Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,364)

Search Parameters:
Keywords = Yantai

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19901 KiB  
Article
A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations
by Xuran Zhu, Zheng Li, Zhiyu Liu, Tao Long, Jun Zhao, Xinqing Li, Manwen Liu and Meishan Wang
Micromachines 2025, 16(8), 912; https://doi.org/10.3390/mi16080912 - 6 Aug 2025
Abstract
Three-dimensional trench electrode silicon detectors play an important role in particle physics research, nuclear radiation detection, and other fields. A novel polysilicon-fill-strengthened etch-through 3D trench electrode detector is proposed to address the shortcomings of traditional 3D trench electrode silicon detectors; for example, the [...] Read more.
Three-dimensional trench electrode silicon detectors play an important role in particle physics research, nuclear radiation detection, and other fields. A novel polysilicon-fill-strengthened etch-through 3D trench electrode detector is proposed to address the shortcomings of traditional 3D trench electrode silicon detectors; for example, the distribution of non-uniform electric fields, asymmetric electric potential, and dead zone. The physical properties of the detector have been extensively and systematically studied. This study simulated the electric field, potential, electron concentration distribution, complete depletion voltage, leakage current, capacitance, transient current induced by incident particles, and weighting field distribution of the detector. It also systematically studied and analyzed the electrical characteristics of the detector. Compared to traditional 3D trench electrode silicon detectors, this new detector adopts a manufacturing process of double-side etching technology and double-side filling technology, which results in a more sensitive detector volume and higher electric field uniformity. In addition, the size of the detector unit is 120 µm × 120 µm × 340 µm; the structure has a small fully depleted voltage, reaching a fully depleted state at around 1.4 V, with a saturation leakage current of approximately 4.8×1010A, and a geometric capacitance of about 99 fF. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

22 pages, 5152 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
Show Figures

Figure 1

11 pages, 1257 KiB  
Communication
Glutathione-Stabilized Copper Nanoclusters as a Switch-Off Fluorescent Sensor for Sensing of Quercetin in Tea Samples
by Xueqing Gao and Xuming Zhuang
Foods 2025, 14(15), 2750; https://doi.org/10.3390/foods14152750 - 6 Aug 2025
Abstract
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of [...] Read more.
Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-allergic properties, is extensively found in foods and holds significant importance for human health. In this study, a simple switch-off fluorescent sensor based on copper nanoclusters (Cu NCs) was proposed for the sensitive determination of quercetin. Glutathione acted as the reducing and protective agent in the synthesized process of Cu NCs via a facile, green one-pot method. As anticipated, the glutathione-capped Cu NCs (GSH-Cu NCs) exhibited favorable water solubility and ultrasmall size. The fluorescence property of GSH-Cu NCs was further enhanced with Al3+ ion through the aggregation-induced emission effect. When quercetin was present in the sample solution, the system exhibited effective fluorescence quenching, which was attributed to the internal filter effect. The GSH-Cu NCs/Al3+-based fluorescent sensor showed a good linear relationship to quercetin in the concentration range from 0.1 to 60 μM. A detection limit of 24 nM was obtained. Moreover, the constructed sensor was employed for the successful determination of quercetin in tea samples. Full article
(This article belongs to the Special Issue Development and Application of Biosensors in the Food Field)
Show Figures

Figure 1

20 pages, 7088 KiB  
Article
SAR Images Despeckling Using Subaperture Decomposition and Non-Local Low-Rank Tensor Approximation
by Xinwei An, Hongcheng Zeng, Zhaohong Li, Wei Yang, Wei Xiong, Yamin Wang and Yanfang Liu
Remote Sens. 2025, 17(15), 2716; https://doi.org/10.3390/rs17152716 - 6 Aug 2025
Abstract
Synthetic aperture radar (SAR) images suffer from speckle noise due to their imaging mechanism, which deteriorates image interpretability and hinders subsequent tasks like target detection and recognition. Traditional denoising methods fall short of the demands for high-quality SAR image processing, and deep learning [...] Read more.
Synthetic aperture radar (SAR) images suffer from speckle noise due to their imaging mechanism, which deteriorates image interpretability and hinders subsequent tasks like target detection and recognition. Traditional denoising methods fall short of the demands for high-quality SAR image processing, and deep learning approaches trained on synthetic datasets exhibit poor generalization because noise-free real SAR images are unattainable. To solve this problem and improve the quality of SAR images, a speckle noise suppression method based on subaperture decomposition and non-local low-rank tensor approximation is proposed. Subaperture decomposition yields azimuth-frame subimages with high global structural similarity, which are modeled as low-rank and formed into a 3D tensor. The tensor is decomposed to derive a low-dimensional orthogonal basis and low-rank representation, followed by non-local denoising and iterative regularization in the low-rank subspace for data reconstruction. Experiments on simulated and real SAR images demonstrate that the proposed method outperforms state-of-the-art techniques in speckle suppression, significantly improving SAR image quality. Full article
Show Figures

