Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,226)

Search Parameters:
Keywords = advantage depth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2193 KiB  
Review
How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects
by Gabriel Atampugre Atampugbire, Joanna Afokai Quaye and Giovanni Gadda
Catalysts 2025, 15(8), 736; https://doi.org/10.3390/catal15080736 (registering DOI) - 1 Aug 2025
Abstract
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower [...] Read more.
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower overall costs, and environmental friendliness are some advantages biocatalysis has over conventional chemical synthesis, which has made biocatalysis increasingly used in industry. We highlight three necessary fields that are fundamental to advancing industrial biocatalysis, including biocatalyst engineering, solvent engineering, and mechanistic engineering. However, the fundamental mechanism of enzyme function is often overlooked or given less attention, which can limit the engineering process. In this review, we describe how mechanistic enzymology benefits industrial biocatalysis by elucidating key fundamental principles, including the kcat and kcat/Km parameters. Mechanistic enzymology presents a unique field that provides in-depth insights into the molecular mechanisms of enzyme activity and includes areas such as reaction kinetics, catalytic mechanisms, structural analysis, substrate specificity, and protein dynamics. In line with the objective of protein engineering to optimize enzyme activity, we summarize a range of strategies reported in the literature aimed at improving the product release rate, the chemical step of catalysis, and the overall catalytic efficiency of enzymes. Further into this review, we delineate kinetic solvent viscosity effects (KSVEs) as a very efficient, cost-effective, and easy-to-perform method to probe different aspects of enzyme reaction mechanisms, including diffusion-dependent kinetic steps and rate-limiting steps. KSVEs are cost-effective because simple kinetic enzyme assays, such as the Michaelis–Menten kinetic approach, can be combined with them without the need for specialized and costly equipment. Other techniques in protein engineering and genetic engineering are also covered in this review. Additionally, we provide information on solvent systems in enzymatic reactions, details on immobilized biocatalysts, and common misconceptions that misguide enzyme design and optimization processes. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

25 pages, 5899 KiB  
Review
Non-Invasive Medical Imaging in the Evaluation of Composite Scaffolds in Tissue Engineering: Methods, Challenges, and Future Directions
by Samira Farjaminejad, Rosana Farjaminejad, Pedram Sotoudehbagha and Mehdi Razavi
J. Compos. Sci. 2025, 9(8), 400; https://doi.org/10.3390/jcs9080400 (registering DOI) - 1 Aug 2025
Abstract
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities [...] Read more.
Tissue-engineered scaffolds, particularly composite scaffolds composed of polymers combined with ceramics, bioactive glasses, or nanomaterials, play a vital role in regenerative medicine by providing structural and biological support for tissue repair. As scaffold designs grow increasingly complex, the need for non-invasive imaging modalities capable of monitoring scaffold integration, degradation, and tissue regeneration in real-time has become critical. This review summarizes current non-invasive imaging techniques used to evaluate tissue-engineered constructs, including optical methods such as near-infrared fluorescence imaging (NIR), optical coherence tomography (OCT), and photoacoustic imaging (PAI); magnetic resonance imaging (MRI); X-ray-based approaches like computed tomography (CT); and ultrasound-based modalities. It discusses the unique advantages and limitations of each modality. Finally, the review identifies major challenges—including limited imaging depth, resolution trade-offs, and regulatory hurdles—and proposes future directions to enhance translational readiness and clinical adoption of imaging-guided tissue engineering (TE). Emerging prospects such as multimodal platforms and artificial intelligence (AI) assisted image analysis hold promise for improving precision, scalability, and clinical relevance in scaffold monitoring. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 1910 KiB  
Article
Hierarchical Learning for Closed-Loop Robotic Manipulation in Cluttered Scenes via Depth Vision, Reinforcement Learning, and Behaviour Cloning
by Hoi Fai Yu and Abdulrahman Altahhan
Electronics 2025, 14(15), 3074; https://doi.org/10.3390/electronics14153074 (registering DOI) - 31 Jul 2025
Abstract
Despite rapid advances in robot learning, the coordination of closed-loop manipulation in cluttered environments remains a challenging and relatively underexplored problem. We present a novel two-level hierarchical architecture for a depth vision-equipped robotic arm that integrates pushing, grasping, and high-level decision making. Central [...] Read more.
Despite rapid advances in robot learning, the coordination of closed-loop manipulation in cluttered environments remains a challenging and relatively underexplored problem. We present a novel two-level hierarchical architecture for a depth vision-equipped robotic arm that integrates pushing, grasping, and high-level decision making. Central to our approach is a prioritised action–selection mechanism that facilitates efficient early-stage learning via behaviour cloning (BC), while enabling scalable exploration through reinforcement learning (RL). A high-level decision neural network (DNN) selects between grasping and pushing actions, and two low-level action neural networks (ANNs) execute the selected primitive. The DNN is trained with RL, while the ANNs follow a hybrid learning scheme combining BC and RL. Notably, we introduce an automated demonstration generator based on oriented bounding boxes, eliminating the need for manual data collection and enabling precise, reproducible BC training signals. We evaluate our method on a challenging manipulation task involving five closely packed cubic objects. Our system achieves a completion rate (CR) of 100%, an average grasping success (AGS) of 93.1% per completion, and only 7.8 average decisions taken for completion (DTC). Comparative analysis against three baselines—a grasping-only policy, a fixed grasp-then-push sequence, and a cloned demonstration policy—highlights the necessity of dynamic decision making and the efficiency of our hierarchical design. In particular, the baselines yield lower AGS (86.6%) and higher DTC (10.6 and 11.4) scores, underscoring the advantages of content-aware, closed-loop control. These results demonstrate that our architecture supports robust, adaptive manipulation and scalable learning, offering a promising direction for autonomous skill coordination in complex environments. Full article
Show Figures

