Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
Abstract
1. Introduction
2. Steps of Extraction Process
2.1. Removal of Organic Matter (ROM)
Process | Reagent | Characteristics | References |
---|---|---|---|
Oxidative | H2O2 | Often used at 30–35% by volume. Removes OM with high efficiency. Slight effect on some polymers. Long and temperature-dependent analyses. | [34,36,43,45,46,47,50,52,53,54,55] |
Fenton’s reagent (H2O2+Fe(II)SO4) | Effective for samples with high OM content. Temperature-dependent. pH adjustment to 3–5 is necessary. No effect on polymers. Shorter analyses than with H2O2. | [38,47,49,52,53,54,56] | |
Alkaline | NaOH KOH NaClO | Useful for biological samples. Less effective in removing OM from environmental samples. Affects polymers. | [38,47,51,52,53,54] |
Acid | HNO3 HCl HClO4 H2SO4 | Effective in removing OM but digests some MPs. Often combined with alkaline digestion. | [38,47,51,53] |
Enzymatic | Cellulase Lipase Protease Proteinase K | Mild method. Does not affect MPs. Often complemented with a subsequent oxidation. Expensive and costly (several enzymes are used). Not recommended for environmental samples. | [38,53,54,57] |
Polymers and Their Density (g/cm3) [62,72] | Salts and Their Density (g/cm3) [54,59,63] | MPs Extracted | References |
---|---|---|---|
PP (0.85–0.92) HDPE (0.94–0.98) LDPE (0.89–0.93) PS (1.04–1.06) PMMA (1.14–1.20) PA, Nylon (1.12–1.24) PC (1.20–1.22) PU (1.20–1.26) PES (PETG) (1.27) PET (1.37–1.41) PVC (1.38–1.45) | NaCl (1.15–1.30) | PP | [39] **, [40] *, [69] *, [73] **, [74] * |
HDPE | [23] **, [31] *, [39] **, [40] *, [61] *, [69] *, [73] **, [74] * | ||
LDPE | [23] **, [31 *], [39] **, [40] *, [61] *, [69] *, [74] * | ||
PS | [39] **, [69] *, [73] *, [74] * | ||
PA | [39] ** | ||
CaCl2 (1.30–1.35) | PP | [42] * | |
HDPE | [42] ** | ||
LDPE | [32] *, [42] ** | ||
PA | [32] *, [42] * | ||
PC | [42] * | ||
PU | [42] * | ||
SPT (1.4–1.70) | PP | [75] * | |
HDPE | [75] * | ||
LDPE | [75] * | ||
PS | [75] * | ||
PES | [76] * | ||
NaI (1.55–1.80) | PP | [46] *, [77] * | |
HDPE | [46] *, [77] ** | ||
LDPE | [77] ** | ||
PS | [46] *, [77] ** | ||
PMMA | [46] * | ||
PA | [46] *, [77] * | ||
PET | [46] * | ||
PVC | [46] *, [77] * | ||
ZnCl2 (1.50–1.80) | PP | [38] *, [69] *, [78] *, [79] * | |
HDPE | [38] *, [69] *, [70] **, [78] *, [80] *, [81] * | ||
LDPE | [38] *, [69] *, [70] **, [78] *, [80] *, [81] * | ||
PS | [38] *, [69] *, [70] **, [78] * | ||
PMMA | [78] * | ||
PA | [29] *, [38] *, [78] * | ||
PU | [78] * | ||
PES | [29] * | ||
PET | [29] *, [38] *, [69] *, [70] **, [78] *, [79] *, [80] *, [81] * | ||
PVC | [29] *, [38] *, [69] *, [70] ** |
2.2. The Correlation Between OM Amount and Abundance of MPs
3. Extraction of MPs from Environmental Samples
3.1. Samples with High OM Content (Sludge and Compost)
3.1.1. Sludge
3.1.2. Compost
3.2. Samples with Moderate OM Content (Agricultural Soils, Sediments, and Wastewater)
3.2.1. Agricultural Soils
3.2.2. Sediments
3.2.3. Wastewater
3.3. Samples with Low OM Content (Atmospheric Samples, Beach Sand, Seawater, and Fresh Water)
3.3.1. Atmospheric Samples
3.3.2. Beach Sand
3.3.3. Seawater
3.3.4. Fresh Water
3.4. Samples with Very Low OM Content (Drinking Water)
3.4.1. Tap Water
3.4.2. Bottled Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CaCl2 | Calcium chloride |
DS | Density separation |
EDTA | Ethylenediaminetetraacetic acid |