Figure 1

23 pages, 4260 KiB  
Article
Priority Control of Intelligent Connected Dedicated Bus Corridor Based on Deep Deterministic Policy Gradient
by Chunlin Shang, Fenghua Zhu, Yancai Xu, Guiqing Zhu and Xin Tong
Sensors 2025, 25(15), 4802; https://doi.org/10.3390/s25154802 - 4 Aug 2025
Viewed by 125
Abstract
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. [...] Read more.
To address the substantial disparities in operational characteristics between social vehicles and dedicated bus lanes, as well as the sub-optimal coordination control effects, a comprehensive approach is proposed. This approach integrates social vehicle arterial coordination with bus priority control in dedicated bus lanes. Initially, an analysis of the differences in travel time distribution on both types of roads is conducted. The likelihood of buses passing through upstream and downstream intersections without stopping is also assessed. This analysis aids in determining the correlated traffic states and the corresponding signal adjustment strategies for arterial coordination. Subsequently, an incentive mechanism is established by quantitatively analyzing vehicle delay losses and bus priority benefits based on the signal adjustment strategy. Finally, a deep reinforcement learning framework is proposed to solve, in real-time, the optimal signal adjustment strategy. Simulation experiments indicate that, in comparison to the arterial coordination of social vehicles and dedicated bus arterial coordination control, this method significantly reduces the average per capita delay by 38.63% and 27.43%, respectively, under conventional traffic flow scenarios. This is in contrast to the separate arterial coordination for social vehicles and dedicated bus lanes. Furthermore, it leads to a reduction of 52.17% in the number of bus stops at intersections when compared solely with the arterial coordination of social vehicles. In saturated traffic flow scenarios, this method achieves a reduction in average per capita delay by 29.7% and 9.6%, respectively, while also decreasing the number of bus stops at intersections by 39.5% and 8.7%, respectively. Full article
Show Figures

Figure 1

25 pages, 5914 KiB  
Article
Numerical Simulation of Surrounding Rock Vibration and Damage Characteristics Induced by Blasting Construction in Bifurcated Small-Spacing Tunnels
by Mingshe Sun, Yantao Wang, Guangwei Dai, Kezhi Song, Xuyang Xie and Kejia Yu
Buildings 2025, 15(15), 2737; https://doi.org/10.3390/buildings15152737 - 3 Aug 2025
Viewed by 199
Abstract
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient [...] Read more.
The stability of the intermediate rock wall in the blasting construction of bifurcated small-spacing tunnels directly affects the construction safety of the tunnel structure. Clarifying the damage characteristics of the intermediate rock wall has significant engineering value for ensuring the safe and efficient construction of bifurcated tunnels. Based on the Tashan North Road Expressway Tunnel Project, this paper investigated the damage characteristics of the intermediate rock wall in bifurcated tunnels under different blasting construction schemes, using numerical simulation methods to account for the combined effects of in situ stress and blasting loads. The results were validated using comparisons with the measured damage depth of the surrounding rock in the ramp tunnels. The results indicate that the closer the location is to the starting point of the bifurcated tunnel, the thinner the intermediate rock wall and the more severe the damage to the surrounding rock. When the thickness of the intermediate rock wall exceeds 4.2 m, the damage zone does not penetrate through the wall. The damage to the intermediate rock wall exhibits an asymmetric “U”-shaped distribution, with greater damage on the side of the trailing tunnel at the section of the haunch and sidewall, while the opposite is true at the section of the springing. During each excavation step of the ramp and main-line tunnels, the damage to the intermediate rock wall is primarily induced by blasting loads. As construction progresses, the damage to the rock wall increases progressively under the combined effects of blasting loads and the excavation space effect. In the construction of bifurcated tunnels, the greater the distance between the headings of the leading and trailing tunnels is, the less damage will be inflicted on the intermediate rock wall. Constructing the tunnel with a larger cross-sectional area first will cause more damage to the intermediate rock wall. When the bench method is employed, an increase in the bench length leads to a reduction in the damage to the intermediate rock wall. The findings provide valuable insights for the selection of construction schemes and the protection of the intermediate rock wall when applying the bench method in the construction of bifurcated small-spacing tunnels. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 235
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

