Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Dry Matter Mass
2.4. Plant Total Nitrogen Content
2.5. Grain Filling Characteristics
2.6. Wheat Yield and Its Components
2.7. Resource Use Efficiencies
2.8. Comprehensive Evaluation
2.9. Statistical Analysis
3. Results
3.1. Effect of Regulated Deficit Irrigation on Aboveground Dry Matter Mass of Winter Wheat at Different Soil Fertility Levels
3.2. Effect of Regulated Deficit Irrigation on Dry Matter Translocation and Distribution of Winter Wheat at Different Soil Fertility Levels
3.3. Effect of Regulated Deficit Irrigation on Total Nitrogen Content of Winter Wheat Plants at Different Soil Fertility Levels
3.4. Effect of Regulated Deficit Irrigation on the Proportion of Total Nitrogen Allocation in Various Organs of Winter Wheat at Different Soil Fertility Levels
3.5. Effect of Regulated Deficit Irrigation on the Grain Filling Characteristics of Winter Wheat at Different Soil Fertility Levels
3.6. Effect of Regulated Deficit Irrigation on Winter Wheat Yield Component, and Water and Nitrogen Use Efficiency at Different Soil Fertility Levels
3.7. Comprehensive Evaluation
4. Discussion
4.1. Effects of Regulated Deficit Irrigation on the Accumulation and Translocation of Aboveground Biomass and Total Nitrogen in Winter Wheat at Different Fertility Levels
4.2. Effect of Regulated Deficit Irrigation on Grain Filling Characteristics of Winter Wheat at Different Levels of Soil Fertility
4.3. Effect of Regulated Deficit Irrigation on Yield and Water and Nitrogen Use Efficiency of Winter Wheat at Different Fertility Levels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.Y.; Zhang, X.Y.; Liu, X.W.; Shao, L.W.; Sun, H.Y.; Chen, S.Y. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agr. Water Manag. 2015, 153, 32–41. [Google Scholar] [CrossRef]
- Qu, C.H.; Li, X.X.; Ju, H.; Liu, Q. The impacts of climate change on wheat yield in the Huang-Huai-Hai Plain of China using DSSAT-CERES-Wheat model under different climate scenarios. J. Integr. Agr. 2019, 18, 1379–1391. [Google Scholar] [CrossRef]
- Abubakar, S.A.; Hamani, A.K.M.; Wang, G.S.; Liu, H.; Mehmood, F.; Abdullahi, A.S.; Gao, Y.; Duan, A.W. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain. J. Integr. Agr. 2023, 22, 908–922. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, J.B.; Zhu, A.N.; Li, X.P.; Ma, D.H.; Xin, X.L.; Zhang, C.Z.; Wu, S.J.; Garland, G.; Pereira, E.I.P. Nitrate accumulation and leaching potential reduced by coupled water and nitrogen management in the Huang-Huai-Hai Plain. Sci. Total Environ. 2018, 610, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Gan, Y.T.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.N.; Siddique, K.H.M. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Tombesi, S.; Frioni, T.; Poni, S.; Palliotti, A. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 2018, 150, 106–114. [Google Scholar] [CrossRef]
- Li, X.; Topbjerg, H.B.; Jiang, D.; Liu, F. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant Soil 2015, 393, 307–318. [Google Scholar] [CrossRef]
- Jiang, J.; Huo, Z.L.; Feng, S.Y.; Zhang, C.B. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crops Res. 2012, 137, 78–88. [Google Scholar] [CrossRef]