Fe(II)SO4 | Ferrous sulfate |
GAC | Green analytical chemistry |
H2O2 | Hydrogen peroxide |
H2SO4 | Sulfuric acid |
HCl | Hydrochloric acid |
HClO4 | Perchloric acid |
HDPE | High-density polyethylene |
HNO3 | Nitric acid |
KOH | Potassium hydroxide |
LDPE | Low-density polyethylene |
LDIR | Laser direct infrared imaging |
MPs | Microplastics |
NaBr | Sodium bromide |
NaCl | Sodium chloride |
NaClO | Sodium hypochlorite |
NaI | Sodium iodide |
NaOH | Sodium hydroxide |
OM | Organic matter |
PA | Polyamide |
PC | Polycarbonate |
PE | Polyethylene |
PES | Polyester |
PET | Polyethylene terephthalate |
PMMA | Polymethyl methacrylate |
PP | Polypropylene |
PS | Polystyrene |
PTFE | Polytetrafluoroethylene |
PU | Polyurethane |
ROM | Removal of organic matter |
SDS | Sodium dodecyl sulfate |
SMI | Sediment–microplastic isolation |
SPT | Sodium polytungstate |
TOC/%TOC | Total organic carbon/percentage of total organic carbon |
WPO | Wet peroxide oxidation |
WWTP | Wastewater treatment plant |
ZnCl2 | Zinc chloride |
References
- Adelugba, A.; Emenike, C. Comparative Review of Instrumental Techniques and Methods for the Analysis of Micro-plastics in Agricultural Matrices. Microplastics 2024, 3, 1–21. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, K.; Zhang, Q.; Qian, L.; Yang, C. Role of microplastics in the tumor microenvironment (Review). Oncol. Lett. 2025, 29, 193. [Google Scholar] [CrossRef]
- Procopio, A.C.; Soggiu, A.; Urbani, A.; Roncada, P. Interactions between microplastics and microbiota in a One Health perspective. One Health 2025, 20, 101002. [Google Scholar] [CrossRef]
- Urrutia-Pereira, M.; Camargos, P.A.; Solé, D. Microplastics: The hidden danger. J. Pedriatria 2025, 101, S10–S17. [Google Scholar] [CrossRef] [PubMed]
- Vanetti, C.; Broggiato, M.; Pezzana, S.; Clerici, M.; Fenizia, C. Effects of microplastics on the immune system: How much should we worry? Inmunol. Lett. 2025, 272, 106976. [Google Scholar] [CrossRef] [PubMed]
- Ullah, F.; Wang, P.Y.; Saqib, S.; Zhao, L.; Ashraf, M.; Khan, A.; Khan, W.; Khan, A.; Chen, Y.; Xiong, Y.C. Toxicological complexity of microplastics in terrestrial ecosystems. iScience 2025, 28, 111879. [Google Scholar] [CrossRef] [PubMed]
- Irfan, H.; Irfan, H.; Ahtesham-Khan, M.; Inanc, O.; Hasibuzzaman, A. Microplastics and nanoplastics: Emerging threats to cardiovascular health—A comprehensive Review. Ann. Med. Surg. 2025, 87, 209–216. [Google Scholar] [CrossRef]
- O’Dowling, R. Microplastics and Nanoplastics The Next Frontier of Cardiovascular Risk? JACC Adv. 2025, 4, 101510. [Google Scholar] [CrossRef]
- Rossi, M.; Vergara, A.; Troisi, R.; Alberico, M.; Carraturo, F.; Salamone, M.; Giordano, S.; Capozzi, F.; Spagnuolo, V.; De Magistris, F.A.; et al. Microplastics, microfibers and associated microbiota biofilm analysis in seawater, a case study from the Vesuvian Coast, southern Italy. J. Hazard. Mater. 2025, 488, 137468. [Google Scholar] [CrossRef]
- Jaafarzadeh-Haghighi-Fard, N.; Jahedi, F.; Turner, A. Microplastics and nanoplastics in tea: Sources, characteristics and potential impacts. Food Chem. 2025, 466, 142111. [Google Scholar] [CrossRef]
- Braun, M.; Mail, M.; Krupp, A.E.; Amelung, W. Microplastic contamination of soil: Are input pathways by compost overridden by littering? Sci. Total Environ. 2023, 855, 158889. [Google Scholar] [CrossRef]