22 pages, 2180 KiB  
Article
Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels
by Xiaolei Wu, Zhongdong Huang, Chao Huang, Zhandong Liu, Junming Liu, Hui Cao and Yang Gao
Agronomy 2025, 15(8), 1874; https://doi.org/10.3390/agronomy15081874 - 1 Aug 2025
Viewed by 348
Abstract
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In [...] Read more.
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In this study, a two-year field experiment (2022–2024) was conducted to investigate the effects of two irrigation regimes—regulated deficit irrigation during the heading to grain filling stage (D) and full irrigation (W)—under four soil fertility levels: F1 (N: P: K = 201.84: 97.65: 199.05 kg ha−1), F2 (278.52: 135: 275.4 kg ha−1), F3 (348.15: 168.75: 344.25 kg ha−1), and CK (no fertilization). The results show that aboveground dry matter accumulation, total nitrogen content, pre-anthesis dry matter and nitrogen translocation, and post-anthesis accumulation significantly increased with fertility level (p < 0.05). Regulated deficit irrigation promoted the contribution of post-anthesis dry matter to grain yield under the CK and F1 treatments, but suppressed it under the F2 and F3 treatments. However, it consistently enhanced the contribution of post-anthesis nitrogen to grain yield (p < 0.05) across all fertility levels. Higher fertility levels prolonged the grain filling duration by 18.04% but reduced the mean grain filling rate by 15.05%, whereas regulated deficit irrigation shortened the grain filling duration by 3.28% and increased the mean grain filling rate by 12.83% (p < 0.05). Grain yield significantly increased with improved fertility level (p < 0.05), reaching a maximum of 9361.98 kg·ha−1 under the F3 treatment. Regulated deficit irrigation increased yield under the CK and F1 treatments but reduced it under the F2 and F3 treatments. Additionally, water use efficiency exhibited a parabolic response to fertility level and was significantly enhanced by regulated deficit irrigation. Nitrogen partial factor productivity (NPFP) declined with increasing fertility level (p < 0.05); Regulated deficit irrigation improved NPFP under the F1 treatment but reduced it under the F2 and F3 treatments. The highest NPFP (41.63 kg·kg−1) was achieved under the DF1 treatment, which was 54.81% higher than that under the F3 treatment. TOPSIS analysis showed that regulated deficit irrigation combined with the F1 fertility level provided the optimal balance among yield, WUE, and NPFP. Therefore, implementing regulated deficit irrigation during the heading–grain filling stage under moderate fertility (F1) is recommended as the most effective strategy for achieving high yield and efficient resource utilization in winter wheat production in this region. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