Figure 1

29 pages, 6079 KiB  
Article
A Highly Robust Terrain-Aided Navigation Framework Based on an Improved Marine Predators Algorithm and Depth-First Search
by Tian Lan, Ding Li, Qixin Lou, Chao Liu, Huiping Li, Yi Zhang and Xudong Yu
Drones 2025, 9(8), 543; https://doi.org/10.3390/drones9080543 (registering DOI) - 31 Jul 2025
Abstract
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. [...] Read more.
Autonomous underwater vehicles (AUVs) have obtained extensive application in the exploitation of marine resources. Terrain-aided navigation (TAN), as an accurate and reliable autonomous navigation method, is commonly used for AUV navigation. However, its accuracy degrades significantly in self-similar terrain features or measurement uncertainties. To overcome these challenges, we propose a novel terrain-aided navigation framework integrating an Improved Marine Predators Algorithm with Depth-First Search optimization (DFS-IMPA-TAN). This framework maintains positioning precision in partially self-similar terrains through two synergistic mechanisms: (1) IMPA-driven optimization based on the hunger-inspired adaptive exploitation to determine optimal trajectory transformations, cascaded with Kalman filtering for navigation state correction; (2) a Robust Tree (RT) hypothesis manager that maintains potential trajectory candidates in graph-structured memory, employing Depth-First Search for ambiguity resolution in feature matching. Experimental validation through simulations and in-vehicle testing demonstrates the framework’s distinctive advantages: (1) consistent terrain association in partially self-similar topographies; (2) inherent error resilience against ambiguous feature measurements; and (3) long-term navigation stability. In all experimental groups, the root mean squared error of the framework remained around 60 m. Under adverse conditions, its navigation accuracy improved by over 30% compared to other traditional batch processing TAN methods. Comparative analysis confirms superior performance over conventional methods under challenging conditions, establishing DFS-IMPA-TAN as a robust navigation solution for AUVs in complex underwater environments. Full article
Show Figures

Figure 1

48 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 (registering DOI) - 30 Jul 2025
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