- Not, C.; Chan, K.; Wing-Kwan So, M.; Lau, W.; Tsz-Wing Tang, L.; Ka-Hei Cheung, C. State of microbeads in facial scrubs: Persistence and the need for broader regulation. Environ. Sci. Pollut. Res. 2025, 32, 11063–11071. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ren, S.Y.; Ni, H.G. Incidence of microplastics in personal care products: An appreciable part of plastic Pollution. Sci. Total Environ. 2020, 742, 140218. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhou, Y.; Sun, R.; Pei, X.; Zhou, H.; Deng, D.; Wang, Z.; Hu, W.; Tan, Y. Biodegradable microbeads for personal care products and Cosmetics. Green Chem. 2025, 27, 2823. [Google Scholar] [CrossRef]
- Zhou, Y.; Ashokkumar, V.; Amobonye, A.; Bhattacharjee, G.; Sirohi, R.; Singh, V.; Flora, G.; Kumar, V.; Pillai, S.; Zhang, Z.; et al. Current research trends on cosmetic microplastic pollution and its impacts on the ecosystem: A review. Environ. Pollut. 2023, 320, 121106. [Google Scholar] [CrossRef]
- Wang, J.; Lee, J.; Kwon, E.E.; Jeong, S. Quantitative analysis of polystyrene microplastic and styrene monomer released from plastic food containers. Heliyon 2023, 9, e15787. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Huang, W.; He, Y. Laboratory simulated aging methods, mechanisms and characteristic changes of microplastics: A Review. Chemosphere 2023, 315, 137744. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, J.; Zhou, Q.; Feng, X.; Yang, J.; Zhao, K.; Zhang, A.; Zhang, S.; Yao, Y. Microplastic contamination in Chinese topsoil from 1980 to 2050. Sci. Total Environ. 2024, 955, 176918. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, X.; Gao, X.; Zhang, L.; Hu, Q.; Siddique, K.H.M. Extraction and identification methods of micro-plastics and nanoplastics in agricultural soil: A review. J. Environ. Manag. 2021, 294, 112997. [Google Scholar] [CrossRef]
- Debraj, D.; Lavanya, M. Microplastics everywhere: A review on existing methods of extraction. Sci. Total Environ. 2023, 893, 164878. [Google Scholar] [CrossRef]
- Prajapati, A.; Dehal, A.; Ramesh-Kumar, A. Microplastics in Soils and Sediments: A Review of Characterization, Quan-titation, and Ecological Risk Assessment. Water Air Soil Pollut. 2024, 235, 189. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Zhang, H.; Semple, K.T. Environmental fate of microplastics and common polymer additives in non-biodegradable plastic mulch applied agricultural soils. Environ. Pollut. 2024, 363, 125249. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Lai, Y.; Chen, G.; Dearnaley, J.; Wang, S.; Liu, X.; Song, P. Quantification of microplastics in agricultural soils by total organic carbon-solid sample combustion analysis. J. Hazard. Mater. 2025, 490, 137841. [Google Scholar] [CrossRef] [PubMed]
- Prapanchan, V.N.; Kumar, E.; Subramani, T.; Sathya, U.; Li, P. A Global Perspective on Microplastic Occurrence in Se-diments and Water with a Special Focus on Sources, Analytical Techniques, Health Risks, and Remediation Technologies. Water 2023, 15, 1987. [Google Scholar] [CrossRef]
- Sewwandi, M.; Kumar, A.; Pallewatta, S.; Vithanage, M. Microplastics in urban stormwater sediments and runoff: An essential component in the microplastic cycle. Trends Anal. Chem. 2024, 178, 117824. [Google Scholar] [CrossRef]
- Soursou, V.; Campo, J.; Picó, Y. A critical review of the novel analytical methods for the determination of microplastics in sand and sediment samples. Trends Anal. Chem. 2023, 166, 117190. [Google Scholar] [CrossRef]