28 pages, 6188 KiB  
Article
Mechanical Behavior of Topology-Optimized Lattice Structures Fabricated by Additive Manufacturing
by Weidong Song, Litao Zhao, Junwei Liu, Shanshan Liu, Guoji Yu, Bin Qin and Lijun Xiao
Materials 2025, 18(15), 3614; https://doi.org/10.3390/ma18153614 - 31 Jul 2025
Viewed by 287
Abstract
Lattice-based metamaterials have attracted much attention due to their excellent mechanical properties. Nevertheless, designing lattice materials with desired properties is still challenging, as their mesoscopic topology is extremely complex. Herein, the bidirectional evolutionary structural optimization (BESO) method is adopted to design lattice structures [...] Read more.
Lattice-based metamaterials have attracted much attention due to their excellent mechanical properties. Nevertheless, designing lattice materials with desired properties is still challenging, as their mesoscopic topology is extremely complex. Herein, the bidirectional evolutionary structural optimization (BESO) method is adopted to design lattice structures with maximum bulk modulus and elastic isotropy. Various lattice configurations are generated by controlling the filter radius during the optimization processes. Afterwards, the optimized lattices are fabricated using Stereo Lithography Appearance (SLA) printing technology. Experiments and numerical simulations are conducted to reveal the mechanical behavior of the topology-optimized lattices under quasi-static compression, which are compared with the traditional octet-truss (OT) and body-centered cubic (BCC) lattice structures. The results demonstrate that the topology-optimized lattices exhibited superior mechanical properties, including modulus, yield strength, and specific energy absorption, over traditional OT and BCC lattices. Moreover, apart from the elastic modulus, the yield stress and post-yield stress of the topology-optimized lattice structures with elastically isotropic constraints also present lower dependence on the loading direction. Accordingly, the topology optimization method can be employed for designing novel lattice structures with high performance. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 448
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

17 pages, 4598 KiB  
Article
Efficient Tetracycline Hydrochloride Degradation by Urchin-Like Structured MoS2@CoFe2O4 Derived from Steel Pickling Sludge via Peroxymonosulfate Activation
by Jin Qi, Kai Zhu, Ming Li, Yucan Liu, Pingzhou Duan and Lihua Huang
Molecules 2025, 30(15), 3194; https://doi.org/10.3390/molecules30153194 - 30 Jul 2025
Viewed by 179
Abstract
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate [...] Read more.
Steel pickling sludge serves as a valuable iron source for synthesizing Fe-based catalysts in heterogeneous advanced oxidation processes (AOPs). Here, MoS2@CoFe2O4 catalyst derived from steel pickling sludge was prepared via a facile solvothermal approach and utilized to activate peroxymonosulfate (PMS) for tetracycline hydrochloride (TCH) degradation. Comprehensive characterization using scanning electron microscopy (SEM)-energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) confirmed the supported microstructure, composition, and crystalline structure of the catalyst. Key operational parameters—including catalyst dosage, PMS concentration, and initial solution pH—were systematically optimized, achieving 81% degradation efficiency within 30 min. Quenching experiments and electron paramagnetic resonance (EPR) analysis revealed SO4∙− as the primary oxidative species, while the catalyst maintained high stability and reusability across cycles. TCH degradation primarily occurs through hydroxylation, decarbonylation, ring-opening, and oxidation reactions. This study presents a cost-effective strategy for transforming steel pickling sludge into a high-performance Fe-based catalyst, demonstrating its potential for practical AOP applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Viewed by 229
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

18 pages, 4857 KiB  
Article
Fast Detection of FDI Attacks and State Estimation in Unmanned Surface Vessels Based on Dynamic Encryption
by Zheng Liu, Li Liu, Hongyong Yang, Zengfeng Wang, Guanlong Deng and Chunjie Zhou
J. Mar. Sci. Eng. 2025, 13(8), 1457; https://doi.org/10.3390/jmse13081457 - 30 Jul 2025
Viewed by 126
Abstract
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real [...] Read more.
Wireless sensor networks (WSNs) are used for data acquisition and transmission in unmanned surface vessels (USVs). However, the openness of wireless networks makes USVs highly susceptible to false data injection (FDI) attacks during data transmission, which affects the sensors’ ability to receive real data and leads to decision-making errors in the control center. In this paper, a novel dynamic data encryption method is proposed whereby data are encrypted prior to transmission and the key is dynamically updated using historical system data, with a view to increasing the difficulty for attackers to crack the ciphertext. At the same time, a dynamic relationship is established among ciphertext, key, and auxiliary encrypted ciphertext, and an attack detection scheme based on dynamic encryption is designed to realize instant detection and localization of FDI attacks. Further, an H fusion filter is designed to filter external interference noise, and the real information is estimated or restored by the weighted fusion algorithm. Ultimately, the validity of the proposed scheme is confirmed through simulation experiments. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