21 pages, 711 KiB  
Systematic Review
Recent Developments in Image-Based 3D Reconstruction Using Deep Learning: Methodologies and Applications
by Diana-Carmen Rodríguez-Lira, Diana-Margarita Córdova-Esparza, Juan Terven, Julio-Alejandro Romero-González, José Manuel Alvarez-Alvarado, José-Joel González-Barbosa and Alfonso Ramírez-Pedraza
Electronics 2025, 14(15), 3032; https://doi.org/10.3390/electronics14153032 - 30 Jul 2025
Viewed by 55
Abstract
Three-dimensional (3D) reconstruction from images has significantly advanced due to recent developments in deep learning, yet methodological variations and diverse application contexts pose ongoing challenges. This systematic review examines the state-of-the-art deep learning techniques employed for image-based 3D reconstruction from 2019 to 2025. [...] Read more.
Three-dimensional (3D) reconstruction from images has significantly advanced due to recent developments in deep learning, yet methodological variations and diverse application contexts pose ongoing challenges. This systematic review examines the state-of-the-art deep learning techniques employed for image-based 3D reconstruction from 2019 to 2025. Through an extensive analysis of peer-reviewed studies, predominant methodologies, performance metrics, sensor types, and application domains are identified and assessed. Results indicate multi-view stereo and monocular depth estimation as prevailing methods, while hybrid architectures integrating classical and deep learning techniques demonstrate enhanced performance, especially in complex scenarios. Critical challenges remain, particularly in handling occlusions, low-texture areas, and varying lighting conditions, highlighting the importance of developing robust, adaptable models. Principal conclusions highlight the efficacy of integrated quantitative and qualitative evaluations, the advantages of hybrid methods, and the pressing need for computationally efficient and generalizable solutions suitable for real-world applications. Full article
(This article belongs to the Special Issue 3D Computer Vision and 3D Reconstruction)
Show Figures

Figure 1

21 pages, 2585 KiB  
Review
Advances of Articulated Tug–Barge Transport in Enhancing Shipping Efficiency
by Plamen Yanakiev, Yordan Garbatov and Petar Georgiev
J. Mar. Sci. Eng. 2025, 13(8), 1451; https://doi.org/10.3390/jmse13081451 - 29 Jul 2025
Viewed by 78
Abstract
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is [...] Read more.
Articulated Tugs and Barges (ATBs) are increasingly recognised for their effectiveness in transporting chemicals, petroleum, bulk goods, and containers, primarily due to their exceptional flexibility and fuel efficiency. Recent projections indicate that the ATB market is on track for significant growth, which is expected to lead to an increase in the annual growth rate from 2025 to 2032. This study aims to analyse the current advancements in ATB technology and provide insights into the ATB fleet and the systems that connect tugboats and barges. Furthermore, it highlights the advantages of this transportation system, especially regarding its role in enhancing energy efficiency within the maritime transport sector. Currently, there is limited information available in the public domain about ATBs compared to other commercial vessels. The analysis reveals that much of the required information for modern ATB design is not accessible outside specialised design companies. The study also focuses on conceptual design aspects, which include the main dimensions, articulated connections, propulsion systems, and machinery, concluding with an evaluation of economic viability. Special emphasis is placed on defining the main dimensions, which is a critical part of the complex design process. In this context, the ratios of length to beam (L/B), beam to draft (B/D), beam to depth (B/T), draft to depth (T/D), and power to the number of tugs cubed (Pw/N3) are established as design control parameters in the conceptual design phase. This aspect underscores the novelty of the present study. Additionally, the economic viability is analysed in terms of both CAPEX (capital expenditures) and OPEX (operational expenditures). While CAPEX does not significantly differ between the methods used in different types of commercial ships, OPEX should account for the unique characteristics of ATB vessels. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 780 KiB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 91
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