- Gao, F.; Li, J.; Hu, J.; Li, X.; Sun, C. A Review of Microplastics in China Marine Waters. Ocean. Coast. Sea Res. 2023, 22, 1326–1340. [Google Scholar] [CrossRef]
- Jolaosho, T.; Rasaq, M.; Omotoye, E.; Araomo, O.V.; Adekoya, O.S.; Abolaji, O.; Hungbo, J.J. Microplastics in freshwater and marine ecosystems: Occurrence, characterization, sources, distribution dynamics, fate, transport processes, po-tential mitigation strategies, and policy interventions. Ecotoxicol. Environ. Saf. 2025, 294, 118036. [Google Scholar] [CrossRef]
- Crutchett, T.W.; Bornt, K.R. A simple overflow density separation method that recovers >95% of dense microplastics from sediment. MethodsX 2024, 12, 102638. [Google Scholar] [CrossRef]
- Edo, C.; Fernández-Piñas, F.; Leganes, F.; Gómez, M.; Martínez, I.; Herrera, A.; Hernández-Sánchez, C.; Gonzá-lez-Sálamo, J.; Hernández-Borges, J.; López-Castellanos, J.; et al. A nationwide monitoring of atmospheric microplastic deposition. Sci. Total Environ. 2023, 905, 166923. [Google Scholar] [CrossRef]
- Isari, E.A.; Papaioannou, D.; Kalavrouziotis, I.K.; Karapanagioti, H.K. Microplastics in Agricultural Soils: A Case Study in Cultivation of Watermelons and Canning Tomatoes. Water 2021, 13, 2168. [Google Scholar] [CrossRef]
- Rodina, D.; Roth, C.; Wohlleben, W.; Pfohl, P. An innovative microplastic extraction technique: The switchable calcium chloride density separation column tested for biodegradable polymers, polyethylene, and polyamide. MethodsX 2024, 12, 102560. [Google Scholar] [CrossRef]
- Shalumon, C.S.; Ratanatamskul, C. A novel simplified method for extraction of microplastic particles from face scrub and laundry wastewater. Sci. Rep. 2023, 13, 14168. [Google Scholar] [CrossRef]
- Simon-Sánchez, L.; Grelaud, M.; Garcia-Orellana, J.; Ziveri, P. River Deltas as hotspots of microplastic accumulation: The case study of the Ebro River (NW Mediterranean). Sci. Total Environ. 2019, 687, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Fosu-Mensah, B.Y.; Nii-Odai, N.; Darko, D.; Mensah, M. Assessing microplastics contamination and characteristics in organic soil amendments in the Greater Accra Metropolitan Area of Ghana. Heliyon 2024, 10, e40882. [Google Scholar] [CrossRef] [PubMed]
- Rede, D.; Vilarinho, R.; Moreira, J.A.; Nizzeto, L.; Delerue-Matos, C.; Cruz-Fernandez, V. Screening for microplastics in agricultural soils: Applying green chemistry principles in extraction and analysis. Environ. Pollut. 2025, 367, 125550. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Hagan, C.; Gray, A.B.; Singh, S.; Hapich, H.; Cowger, W.; Seeley, M.E.; Waldschläger, K. Microplastic charac-terization and transport mode-A flow-integrated approach to sampling urban waterways. Environ. Res. 2025, 269, 120908. [Google Scholar] [CrossRef]
- Peneva, S.; Phan Le, Q.N.; Munhoz, D.R.; Wrigley, O.; Wille, F.; Doose, H.; Halsall, C.; Harkes, P.; Sander, M.; Braun, M.; et al. Microplastic analysis in soils: A comparative assessment. Ecotoxicol. Environ. Saf. 2025, 289, 117428. [Google Scholar] [CrossRef]
- Ragoobur, D.; Huerta-Lwanga, E.; Somaroo, G.D. Microplastics in agricultural soils, wastewater effluents and sewage sludge in Mauritius. Sci. Total Environ. 2021, 798, 149326. [Google Scholar] [CrossRef]
- Samuels, W.; Awe, A.; Sparks, C. Microplastic pollution and risk assessment in surface water and sediments of the Zandvlei Catchment and estuary, Cape Town, South Africa. Environ. Pollut. 2024, 342, 122987. [Google Scholar] [CrossRef]
- Forsythe, K.; Egermeier, M.; Garcia, M.; Liu, R.; Campen, M.; Minghetti, M.; Jilling, A.; Gonzalez-Estrella, J. Viability of elutriation for the extraction of microplastics from environmental soil samples. Environ. Sci. Adv. 2024, 3, 1039. [Google Scholar] [CrossRef]
- Ghanadi, M.; Joshi, I.; Dharmasiri, N.; Jaeger, J.E.; Burke, M.; Bebelman, C.; Symons, B.; Padhye, L.P. An efficient ex-traction device for microplastics in marine sediments and its applications. Sci. Total Environ. 2024, 912, 168835. [Google Scholar] [CrossRef]
- Simon-Sánchez, L.; Vianello, A.; Kirstein, I.V.; Molazadeh, M.S.; Lorenz, C.; Vollertsen, J. Assessment of microplastic pollution and polymer risk in the sediment compartment of the Limfjord, Denmark. Sci. Total Environ. 2024, 950, 175017. [Google Scholar] [CrossRef] [PubMed]
- Sahai, H.; Aguilera del Real, A.M.; Alcayde, A.; Martínez-Bueno, M.J.; Wang, C.; Hernando, M.D.; Fernández-Alba, A.R. Key insights into microplastic pollution in agricultural soils: A comprehensive review of worldwide trends, sources, distribution, characteristics and analytical approaches. Trends Anal. Chem. 2025, 185, 118176. [Google Scholar] [CrossRef]
- Dorau, K.; Hoppe, M.; Rückamp, D.; Köser, J.; Scheeder, G.; Scholz, K.; Fries, E. Status quo of operation procedures for soil sampling to analyze Microplastics. Microplastics Nanoplastics 2023, 3, 15. [Google Scholar] [CrossRef]
- Ruffell, H.; Pantos, O.; Robinson, B.; Gaw, S. A method for the extraction of microplastics from solid biowastes including biosolids, compost, and soil for analysis by μ-FTIR. MethodsX 2024, 12, 102761. [Google Scholar] [CrossRef] [PubMed]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C. Microplastic sample purification methods—Assessing detrimental effects of purification procedures on specific plastic types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, Q.; Yan, P.; Lee, J.; Wu, J.; Zhou, C.; Zhai, B.; Yang, X. Advancements and challenges in microplastic detection and risk assessment: Integrating AI and standardized methods. Mar. Pollut. Bull. 2025, 212, 117529. [Google Scholar] [CrossRef]
- Munno, K.; Helm, P.A.; Jackson, D.A.; Rochman, C.; Sims, A. Impacts of Temperature and Selected Chemical Digestion Methods on Microplastic Particles. Environ. Toxicol. Chem. 2018, 37, 91–98. [Google Scholar] [CrossRef]
- Gulizia, A.M.; Brodie, E.; Daumuller, R.; Bloom, S.B.; Corbett, T.; Santana, M.M.F.; Motti, C.A.; Vamvounis, G. Evaluating the Effect of Chemical Digestion Treatments on Polystyrene Microplastics: Recommended Updates to Chemical Di-gestion Protocols. Macromol. Chem. Phys. 2022, 223, 2100485. [Google Scholar] [CrossRef]
- Hagelskjær, O.; Le Roux, G.; Liu, R.; Dubreuil, B.; Behra, P.; Sonke, J.E. The recovery of aerosol-sized microplastics in highly refractory vegetal matrices for identification by automated Raman microspectroscopy. Chemosphere 2023, 328, 138487. [Google Scholar] [CrossRef] [PubMed]
- He, D.; Luo, Y. (Eds.) Microplastics in Terrestrial Environments; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments; NOAA Technical Memorandum, NOS-OR&R-48; U.S. Department of Commerce: Washington, DC, USA; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2015.
- Tagg, A.S.; Harrison, J.P.; Ju-Nam, Y.; Sapp, M.; Bradley, E.L.; Sinclair, C.J.; Ojeda, J.J. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem. Commun. 2017, 53, 372. [Google Scholar] [CrossRef] [PubMed]
- Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. Enzymatic purification of microplastics in soil. MehodsX 2021, 8, 101254. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.Y.; Cha, J.; Viaroli, S.; Venant-Atem, N. Methods to optimize the collection, pretreatment, extraction, separation, and examination of microplastics in soil, groundwater, and human samples. J. Hazard. Mater. 2025, 490, 137807. [Google Scholar] [CrossRef]
- Randhawa, K.S. A review on microplastic contamination in freshwater bodies, especially in Indian rivers with expe-rimental insights on polyamide degradation. Pigment Resin Technol. 2025, 1, 1. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Gonçalves, A.M.M.; Gonçalves, F.J.M.; Abrantes, N. Improving cost-efficiency for MPs density se-paration by zinc chloride reuse. MethodsX 2020, 7, 100785. [Google Scholar] [CrossRef]
- Stec, R.; Sitko, K.; Pogrzeba, M.; Rusinowski, S.; Janota, P.; Ratman-Klosińska, I.; Krzyzak, J. Soil Microplastic Extraction Efficiency Depends on the Sample Incubation Time and the Organic Matter Removal Agent Used. Water Air Soil Pollut. 2025, 236, 44. [Google Scholar] [CrossRef]
- Brignac, K.C.; Jung, M.R.; King, C.; Royer, S.J.; Blickley, L.; Lamson, M.R.; Potemra, J.T.; Lynch, J.M. Marine Debris Polymers on Main Hawaiian Island Beaches, Sea Surface, and Seafloor. Environ. Sci. Technol. 2019, 53, 12218–12226. [Google Scholar] [CrossRef]
- Cutroneo, L.; Reboa, A.; Geneselli, I.; Capello, M. Considerations on salts used for density separation in the extraction of microplastics from sediments. Mar. Pollut. Bull. 2021, 166, 112216. [Google Scholar] [CrossRef] [PubMed]
- Ziani, K.; Ionita-Mîndrigan, C.B.; Mititelu, M.; Marius Neacsu, S.; Negrei, C.; Morosan, E.; Draganescu, D.; Preda, O.T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.T.; Le, P.T.; Nguyen, T.N.H.; Hoang, T.Q.; Ngo, H.M.; Doan, T.O.; Le, T.P.Q.; Bui, H.T.; Bui, M.H.; Trinh, V.T.; et al. Selection of a density separation solution to study microplastics in tropical riverine sediment. Environ. Monit. Assess. 2022, 194, 65. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, Z.; Yu, G.; Zhang, Y.; Song, Y.; Wang, G.; Jiang, X. Optimization of microplastics extraction from soil by density separation. China Environ. Sci. 2022, 42, 3285–3294. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, F.; Li, Z.; Ding, H.; Zhang, D.; Feng, L.; Li, X. An optimized procedure for extraction and identification of microplastics in marine sediment. Mar. Pollut. Bull. 2021, 165, 112130. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, J.S.; Lee, M.; Lee, H.J. Abundance and characteristics of microplastics in soils with different agricultural practices: Importance of sources with internal origin and environmental fate. J. Hazard. Mater. 2021, 403, 123997. [Google Scholar] [CrossRef]
- Radford, F.; Zapata-Restrepo, L.M.; Horton, A.A.; Hudson, M.D.; Shaw, P.J.; Williams, I.D. Developing a systematic method for extraction of microplastics in soils. Anal. Methods 2021, 13, 1695–1705. [Google Scholar] [CrossRef]
- Prosenc, F.; Leban, P.; Šunta, U.; Bavcon Kralj, M. Extraction and Identification of a Wide Range of Microplastic Polymers in Soil and Compost. Polymers 2021, 13, 4069. [Google Scholar] [CrossRef]
- Garzón-Vidueira, R.; Rede, D.; Rial-Otero, R.; Vilarinho, R.; Moreira, J.A.; Jorge, S.; André, M.; Barbosa, R.; Dele-rue-Matos, C.; Cruz-Fernandes, V. Investigating multiple vegetable oils and recycled variant for microplastics extraction from water, integrated with Raman spectroscopy. Sci. Total Environ. 2024, 955, 177112. [Google Scholar] [CrossRef]
- Campanale, C.; Savino, I.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Queiroz, L.; De Oliveira-Hallaia, L.; Rocha de Moraes, B.; Ando, R.A.; Pompêo, M.; Rani-Borges, B. A straightforward protocol for extracting microplastics from freshwater sediment with high organic content. Knowl. Manag. Aquat. Ecosyst. 2025, 426, 6. [Google Scholar] [CrossRef]
- Zhou, L.; Li, J.; Zhao, C.; Yin, J.; Ding, J.; Cao, W.; Fan, W. Overview of monitoring methods and environmental dis-tribution: Microplastics in the Indian Ocean. Mar. Pollut. Bull. 2025, 214, 117715. [Google Scholar] [CrossRef]
- Yli-Rantala, E.; Pham, T.; Sarlin, E.; Kokko, M. Extraction and analysis of microplastics in wastewater sludges of a mul-ti-product pulp and paper mill. Environ. Pollut. 2024, 363, 125251. [Google Scholar] [CrossRef]
- Pfohl, P.; Roth, C.; Wohlleben, W. The power of centrifugation: How to extract microplastics from soil with high re-covery and matrix removal efficiency. MethodsX 2024, 12, 102598. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Yang, F.; Yang, X.; Jiao, W.; Tang, K.; Wang, J.; Chen, Y. An efficient extraction device for microplastics in marine sediments and its applications. RSC Adv. 2024, 14, 35610. [Google Scholar] [CrossRef]
- Cho, S.J.; Choi, J.H.; Yoon, Y.S.; Um, N.I. Microplastic Pollution in Sewage Sludge from Wastewater Treatment Plants and Estimation of Microplastic Release. Water 2025, 17, 387. [Google Scholar] [CrossRef]
- Danopoulos, E.; Twiddy, M.; Rotchell, J.M. Microplastic contamination of drinking water: A systematic Review. PLoS ONE 2020, 15, e0236838. [Google Scholar] [CrossRef] [PubMed]
- Amrutha, K.; Kumar-Warrier, A. The first report on the source-to-sink characterization of microplastic pollution from a riverine environment in tropical India. Sci. Total Environ. 2020, 739, 140377. [Google Scholar] [CrossRef] [PubMed]
- Jyoti-Sarkar, D.; Das-Sarkar, S.; Kumar-Das, B.; Kumar-Manna, R.; Kumar-Behera, B.; Samanta, S. Spatial distribution of meso and microplastics in the sediments of river Ganga at eastern India. Sci. Total Environ. 2019, 694, 133712. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Zhang, R.; Tisinger, L.; Cali, S.; Yu, Z.; Chen, H.Y.; Li, A. Characterization of microplastics in sediment using stereomicroscopy and laser direct infrared (LDIR) spectroscopy. Gondwana Res. 2022, 108, 22–30. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; United States Environmental Protection Agency, Environmental Sciences Division, National Exposure Research Laboratory: Las Vegas, NV, USA, 2002. [Google Scholar]
- Van Cauwenbergue, L.; Devriese, L.; Galgani, F.; Robbens, J.; Janssen, C.R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 2015, 111, 5–17. [Google Scholar] [CrossRef]
- Maw, M.; Boontanon, N.; Fujii, S.; Kitpati Boontanon, S. Rapid and efficient removal of organic matter from sewage sludge for extraction of Microplastics. Sci. Total Environ. 2022, 853, 158642. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Y.; Chai, J.; Huang, L.; Wang, Y.; Wang, S.; Pi, K.; Gerson, A.R.; Liu, D. Transfer of microplastics in sludge upon Fe(II)-persulfate conditioning and mechanical dewatering. Sci. Total Environ. 2022, 838, 156316. [Google Scholar] [CrossRef]
- Al-Azzawi, M.S.M.; Kefer, S.; Weißer, J.; Reichel, J.; Schwaller, C.; Glas, K.; Knoop, O.; Drewes, J.E. Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices-Reproducibility and Standardization. Water 2020, 12, 2445. [Google Scholar] [CrossRef]
- Bailey, W.S.; Olariu, C.; Mohrig, D. Microplastics in Bays along the Central Texas Coast. Environ. Sci. Technol. 2025, 59, 5249–5260. [Google Scholar] [CrossRef] [PubMed]
- BOE. Real Decreto 3/2023. Ministerio de Presidencia, Relaciones con las Cortes y Memoria Democrática. Available online: https://www.boe.es/eli/es/rd/2023/01/10/3 (accessed on 15 May 2025).
- Zeeshan, M.; Ingold, V.; Saal, L.; Höra, C.; Kämpfe, A.; Ruhl, A.S. Compositions and concentrations of dissolved organic matter, selected elements and anions in German drinking Waters. J. Environ. Manag. 2025, 376, 124459. [Google Scholar] [CrossRef] [PubMed]
- Wazne, M.; Mermillod-Blondin, F.; Vallier, M.; Krause, S.; Barthélémy, N.; Simon, L. Optimization of glass separating funnels to facilitate microplastic extraction from sediments. MehodsX 2024, 12, 102540. [Google Scholar] [CrossRef] [PubMed]
- Tsering, T.; Sillanpää, M.; Sillampää, M.; Viitala, M.; Reinikainen, S.P. Microplastics pollution in the Brahmaputra River and the Indus River of the Indian Himalaya. Sci. Total Environ. 2021, 789, 147968. [Google Scholar] [CrossRef]
- Pescoso-Torres, B.M.; García-Varens, M.; Helguera-Pedraza, Y.; Morera-Gómez, Y. Microplásticos en deposiciones atmosfeéricas en Cienfuegos, Cuba. Univ. Y Soc. 2023, 15, 407–414. Available online: https://www.researchgate.net/publication/376232231 (accessed on 15 May 2025).
- Zala, H.; Rabari, V.; Patel, K.; Patel, H.; Yadav, V.K.; Patel, A.; Sahoo, D.K.; Trivedi, J. Microplastic from beach sediment to tissue: A case study on burrowing crab Dotilla blanfordi. PeerJ 2024, 12, e17738. [Google Scholar] [CrossRef]
- Ben-Haddad, M.; Rida-Abelouah, M.; Hajji, S.; Rangel-Buitrago, N.; Hamadi, F.; Ait-Alla, A. Microplastics pollution in sediments of Moroccan urban beaches: The Taghazout coast as a case study. Mar. Pollut. Bull. 2022, 180, 113765. [Google Scholar] [CrossRef]
- Hayes, A.; Kirkbride, K.P.; Leterme, S.C. Variation in polymer types and abundance of microplastics from two rivers and beaches in Adelaide, South Australia. Mar. Pollut. Bull. 2021, 172, 112842. [Google Scholar] [CrossRef]
- Mattan-Moorgawa, S.; Chockalingum, J.; Appadoo, C. A first assessment of marine meso-litter and microplastics on beaches: Where does Mauritius stand? Mar. Pollut. Bull. 2021, 173, 112941. [Google Scholar] [CrossRef]
- Rabari, V.; Patel, K.; Patel, H.; Trivedi, J. Quantitative assessment of microplastic in sandy beaches of Gujarat state, India. Mar. Pollut. Bull. 2022, 181, 113925. [Google Scholar] [CrossRef] [PubMed]
- Jaikumar, I.M.; Tomson, M.; Meyyazhagan, A.; Balamuralikrishnan, B.; Baskaran, R.; Pappuswamy, M.; Kamyab, H.; Khalili, E.; Farajnezhad, M. A comprehensive review of microplastic pollution in freshwater and marine environments. Green Anal. Chem. 2025, 12, 100202. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Kutralam-Muniasamy, G. Metro station free drinking water fountain- A potential “microplastics hotspot” for human consumption. Environ. Pollut. 2020, 261, 114227. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Ding, H.; Ding, J.; Jiang, F.; Ding, N.X. Distribution Characteristics and Influencing Factors of Micro-plastics in Urban Tap Water and Water Sources in Qingdao, China. Anal. Lett. 2020, 53, 1312–1327. [Google Scholar] [CrossRef]
- Oßmann, B.E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef]
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front. Chem. 2018, 407, 307–316. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.U.; Fürst, P. Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral wáter. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Kankanige, D.; Babel, S. Smaller-sized micro-plastics (MPs) contamination in single-use PET- bottled water in Thailand. Sci. Total Environ. 2020, 717, 137232. [Google Scholar] [CrossRef]
- Wiesheu, A.C.; Anger, P.M.; Baumann, T.; Niessner, R.; Ivleva, N.P. Raman microspectroscopic analysis of fibers in beverages†. Anal. Methods 2016, 8, 5722. [Google Scholar] [CrossRef]
- Hossain, M.B.; Yu, J.; Banik, P.; Noman, M.A.; Nur, A.A.; Haque, R.; Rahman, M.M.; Albeshr, M.F.; Arai, T. First evidence of microplastics and their characterization in bottled drinking water from a developing country. Front. Environ. Sci. 2023, 11, 1232931. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larrea, G.; Elustondo, D.; Durán, A. Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review. Molecules 2025, 30, 3178. https://doi.org/10.3390/molecules30153178
Larrea G, Elustondo D, Durán A. Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review. Molecules. 2025; 30(15):3178. https://doi.org/10.3390/molecules30153178
Chicago/Turabian StyleLarrea, Garbiñe, David Elustondo, and Adrián Durán. 2025. "Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review" Molecules 30, no. 15: 3178. https://doi.org/10.3390/molecules30153178
APA StyleLarrea, G., Elustondo, D., & Durán, A. (2025). Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review. Molecules, 30(15), 3178. https://doi.org/10.3390/molecules30153178