational Analysis of a Fully-Stocked Dual-Mode Ventilated Livestock Vehicle during Ferry Transportation. Comput. Electron. Agric. 2013, 93, 217–228. [Google Scholar] [CrossRef]







| Item | External Dimensions (Length × Width × Height in cm) | Internal Dimensions (Length × Width × Height in cm) |
|---|---|---|
| CC | 77 × 57 × 32 | 71.5 × 54 × 24 |
| AC1 | 79 × 59 × 31 | 74 × 54 × 25 |
| AC2 | 79 × 59 × 31 | 74 × 54 × 25 |
| AC3 | 77 × 57 × 32 | 71.5 × 54 × 24 |
| Crate Design | TSALS (cm2) | TSAOLS (cm2) | TSASS (cm2) | TSAOSS (cm2) |
|---|---|---|---|---|
| CC | 4389 | 533.1 | 1824 | 345.8 |
| AC1 | 4661 | 456 | 1829 | 403 |
| AC2 | 4661 | 456 | 1829 | 403 |
| AC3 | 4389 | 1358 | 1824 | 902.5 |
| Crate Design | 30 km/h | 60 km/h | 90 km/h |
|---|---|---|---|
| CC | 3.2 ± 0.11 b | 7.58 ± 0.23 b | 11.37 ± 0.34 b |
| AC1 | 1.83 ± 0.05 c | 3.51 ± 0.11 c | 6.43 ± 0.19 c |
| AC2 | 1.69 ± 0.07 c | 3.64 ± 0.14 c | 5.09 ± 0.15 c |
| AC3 | 4.99 ± 0.15 a | 10.07 ± 0.30 a | 14.92 ± 0.45 a |
| Crate Design | TA (°C) | RH (%) | THI | H (kJ/kg) | IAFV (m/s) | DP (Pa) |
|---|---|---|---|---|---|---|
| CC | 35.73 ± 0.21 ab | 36.88 ± 0.34 a | 87.03 ± 0.25 a | 69.95 ± 0.32 b | 16.14 ± 7.70 b | 226.17 ± 75.71 b |
| AC1 | 36.02 ± 0.24 a | 36.42 ± 0.36 ab | 87.37 ± 0.34 a | 70.35 ± 0.56 a | 17.02 ± 7.94 b | 244.33 ± 79.99 a |
| AC2 | 35.90 ± 0.20 ab | 37.00 ± 0.43 a | 87.34 ± 0.29 a | 70.54 ± 0.51 a | 19.27 ± 8.49 a | 246.33 ± 79.32 a |
| AC3 | 35.35 ± 0.20 b | 35.95 ± 0.31 b | 86.13± 0.25 b | 68.01 ± 0.32 c | 19.30 ± 4.80 a | 156.83 ± 51.79 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, V.A.d.; Gurgel, J.F.; Pinheiro, D.G.; Machado, N.A.F.; Barbosa Filho, J.A.D.; Velarde, A.; Silva, I.J.O.d.; Silva, M.V.d. CFD Application to Poultry Crate Design Improving Internal Airflow Velocities. Animals 2025, 15, 3633. https://doi.org/10.3390/ani15243633
Lima VAd, Gurgel JF, Pinheiro DG, Machado NAF, Barbosa Filho JAD, Velarde A, Silva IJOd, Silva MVd. CFD Application to Poultry Crate Design Improving Internal Airflow Velocities. Animals. 2025; 15(24):3633. https://doi.org/10.3390/ani15243633
Chicago/Turabian StyleLima, Victor Abreu de, Jasson Fernandez Gurgel, Daniel Gurgel Pinheiro, Nítalo André Farias Machado, José Antonio Delfino Barbosa Filho, Antonio Velarde, Iran José Oliveira da Silva, and Marcos Vinícius da Silva. 2025. "CFD Application to Poultry Crate Design Improving Internal Airflow Velocities" Animals 15, no. 24: 3633. https://doi.org/10.3390/ani15243633
APA StyleLima, V. A. d., Gurgel, J. F., Pinheiro, D. G., Machado, N. A. F., Barbosa Filho, J. A. D., Velarde, A., Silva, I. J. O. d., & Silva, M. V. d. (2025). CFD Application to Poultry Crate Design Improving Internal Airflow Velocities. Animals, 15(24), 3633. https://doi.org/10.3390/ani15243633