11 pages, 556 KiB  
Article
Added Value of SPECT/CT in Radio-Guided Occult Localization (ROLL) of Non-Palpable Pulmonary Nodules Treated with Uniportal Video-Assisted Thoracoscopy
by Demetrio Aricò, Lucia Motta, Giulia Giacoppo, Michelangelo Bambaci, Paolo Macrì, Stefania Maria, Francesco Barbagallo, Nicola Ricottone, Lorenza Marino, Gianmarco Motta, Giorgia Leone, Carlo Carnaghi, Vittorio Gebbia, Domenica Caponnetto and Laura Evangelista
J. Clin. Med. 2025, 14(15), 5337; https://doi.org/10.3390/jcm14155337 - 29 Jul 2025
Viewed by 159
Abstract
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule [...] Read more.
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule resections; however, intraoperative localization remains challenging, especially for deep or subsolid lesions. This study explores whether SPECT/CT improves the technical and clinical outcomes of radio-guided occult lesion localization (ROLL) before uniportal video-assisted thoracoscopic surgery (u-VATS). Methods: This is a retrospective study involving consecutive patients referred for the resection of pulmonary nodules who underwent CT-guided ROLL followed by u-VATS between September 2017 and December 2024. From January 2023, SPECT/CT was systematically added after planar imaging. The cohort was divided into a planar group and a planar + SPECT/CT group. The inclusion criteria involved nodules sized ≤ 2 cm, with ground glass or solid characteristics, located at a depth of <6 cm from the pleural surface. 99mTc-MAA injected activity, timing, the classification of planar and SPECT/CT image findings (focal uptake, multisite with focal uptake, multisite without focal uptake), spillage, and post-procedure complications were evaluated. Statistical analysis was performed, with continuous data expressed as the median and categorical data as the number. Comparisons were made using chi-square tests for categorical variables and the Mann–Whitney U test for procedural duration. Cohen’s kappa coefficient was calculated to assess agreement between imaging modalities. Results: In total, 125 patients were selected for CT-guided radiotracer injection followed by uniportal-VATS. The planar group and planar + SPECT/CT group comprised 60 and 65 patients, respectively. Focal uptake was detected in 68 (54%), multisite with focal uptake in 46 (36.8%), and multisite without focal uptake in 11 patients (8.8%). In comparative analyses between planar and SPECT/CT imaging in 65 patients, 91% exhibited focal uptake, revealing significant differences in classification for 40% of the patients. SPECT/CT corrected the classification of 23 patients initially categorized as multisite with focal uptake to focal uptake, improving localization accuracy. The mean procedure duration was 39 min with SPECT/CT. Pneumothorax was more frequently detected with SPECT/CT (43% vs. 1.6%). The intraoperative localization success rate was 96%. Conclusions: SPECT/CT imaging in the ROLL procedure for detecting pulmonary nodules before u-VATs demonstrates a significant advantage in reclassifying radiotracer positioning compared to planar imaging. Considering its limited impact on surgical success rates and additional procedural time, SPECT/CT should be reserved for technically challenging cases. Larger sample sizes, multicentric and prospective randomized studies, and formal cost–utility analyses are warranted. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

19 pages, 13565 KiB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 176
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