- Lu, J.S.; Hu, T.T.; Geng, C.M.; Cui, X.L.; Fan, J.L.; Zhang, F.C. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China. Agr. Water Manag. 2021, 255, 107034. [Google Scholar] [CrossRef]
- Zhuang, T.X.; Ata-UI-Karim, S.T.; Zhao, B.; Liu, X.J.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Cao, Q. Investigating the impacts of different degrees of deficit irrigation and nitrogen interactions on assimilate translocation, yield, and resource use efficiencies in winter wheat. Agr. Water Manag. 2024, 304, 109089. [Google Scholar] [CrossRef]
- Shi, Q.H.; Wang, H.; Chen, F.; Chu, Q.Q. The Spatial-Temporal Distribution Characteristics and Yield Potential of Medium-low Yielded Farmland in China. Chin. Agric. Sci. Bull. 2010, 26, 369–373. [Google Scholar]
- Xu, J.T.; Cai, H.J.; Wang, X.Y.; Ma, C.G.; Lu, Y.J.; Lu, Y.B.; Ding, Y.B.; Wang, X.W.; Chen, H.; Wang, Y.F.; et al. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. Agr. Water Manag. 2020, 228, 105904. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.H.; Chen, Z.J.; Xiong, Y.W.; Huang, Q.Z.; Xu, X.; Huo, Z.L. Effects of irrigation and fertilization on grain yield, water and nitrogen dynamics and their use efficiency of spring wheat farmland in an arid agricultural watershed of Northwest China. Agr. Water Manag. 2022, 260, 107277. [Google Scholar] [CrossRef]
- Ma, L.J.; Ali, M.F.; Ye, Y.L.; Huang, X.H.; Peng, Z.L.; Naseer, M.A.; Wang, R.; Wang, D. Irrigation and Nitrogen Management Determine Dry Matter Accumulation and Yield of Winter Wheat Under Dryland Conditions. J. Agron. Crop Sci. 2024, 210, e12745. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Panda, R.K.; Chakraborty, A.; Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- Zhao, B.; Niu, X.L.; Ata-Ul-Karim, S.T.; Wang, L.G.; Duan, A.W.; Liu, Z.D.; Lemaire, G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. Eur. J. Agron. 2020, 113, 125967. [Google Scholar] [CrossRef]
- Li, J.P.; Wang, Y.Q.; Zhang, M.; Liu, Y.; Xu, X.X.; Lin, G.; Wang, Z.M.; Yang, Y.M.; Zhang, Y.H. Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat. Agr. Water Manag. 2019, 211, 59–69. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.W.; Man, J.G.; Ma, S.Y.; Gao, Z.Q.; Zhang, Y.L. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Tillage Res. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Ye, T.Y.; Ma, J.F.; Zhang, P.; Shan, S.; Liu, L.L.; Tang, L.; Cao, W.X.; Liu, B.; Zhu, Y. Interaction effects of irrigation and nitrogen on the coordination between crop water productivity and nitrogen use efficiency in wheat production on the North China Plain. Agr. Water Manag. 2022, 271, 107787. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.Y.; Liu, X.C.; Gao, Y.; Ma, S.T.; Qin, A.Z.; Li, Y.; Zhang, Q.F.; Gao, Z.L.; Wu, G.H.; et al. Post-anthesis water use and biomass accumulation in winter wheat under subsoiling and microsprinkler irrigation. Soil Tillage Res. 2025, 246, 106343. [Google Scholar] [CrossRef]
- Dai, Y.L.; Liao, Z.Q.; Pei, S.Z.; Zhang, F.C.; Li, Z.J.; Fan, J.L.; Cui, Y.L. Winter wheat source-sink relationships under various planting modes, complementary irrigation, and planting densities. Agron. J. 2024, 116, 2483–2497. [Google Scholar] [CrossRef]