17 pages, 1398 KiB  
Article
Spatio-Temporal Dynamics, Driving Mechanisms, and Decoupling Evaluation of Farmland Carbon Emissions: A Case Study of Shandong Province, China
by Tao Sun, Ran Li, Zichao Zhao, Bing Guo, Meng Ma, Li Yao and Xinhao Gao
Sustainability 2025, 17(15), 6876; https://doi.org/10.3390/su17156876 - 29 Jul 2025
Viewed by 210
Abstract
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index [...] Read more.
Understanding the spatio-temporal evolution of farmland carbon emissions, disentangling their underlying driving forces, and exploring the decoupling relationship between these emissions and economic development are pivotal to advancing low-carbon and high-quality agricultural development in Shandong Province, China. Using the Logarithmic Mean Divisia Index (LMDI) and Tapio decoupling model, this study conducted a comprehensive analysis of panel data from 16 cities in Shandong Province spanning 2004–2023. This research reveals that the total farmland carbon emissions in Shandong Province followed a trajectory of “initial fluctuating increase and subsequent steady decline” during the study period. The emissions peaked at 29.4 million tons in 2007 and then declined to 20.2 million tons in 2023, representing a 26.0% reduction compared to the 2004 level. Farmland carbon emission intensity in Shandong Province showed an overall downward trend over the period 2004–2023, with the 2023 intensity registering a 68.9% decline compared to 2004. The carbon emission intensity, agricultural structure, and labor effects acted as inhibiting factors on farmland carbon emissions in Shandong Province, while the economic development effect exerted a positive driving impact on the growth of such emissions. Over the 20-year period, these four factors cumulatively contributed to a reduction of 2.1 × 105 tons in farmland carbon emissions. During 2004–2013, the farmland carbon emissions in Zaozhuang, Yantai, Jining, Linyi, Dezhou, Liaocheng, and Heze showed a weak decoupling state, while in 2014–2023, the farmland carbon emissions and economic development in all cities of Shandong Province showed a strong decoupling state. In the future, it is feasible to reduce farmland carbon emissions in Shandong Province by improving agricultural resource utilization efficiency through technological progress, adopting advanced low-carbon technologies, and promoting the transformation of agricultural industrial structures towards “high-value and low-carbon” designs. Full article
Show Figures

Figure 1

18 pages, 8017 KiB  
Article
Flavone C-Glycosides from Dianthus superbus L. Attenuate Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) via Multi-Pathway Regulations
by Ming Chu, Yingying Tong, Lei Zhang, Yu Zhang, Jun Dang and Gang Li
Nutrients 2025, 17(15), 2456; https://doi.org/10.3390/nu17152456 - 28 Jul 2025
Viewed by 250
Abstract
Background: The metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating global health concern, with effective treatments still lacking. Given its complex pathogenesis, multi-targeted strategies are highly desirable. Methods: This study reports the isolation of four flavone C-glycosides (FCGs) from Dianthus superbus L. [...] Read more.
Background: The metabolic dysfunction-associated steatotic liver disease (MASLD) represents an escalating global health concern, with effective treatments still lacking. Given its complex pathogenesis, multi-targeted strategies are highly desirable. Methods: This study reports the isolation of four flavone C-glycosides (FCGs) from Dianthus superbus L. and explores their potential in treating MASLD. The bioactivity and underlying mechanisms of FCGs were systematically evaluated by integrating network pharmacology, molecular docking, and zebrafish model validation. Results: Network pharmacology analysis revealed that FCGs may modulate multiple MASLD-related pathways, including lipid metabolism, insulin signaling, inflammation, and apoptosis. Molecular docking further confirmed strong binding affinities between FCGs and key protein targets involved in these pathways. In the zebrafish model of MASLD induced by egg yolk powder, FCGs administration markedly attenuated obesity, hepatic lipid accumulation, and liver tissue damage. Furthermore, FCGs improved lipid metabolism and restored locomotor function. Molecular analyses confirmed that FCGs upregulated PPARγ expression to promote lipid metabolism, restored insulin signaling by enhancing INSR, PI3K, and AKT expression, and suppressed inflammation by downregulating TNF, IL-6 and NF-κB. Additionally, FCGs inhibited hepatocyte apoptosis by elevating the BCL-2/BAX ratio. Conclusions: These findings highlight the multi-pathway regulatory effects of FCGs in MASLD, underscoring its potential as a novel therapeutic candidate for further preclinical development. Full article
Show Figures

Figure 1

Back to TopTop