19 pages, 290 KiB  
Article
Artificial Intelligence in Primary Care: Support or Additional Burden on Physicians’ Healthcare Work?—A Qualitative Study
by Stefanie Mache, Monika Bernburg, Annika Würtenberger and David A. Groneberg
Clin. Pract. 2025, 15(8), 138; https://doi.org/10.3390/clinpract15080138 - 25 Jul 2025
Viewed by 141
Abstract
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond [...] Read more.
Background: Artificial intelligence (AI) is being increasingly promoted as a means to enhance diagnostic accuracy, to streamline workflows, and to improve overall care quality in primary care. However, empirical evidence on how primary care physicians (PCPs) perceive, engage with, and emotionally respond to AI technologies in everyday clinical settings remains limited. Concerns persist regarding AI’s usability, transparency, and potential impact on professional identity, workload, and the physician–patient relationship. Methods: This qualitative study investigated the lived experiences and perceptions of 28 PCPs practicing in diverse outpatient settings across Germany. Participants were purposively sampled to ensure variation in age, practice characteristics, and digital proficiency. Data were collected through in-depth, semi-structured interviews, which were audio-recorded, transcribed verbatim, and subjected to rigorous thematic analysis employing Mayring’s qualitative content analysis framework. Results: Participants demonstrated a fundamentally ambivalent stance toward AI integration in primary care. Perceived advantages included enhanced diagnostic support, relief from administrative burdens, and facilitation of preventive care. Conversely, physicians reported concerns about workflow disruption due to excessive system prompts, lack of algorithmic transparency, increased cognitive and emotional strain, and perceived threats to clinical autonomy and accountability. The implications for the physician–patient relationship were seen as double-edged: while some believed AI could foster trust through transparent use, others feared depersonalization of care. Crucial prerequisites for successful implementation included transparent and explainable systems, structured training opportunities, clinician involvement in design processes, and seamless integration into clinical routines. Conclusions: Primary care physicians’ engagement with AI is marked by cautious optimism, shaped by both perceived utility and significant concerns. Effective and ethically sound implementation requires co-design approaches that embed clinical expertise, ensure algorithmic transparency, and align AI applications with the realities of primary care workflows. Moreover, foundational AI literacy should be incorporated into undergraduate health professional curricula to equip future clinicians with the competencies necessary for responsible and confident use. These strategies are essential to safeguard professional integrity, support clinician well-being, and maintain the humanistic core of primary care. Full article
31 pages, 20437 KiB  
Article
Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation
by Seung-Jun Lee, Han-Saem Kim, Hong-Sik Yun and Sang-Hoon Lee
Remote Sens. 2025, 17(15), 2594; https://doi.org/10.3390/rs17152594 - 25 Jul 2025
Viewed by 260
Abstract
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between [...] Read more.
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between Sentinel-2 (10 m) and LiDAR reference data (1 m), three interpolation methods—Inverse Distance Weighting (IDW), Natural Neighbor (NN), and Spline—were employed to resample spectral reflectance data to a 1 m grid. Two spectral input configurations were evaluated: the log-ratio of Bands 2 and 3, and raw RGB composite reflectance (Bands 2, 3, and 4). A Fully Convolutional Neural Network (FCNN) was trained under each configuration and validated using LiDAR-based depth. The RGB + NN combination yielded the best performance, achieving an RMSE of 1.2320 m, MAE of 0.9381 m, bias of +0.0315 m, and R2 of 0.6261, while the log-ratio + IDW configuration showed lower accuracy. Visual and statistical analyses confirmed the advantage of the RGB + NN approach in preserving spatial continuity and spectral-depth relationships. This study demonstrates that both interpolation strategy and input configuration critically affect SDB model accuracy and generalizability. The integration of spatially adaptive interpolation with airborne hyperspectral reference data represents a scalable and efficient solution for high-resolution coastal bathymetry mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 13125 KiB  
Article
Evaluating the Accuracy and Repeatability of Mobile 3D Imaging Applications for Breast Phantom Reconstruction
by Elena Botti, Bart Jansen, Felipe Ballen-Moreno, Ayush Kapila and Redona Brahimetaj
Sensors 2025, 25(15), 4596; https://doi.org/10.3390/s25154596 - 24 Jul 2025
Viewed by 381
Abstract
Three-dimensional imaging technologies are increasingly used in breast reconstructive and plastic surgery due to their potential for efficient and accurate preoperative assessment and planning. This study systematically evaluates the accuracy and consistency of six commercially available 3D scanning applications (apps)—Structure Sensor, 3D Scanner [...] Read more.
Three-dimensional imaging technologies are increasingly used in breast reconstructive and plastic surgery due to their potential for efficient and accurate preoperative assessment and planning. This study systematically evaluates the accuracy and consistency of six commercially available 3D scanning applications (apps)—Structure Sensor, 3D Scanner App, Heges, Polycam, SureScan, and Kiri—in reconstructing the female torso. To avoid variability introduced by human subjects, a silicone breast mannequin model was scanned, with fiducial markers placed at known anatomical landmarks. Manual distance measurements were obtained using calipers by two independent evaluators and compared to digital measurements extracted from 3D reconstructions in Blender software. Each scan was repeated six times per application to ensure reliability. SureScan demonstrated the lowest mean error (2.9 mm), followed by Structure Sensor (3.0 mm), Heges (3.6 mm), 3D Scanner App (4.4 mm), Kiri (5.0 mm), and Polycam (21.4 mm), which showed the highest error and variability. Even the app using an external depth sensor (Structure Sensor) showed no statistically significant accuracy advantage over those using only the iPad’s built-in camera (except for Polycam), underscoring that software is the primary driver of performance, not hardware (alone). This work provides practical insights for selecting mobile 3D scanning tools in clinical workflows and highlights key limitations, such as scaling errors and alignment artifacts. Future work should include patient-based validation and explore deep learning to enhance reconstruction quality. Ultimately, this study lays the foundation for more accessible and cost-effective 3D imaging in surgical practice, showing that smartphone-based tools can produce clinically useful scans. Full article
(This article belongs to the Special Issue Biomedical Imaging, Sensing and Signal Processing)
Show Figures