- González, F.G.; Miralles, D.J.; Slafer, G.A. Wheat floret survival as related to pre-anthesis spike growth. J. Exp. Bot. 2011, 62, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.Y.; Zain, M.; Mehmood, F.; Wang, G.S.; Gao, Y.; Duan, A.W. Effects of nitrogen application rate and irrigation regime on growth, yield, and water-nitrogen use efficiency of drip-irrigated winter wheat in the North China Plain. Agr. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Zhao, B.; Adama, T.; Ata-Ul-Karim, S.T.; Guo, Y.; Liu, Z.D.; Xiao, J.F.; Liu, Z.G.; Qin, A.Z.; Ning, D.F.; Duan, A.W. Recalibrating plant water status of winter wheat based on nitrogen nutrition index using thermal images. Precis. Agric. 2022, 23, 748–767. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Zhou, G.S.; Shimizu, H. Plant responses to drought and rewatering. Plant Signal. Behav. 2010, 5, 649–654. [Google Scholar] [CrossRef]
- Ding, J.F.; Zi, Y.; Li, C.Y.; Peng, Y.X.; Zhu, X.K.; Guo, W.S. Dry Matter Accumulation, Partitioning, and Remobilization in High-Yielding Wheat under Rice-Wheat Rotation in China. Agron. J. 2016, 108, 604–614. [Google Scholar] [CrossRef]
- Yan, S.C.; Wu, Y.; Fan, J.L.; Zhang, F.C.; Qiang, S.C.; Zheng, J.; Xiang, Y.Z.; Guo, J.J.; Zou, H.Y. Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agr. Water Manag. 2019, 213, 983–995. [Google Scholar] [CrossRef]
- Wu, H.; Xiang, J.; Zhang, Y.P.; Zhang, Y.K.; Peng, S.B.; Chen, H.Z.; Zhu, D.F. Effects of Post-Anthesis Nitrogen Uptake and Translocation on Photosynthetic Production and Rice Yield. Sci. Rep. 2018, 8, 12891. [Google Scholar] [CrossRef]
- Noor, H.; Noor, F.; Liang, L.T.; Ding, P.C.; Sun, M.; Gao, Z.Q. Nitrogen fertilization and precipitation affected Wheat (Triticum aestivum L.) in dryland the Loess Plateau of South Shanxi, China. Heliyon 2023, 9, e18177. [Google Scholar] [CrossRef]
- Lemaire, G.; Oosterom, E.; Sheehy, J.; Jeuffroy, M.H.; Massignam, A.; Rossato, L. Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Res. 2007, 100, 91–106. [Google Scholar] [CrossRef]
- Feng, S.W.; Ding, W.H.; Shi, C.C.; Zhu, X.L.; Hu, T.Z.; Ru, Z.A. Optimizing the spatial distribution of roots by supplemental irrigation to improve grain yield and water use efficiency of wheat in the North China Plain. Agr. Water Manag. 2023, 275, 107989. [Google Scholar] [CrossRef]
- Fan, Y.L.; Ma, Y.Z.; Zaman, A.M.; Zhang, M.M.; Li, Q.Q. Delayed irrigation at the jointing stage increased the post-flowering dry matter accumulation and water productivity of winter wheat under wide-precision planting pattern. J. Sci. Food Agr. 2023, 103, 1925–1934. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H.; Huang, Z.L.; Zhu, Q.S.; Wang, L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci. 2000, 40, 1645–1655. [Google Scholar] [CrossRef]
- Liu, M.; Wu, X.L.; Li, C.S.; Li, M.; Xiong, T.; Tang, Y.L. Dry matter and nitrogen accumulation, partitioning, and translocation in synthetic-derived wheat cultivars under nitrogen deficiency at the post-jointing stage. Field Crops Res. 2020, 248, 107720. [Google Scholar] [CrossRef]
- Li, J.P.; Zhang, Z.; Yao, C.S.; Liu, Y.; Wang, Z.M.; Fang, B.T.; Zhang, Y.H. Improving winter wheat grain yield and water-/nitrogen-use efficiency by optimizing the micro-sprinkling irrigation amount and nitrogen application rate. J. Integr. Agr. 2021, 20, 606–621. [Google Scholar] [CrossRef]
- Yan, S.C.; Wu, Y.; Fan, J.L.; Zhang, F.C.; Guo, J.J.; Zheng, J.; Wu, L.F. Optimization of drip irrigation and fertilization regimes to enhance winter wheat grain yield by improving post-anthesis dry matter accumulation and translocation in northwest China. Agr. Water Manag. 2022, 271, 107782. [Google Scholar] [CrossRef]
- Zhang, H.B.; Han, K.; Gu, S.B.; Wang, D. Effects of supplemental irrigation on the accumulation, distribution and transportation of 13C-photosynthate, yield and water use efficiency of winter wheat. Agr. Water Manag. 2019, 214, 1–8. [Google Scholar] [CrossRef]
- Bahrani, A.; Abad, H.H.S.; Sarvestani, Z.T.; Moafpourian, G.H.; Band, A.A. Remobilization of dry matter in wheat: Effects of nitrogen application and post-anthesis water deficit during grain filling. N. Z. J. Crop Hortic. Sci. 2011, 39, 279–293. [Google Scholar] [CrossRef]
- Li, X.F.; Noor, H.; Noor, F.; Ding, P.C.; Sun, M.; Gao, Z.Q. Effect of Soil Water and Nutrient Uptake on Nitrogen Use Efficiency, and Yield of Winter Wheat. Agronomy 2024, 14, 819. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.Y.; Jia, Q.M.; Ahmad, I.; Wei, T.; Ren, X.L.; Zhang, P.; Din, R.X.; Cai, T.; Jia, Z.K. Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions. Agr. Water Manag. 2018, 201, 207–218. [Google Scholar] [CrossRef]
- Lyu, G.; Wang, C.; Jin, X.; Xu, J.; Wang, R.; Sun, X.; Qian, Z.; Wu, K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chin. J. Appl. Ecol. 2020, 31, 2593–2603. [Google Scholar]
- Xu, Z.Z.; Yu, Z.W.; Wang, D. Nitrogen translocation in wheat plants under soil water deficit. Plant Soil 2006, 280, 291–303. [Google Scholar] [CrossRef]
- Yagioka, A.; Hayashi, S.; Kimiwada, K.; Kondo, M. Sink production and grain-filling ability of a new high-yielding rice variety, Kitagenki. Field Crops Res. 2021, 260, 107991. [Google Scholar] [CrossRef]
- Chen, T.T.; Xu, Y.J.; Wang, J.C.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. J. Exp. Bot. 2013, 64, 2523–2538. [Google Scholar] [CrossRef]
- Fang, H.; Gu, X.B.; Jiang, T.C.; Yang, J.Y.; Li, Y.N.; Huang, P.; Chen, P.P.; Yang, J. An optimized model for simulating grain-filling of maize and regulating nitrogen application rates under different film mulching and nitrogen fertilizer regimes on the Loess Plateau, China. Soil Tillage Res. 2020, 199, 104546. [Google Scholar] [CrossRef]
- Liu, J.M.; Si, Z.Y.; Li, S.; Wu, L.F.; Zhang, Y.Y.; Wu, X.L.; Cao, H.; Gao, Y.; Duan, A.W. Effects of water and nitrogen rate on grain-filling characteristics under high-low seedbed cultivation in winter wheat. J. Integr. Agr. 2024, 23, 4018–4031. [Google Scholar] [CrossRef]
- Liang, W.X.; Zhang, Z.C.; Wen, X.X.; Liao, Y.C.; Liu, Y. Effect of non-structural carbohydrate accumulation in the stem pre-anthesis on grain filling of wheat inferior grain. Field Crops Res. 2017, 211, 66–76. [Google Scholar] [CrossRef]
- Shi, R.C.; Tong, L.; Ding, R.S.; Du, T.S.; Shukla, M.K. Modeling kernel weight of hybrid maize seed production with different water regimes. Agr. Water Manag. 2021, 250, 106851. [Google Scholar] [CrossRef]
- Ali, S.; Ma, X.C.; Jia, Q.M.; Ahmad, I.; Ahmad, S.; Sha, Z.; Yun, B.; Muhammad, A.; Ren, X.L.; Shah, S.; et al. Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system. Agr. Water Manag. 2019, 226, 105842. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhang, Y.P.; Liu, X.Q.; Li, Z.; Lin, W.X. The use of comparative quantitative proteomics analysis in rice grain-filling in determining response to moderate soil drying stress. Plant Growth Regul. 2017, 82, 219–232. [Google Scholar] [CrossRef]
- Hao, B.Z.; Xue, Q.W.; Bean, B.W.; Rooney, W.L.; Becker, J.D. Biomass production, water and nitrogen use efficiency in photoperiod-sensitive sorghum in the Texas High Plains. Biomass Bioenergy 2014, 62, 108–116. [Google Scholar] [CrossRef]
- You, Y.L.; Song, P.; Yang, X.L.; Zheng, Y.P.; Dong, L.; Chen, J. Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment. Agr. Water Manag. 2022, 273, 107901. [Google Scholar] [CrossRef]
- Liu, X.J.; Yin, B.Z.; Bao, X.Y.; Hou, X.Y.; Wang, T.; Shang, C.; Yang, M.M.; Zhen, W.C. Optimization of irrigation period improves wheat yield by regulating source-sink relationship under water deficit. Eur. J. Agron. 2024, 156, 127164. [Google Scholar] [CrossRef]
- Porter, J.R.; Challinor, A.J.; Henriksen, C.B.; Howden, S.M.; Martre, P.; Smith, P. Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history. Glob. Change Biol. 2019, 25, 2518–2529. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.D.; Niu, W.Q.; Zhang, Q.; Cui, B.J.; Zhang, Z.H.; Wang, Z.; Sun, J. A synthetic analysis of the effect of water and nitrogen inputs on wheat yield and water- and nitrogen-use efficiencies in China. Field Crops Res. 2021, 265, 108105. [Google Scholar] [CrossRef]
- Dar, E.A.; Brar, A.S.; Mishra, S.K.; Singh, K.B. Simulating response of wheat to timing and depth of irrigation water in drip irrigation system using CERES-Wheat model. Field Crops Res. 2017, 214, 149–163. [Google Scholar] [CrossRef]
- Rathore, V.S.; Nathawat, N.S.; Bhardwaj, S.; Sasidharan, R.P.; Yadav, B.M.; Kumar, M.; Santra, P.; Yadava, N.D.; Yadav, O.P. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region. Agr. Water Manag. 2017, 187, 232–245. [Google Scholar] [CrossRef]
- Eissa, M.A.; Rekaby, S.A.; Hegab, S.A.; Ragheb, H.M. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. J. Plant Nutr. 2018, 41, 1576–1586. [Google Scholar] [CrossRef]
- Wang, D.; Yu, Z.W.; White, P.J. The effect of supplemental irrigation after jointing on leaf senescence and grain filling in wheat. Field Crops Res. 2013, 151, 35–44. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agr. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- Sepaskhah, A.R.; Ahmadi, S.H. A Review on Partial Root-Zone Drying Irrigation. Int. J. Plant Prod. 2010, 4, 241–258. [Google Scholar]
- Jia, D.Y.; Dai, X.L.; Men, H.W.; He, M.R. Assessment of winter wheat (Triticum aestivum L.) grown under alternate furrow irrigation in northern China: Grain yield and water use efficiency. Can. J. Plant Sci. 2014, 94, 349–359. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhang, W.Y.; Beebout, S.S.; Zhang, H.; Liu, L.J.; Yang, J.C.; Zhang, J.H. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Duan, J.Z.; Shao, Y.H.; He, L.; Li, X.; Hou, G.G.; Li, S.N.; Feng, W.; Zhu, Y.J.; Wang, Y.H.; Xie, Y.X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Sci. Total Environ. 2019, 697, 134088. [Google Scholar] [CrossRef]
- Du, H.Y.; Gao, W.X.; Li, J.J.; Shen, S.Z.; Wang, F.; Fu, L.; Zhang, K.Q. Effects of digested biogas slurry applicationmixed with irrigation water on nitrate leaching during wheat-maize rotation in the North China Plain. Agr. Water Manag. 2019, 213, 882–893. [Google Scholar] [CrossRef]
Year | Treatment | pH | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Alkali-Hydrolyzale Nitrogen (mg kg−1) | Available Phosphorus (mg kg−1) | Available Potassium (mg kg−1) |
---|---|---|---|---|---|---|---|
2022–2023 | F1 | 8.54 b | 17.97 b | 1.09 c | 151.81 c | 19.38 c | 367.63 c |
F2 | 8.51 b | 18.50 b | 1.13 b | 172.81 b | 31.26 b | 424.28 b | |
F3 | 8.47 b | 19.80 a | 1.28 a | 199.94 a | 51.53 a | 504.27 a | |
CK | 8.64 a | 14.86 c | 0.86 d | 115.35 d | 8.60 d | 260.31 d | |
2023–2024 | F1 | 8.61 b | 17.02 b | 1.08 c | 145.64 c | 18.54 c | 390.29 c |
F2 | 8.53 c | 17.95 ab | 1.14 b | 165.80 b | 24.91 b | 492.94 b | |
F3 | 8.55 c | 19.09 a | 1.23 a | 187.94 a | 43.99 a | 566.26 a | |
CK | 8.68 a | 14.31 c | 0.88 d | 112.58 d | 10.19 d | 220.98 d |
Year | Treatment | DMT (kg ha−1) | DMA (kg ha−1) | DMT/GDMmaturity (%) | DMA/GDMmaturity (%) |
---|---|---|---|---|---|
2022–2023 | DF1 | 4438.42 bc | 6225.59 cd | 41.62 ab | 58.38 ab |
DF2 | 4476.83 bc | 5999.40 d | 42.75 ab | 57.25 ab | |
DF3 | 5209.94 a | 7129.17 b | 42.25 ab | 57.75 ab | |
DCK | 1321.88 d | 2227.87 f | 37.42 b | 62.58 a | |
WF1 | 4308.81 c | 5415.91 e | 44.33 a | 55.67 b | |
WF2 | 4847.57 ab | 6763.28 bc | 41.74 ab | 58.26 ab | |
WF3 | 4878.84 ab | 7707.79 a | 38.71 b | 61.29 a | |
WCK | 1204.85 d | 1461.28 g | 44.94 a | 55.06 b | |
I | ns | ns | ns | ns | |
F | ** | ** | ns | ns | |
I × F | ns | ** | * | ** | |
2023–2024 | DF1 | 2433.47 b | 7039.97 c | 25.69 bc | 74.31 a |
DF2 | 3003.10 ab | 7732.32 bc | 27.96 bc | 72.04 ab | |
DF3 | 3495.85 a | 7707.51 bc | 31.31 b | 68.69 b | |
DCK | 735.06 c | 2507.90 e | 22.66 c | 77.34 ab | |
WF1 | 2770.75 b | 5960.86 d | 31.71 ab | 68.29 bc | |
WF2 | 2812.21 b | 8010.20 b | 25.98 bc | 74.02 ab | |
WF3 | 3063.86 ab | 9588.43 a | 24.25 c | 75.75 a | |
WCK | 863.90 c | 1405.42 f | 38.07 a | 61.93 c | |
I | ns | ns | ns | ns | |
F | ** | ** | ns | ns | |
I × F | ns | ** | ** | ** |
Year | Treatment | NAT (kg ha−1) | NAA (kg ha−1) | NAT/GNAmaturity (%) | NAA/GNAmaturity (%) |
---|---|---|---|---|---|
2022–2023 | DF1 | 142.76 d | 66.10 b | 68.36 c | 31.64 b |
DF2 | 170.83 c | 59.30 bc | 74.25 b | 25.75 c | |
DF3 | 185.46 b | 88.35 a | 67.75 c | 32.25 b | |
DCK | 33.02 e | 27.67 e | 54.61 d | 45.39 a | |
WF1 | 144.51 d | 30.71 e | 82.50 a | 17.50 d | |
WF2 | 181.24 b | 52.07 cd | 77.67 ab | 22.33 cd | |
WF3 | 199.94 a | 46.25 d | 81.23 a | 18.77 d | |
WCK | 27.39 e | 9.7 f | 73.94 b | 26.06 c | |
I | * | ** | ** | ** | |
F | ** | ** | ** | ** | |
I × F | ** | ** | ** | ** | |
2023–2024 | DF1 | 117.38 d | 52.69 b | 69.03 b | 30.97 c |
DF2 | 138.98 c | 86.69 a | 61.56 c | 38.44 b | |
DF3 | 164.31 a | 77.05 a | 68.25 b | 31.75 c | |
DCK | 21.02 e | 27.84 c | 43.06 d | 56.94 a | |
WF1 | 117.96 d | 18.22 c | 86.22 a | 13.38 d | |
WF2 | 151.70 b | 55.48 b | 73.23 b | 26.77 c | |
WF3 | 167.56 a | 73.98 a | 69.40 b | 30.60 c | |
WCK | 18.48 e | 12.65 c | 59.39 c | 40.61 b | |
I | ns | ** | ** | ** | |
F | ** | ** | ** | ** | |
I × F | ns | * | ** | ** |
Year | Treatment | T1 (d) | Tmax (d) | Gmean (g 1000 Grain−1 d−1) | T2 (d) | Gmax (g 1000 Grain−1 d−1) | ΔT (d) | R2 | Tgrain (d) |
---|---|---|---|---|---|---|---|---|---|
2022–2023 | DF1 | 13.02 c | 19.57 d | 11.36 b | 26.13 cd | 24.22 b | 13.11 ab | 0.99929 ** | 42.45 bc |
DF2 | 13.66 b | 20.37 bc | 10.97 c | 27.07 bc | 23.57 bc | 13.41 a | 0.99907 ** | 43.77 ab | |
DF3 | 13.81 b | 20.73 b | 10.38 e | 27.66 b | 22.17 de | 13.85 a | 0.99712 ** | 44.90 ab | |
DCK | 13.72 b | 19.77 cd | 12.09 a | 25.83 d | 26.87 a | 12.11 b | 0.99941 ** | 40.90 cd | |
WF1 | 15.06 a | 22.05 a | 10.78 cd | 29.03 a | 23.58 bc | 13.97 a | 0.99406 ** | 46.42 a | |
WF2 | 14.08 b | 20.88 b | 10.58 de | 27.68 b | 22.85 cd | 13.59 a | 0.99781 ** | 44.59 ab | |
WF3 | 13.87 b | 20.59 b | 9.85 f | 27.31 bc | 21.26 e | 13.44 a | 0.99820 ** | 44.04 ab | |
WCK | 12.12 d | 18.19 e | 12.35 a | 24.26 e | 26.37 a | 12.14 b | 0.99701 ** | 39.36 d | |
2023–2024 | DF1 | 11.16 bc | 17.10 c | 13.32 b | 23.04 c | 27.93 ab | 11.88 bc | 0.99517 ** | 37.83 b |
DF2 | 11.29 bc | 17.75 bc | 12.51 bc | 24.21 bc | 25.70 bc | 12.92 ab | 0.99598 ** | 40.29 ab | |
DF3 | 11.52 b | 18.18 bc | 12.02 cd | 24.84 abc | 24.62 c | 13.32 ab | 0.99713 ** | 41.42 ab | |
DCK | 8.21 d | 13.32 d | 14.91 a | 18.43 d | 29.92 a | 10.22 c | 0.99220 ** | 31.15 c | |
WF1 | 10.63 c | 17.13 c | 12.17 c | 23.62 c | 24.54 c | 12.99 ab | 0.99606 ** | 39.79 ab | |
WF2 | 12.51 a | 19.34 a | 11.28 d | 26.16 a | 23.49 c | 13.64 ab | 0.99811 ** | 43.14 a | |
WF3 | 11.39 bc | 18.44 ab | 12.05 cd | 25.50 ab | 24.21 c | 14.11 a | 0.98826 ** | 43.06 a | |
WCK | 8.99 d | 14.30 d | 14.52 a | 19.62 d | 29.57 a | 10.62 c | 0.98602 ** | 32.83 c |
Year | Treatment | D+ | D− | RC | Rank |
---|---|---|---|---|---|
2022–2023 | DF1 | 0.282 | 0.941 | 0.769 | 1 |
DF2 | 0.529 | 0.526 | 0.499 | 3 | |
DF3 | 0.867 | 0.344 | 0.284 | 5 | |
WF1 | 0.391 | 0.865 | 0.688 | 2 | |
WF2 | 0.608 | 0.418 | 0.407 | 4 | |
WF3 | 0.931 | 0.345 | 0.271 | 6 | |
2023–2024 | DF1 | 0.331 | 0.926 | 0.737 | 1 |
DF2 | 0.564 | 0.476 | 0.458 | 3 | |
DF3 | 0.858 | 0.361 | 0.296 | 5 | |
WF1 | 0.395 | 0.880 | 0.690 | 2 | |
WF2 | 0.589 | 0.426 | 0.420 | 4 | |
WF3 | 0.916 | 0.381 | 0.294 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Huang, Z.; Huang, C.; Liu, Z.; Liu, J.; Cao, H.; Gao, Y. Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels. Agronomy 2025, 15, 1874. https://doi.org/10.3390/agronomy15081874
Wu X, Huang Z, Huang C, Liu Z, Liu J, Cao H, Gao Y. Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels. Agronomy. 2025; 15(8):1874. https://doi.org/10.3390/agronomy15081874
Chicago/Turabian StyleWu, Xiaolei, Zhongdong Huang, Chao Huang, Zhandong Liu, Junming Liu, Hui Cao, and Yang Gao. 2025. "Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels" Agronomy 15, no. 8: 1874. https://doi.org/10.3390/agronomy15081874
APA StyleWu, X., Huang, Z., Huang, C., Liu, Z., Liu, J., Cao, H., & Gao, Y. (2025). Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels. Agronomy, 15(8), 1874. https://doi.org/10.3390/agronomy15081874