Figure 1

18 pages, 4365 KiB  
Article
Analytical and Numerical Investigation of Adhesive-Bonded T-Shaped Steel–Concrete Composite Beams for Enhanced Interfacial Performance in Civil Engineering Structures
by Tahar Hassaine Daouadji, Fazilay Abbès, Tayeb Bensatallah and Boussad Abbès
Inventions 2025, 10(4), 61; https://doi.org/10.3390/inventions10040061 - 23 Jul 2025
Viewed by 234
Abstract
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. [...] Read more.
This study introduces a new method for modeling the nonlinear behavior of adhesively bonded composite steel–concrete T-beam systems. The model characterizes the interfacial behavior between the steel beam and the concrete slab using a strain compatibility approach within the framework of linear elasticity. It captures the nonlinear distribution of shear stresses over the entire depth of the composite section, making it applicable to various material combinations. The approach accounts for both continuous and discontinuous bonding conditions at the bonded steel–concrete interface. The analysis focuses on the top flange of the steel section, using a T-beam configuration commonly employed in bridge construction. This configuration stabilizes slab sliding, making the composite beam rigid, strong, and resistant to deformation. The numerical results demonstrate the advantages of the proposed solution over existing steel beam models and highlight key characteristics at the steel–concrete interface. The theoretical predictions are validated through comparison with existing analytical and experimental results, as well as finite element models, confirming the model’s accuracy and offering a deeper understanding of critical design parameters. The comparison shows excellent agreement between analytical predictions and finite element simulations, with discrepancies ranging from 1.7% to 4%. This research contributes to a better understanding of the mechanical behavior at the interface and supports the design of hybrid steel–concrete structures. Full article
Show Figures

Figure 1

17 pages, 5257 KiB  
Article
Research on Draft Control Optimization of Ship Passing a Lock Based on CFD Method
by Yuan Zhuang, Yu Ding, Jialun Liu and Song Zhang
J. Mar. Sci. Eng. 2025, 13(8), 1406; https://doi.org/10.3390/jmse13081406 - 23 Jul 2025
Viewed by 179
Abstract
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations [...] Read more.
Waterborne transportation serves as a critical pillar of trunk-line freight systems, offering unparalleled advantages in transport capacity, energy efficiency, and cost-effectiveness. As cargo throughput demands escalate, optimizing lock capacity becomes imperative. This study investigates ship sinkage dynamics through computational fluid dynamics (CFD) simulations for a representative inland cargo vessel navigating the Three Gorges on the Yangtze River. We develop a predictive sinkage model that integrates four key hydrodynamic parameters: ship velocity, draft, water depth, and bank clearance, applicable to both open shallow water and lockage conditions. The model enables determination of maximum safe drafts for lock transit by analyzing upstream/downstream water levels and corresponding chamber depths. Our results demonstrate the technical feasibility of enhancing single-lock cargo capacity while maintaining safety margins. These findings provide (1) a scientifically grounded framework for draft control optimization, and (2) actionable insights for lock operation management. The study establishes a methodological foundation for balancing navigational safety with growing throughput requirements in constrained waterways. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop