A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations
Abstract
1. Introduction
2. The Structure of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector on N-Type Bulk
2.1. The Model of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
2.2. The Technological Process of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3. Electrical Characteristic Results
3.1. Three-Dimensional Simulation of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3.2. Full Depletion Voltage and Electric Potential Distribution of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3.3. Electric Field Distribution of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3.4. Leakage Current and Capacitance of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3.5. The Weighting Field of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
3.6. The Transient Induced Current and Charge Collection Efficiency of a Novel Polysilicon-Fill- Strengthened Etch-Through 3D Trench Electrode Detector
3.7. Detector Array of a Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stapnes, S. Detector challenges at the LHC. Nature 2007, 448, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Ruzin, A. Review of semiconductor ionizing radiation detectors. Nat. Sci. J. Xiangtan Univ. 2018, 4, 106–114. [Google Scholar]
- Galloway, Z.; Gee, C.; Mazza, S.; Ohldag, H.; Rodriguez, R.; Sadrozinski, H.F.-W.; Schumm, B.A.; Seiden, A.; Wyatt, W.; Zhao, Y. Use of ‘LGAD’ ultra-fast silicon detectors for time-resolved low-keV X-ray science. Nucl. Instrum. Methods Phys. Res. 2019, 923, 5–7. [Google Scholar] [CrossRef]
- Meier, D.; Czermak, A.; Jalocha, P.; Sowicki, B.; Kowal, M.; Dulinski, W.; Maehlum, G.; Nygard, E.; Yoshioka, K.; Fuster, J.; et al. Silicon detector for a Compton camera in nuclear medical imaging. IEEE Trans. Nucl. Sci. 2002, 49, 812–816. [Google Scholar] [CrossRef]
- Pourmorteza, A.; Symons, R.; Sandfort, V.; Mallek, M.; Fuld, M.K.; Henderson, G.; Jones, E.C.; Malayeri, A.A.; Folio, L.R.; Bluemke, D.A. Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience. Radiology 2016, 279, 239–245. [Google Scholar] [CrossRef]
- Granfors, P.R.; Aufrichtig, R.; Possin, G.E.; Giambattista, B.W.; Huang, Z.S.; Liu, J.; Ma, B. Performance of a 41×41cm2 amorphous silicon flat panel x-ray detector for radiographic imaging applications. Med. Phys. 2000, 27, 1324–1331. [Google Scholar] [CrossRef]
- Shi, L.; Sarubbi, F.; Nihtianov, S.N.; Nanver, L.K.; Scholtes, T.L.M.; Scholze, F. High performance silicon-based extreme ultraviolet (EUV) radiation detector for industrial application. In Proceedings of the 2009 IECON’09 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1877–1882. [Google Scholar]
- Kemmer, J. Fabrication of low noise silicon radiation detectors by the planar process. Nucl. Instrum. Methods 1980, 169, 499–502. [Google Scholar] [CrossRef]
- Maisch, T.; Günzler, R.; Weiser, M.; Kalbitzer, S.; Welser, W.; Kemmer, J. Ion-implanted Si pn-junction detectors with ultrathin windows. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1990, 288, 19–23. [Google Scholar] [CrossRef]
- Gatti, E.; Rehak, P. Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl. Instrum. Methods Phys. Res. 1984, 225, 608–614. [Google Scholar] [CrossRef]
- Guazzoni, C. The first 25 years of silicon drift detectors: A personal view. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 624, 247–254. [Google Scholar] [CrossRef]
- Parker, S.; Kenney, C.; Segal, J. 3D—A proposed new architecture for solid-state radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 395, 328–343. [Google Scholar] [CrossRef]
- Kenney, C.; Parker, S.; Segal, J.; Storment, C. Silicon detectors with 3D electrode arrays: Fabrication and initial test results. IEEE Trans. Nucl. Sci. 1999, 46, 1224–1236. [Google Scholar] [CrossRef]
- DaVia, C.; Hasia, J.; Kenney, C.; Koka, A.; Parker, S. 3D silicon detectors—Status and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 549, 122–125. [Google Scholar] [CrossRef]
- Li, Z. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications. Nucl. Instrum. Methods Phys. Res. A 2011, 658, 90–97. [Google Scholar] [CrossRef]
- Montalbano, A.; Bassignana, D.; Li, Z.; Liu, S.; Lynn, D.; Pellegrini, G.; Tsybychev, D. A systematic study of BNL’s 3D-Trench Electrode detectors. Nucl. Instrum. Methods Phys. Res. A 2014, 765, 23–28. [Google Scholar] [CrossRef]
- Kenney, C.; Parker, S.; Walckiers, E. Results from 3D silicon sensors with wall electrodes: Near-cell-edge sensitivity measurements as a preview of active-edge sensors. IEEE Trans. Nucl. Sci. 2001, 48, 2405–2410. [Google Scholar] [CrossRef]
- Betta, G.F.D.; Bagolini, A.; Boscardin, M.; Bosisio, L. Development of modified 3D detectors at FBK. In Proceedings of the IEEE Nuclear Science Symposium & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; ISBN 9781424491049. [Google Scholar]
- Liu, M.; Jiang, S.; Cheng, W.; Ji, H. A double-sided 3D trench electrode detector using an 8-inch CMOS process: 3D simulation and experimental investigation. Nucl. Instrum. Methods Phys. Res. A 2025, 10170, 169943. [Google Scholar] [CrossRef]
- Kraner, H.; Li, Z.; Posnecker, K. Fast neutron damage in silicon detectors. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrometers Detect. Assoc. Equip. 1989, 279, 266–271. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Xiao, Y.; Li, Z. Design and simulation of a new silicon pixel detector with equal width floating electrodes. AIP Adv. 2021, 11, 025315. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Dezillie, B.; Li, Z.; Eremin, V.; Chen, W.; Zhao, L. The effect of oxygen impurities on radiation hardness of FZ silicon detectors for HEP after neutron, proton and gamma irradiation. IEEE Trans. Nucl. Sci. 2000, 47, 1892–1897. [Google Scholar] [CrossRef]
- Ding, H.; Chen, J.; Li, Z.; Yan, S. Modeling and simulation of charge collection properties for 3D-trench electrode detector. Nucl. Instrum. Methods Phys. Res. A 2015, 796, 29–33. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, T.; Li, Z. Electrical properties of ultra-fast 3D-Trench Electrode silicon detector. Micromachines 2020, 11, 674. [Google Scholar] [CrossRef]
- Lemeilleur, F.; Glaser, M.; Heijne, E.; Jarron, P.; Occelli, E.; Rioux, J. Electrical properties and charge collection efficiency for neutron-irradiated p-type and n-type silicon detectors. Nucl. Phys. B-Proc. Suppl. 1993, 32, 415–424. [Google Scholar] [CrossRef]
- Li, Z.; Kraner, H. Modeling and simulation of charge collection properties for neutron irradiated silicon detectors. Nucl. Phys. B-Proc. Suppl. 1993, 32, 398–409. [Google Scholar] [CrossRef]
- Tan, Z.; Li, Z.; Li, X.; Cai, X.; Liu, M.; Wang, H. Study of electrical properties and detection mechanism of a practical novel 3D-Spherical Electrode Detector. Front. Mater. 2023, 10, 1149774. [Google Scholar] [CrossRef]
- Lampis, A.; Addison, M.; Bellora, A.; Boscardin, M.; Brundu, D.; Cardini, A.; Cossu, G.M.; Betta, G.F.D.; La Delfa, L.; Lai, A.; et al. Performance of 3D trench silicon pixel sensors irradiated up to 1×1017 1 MeV neq cm−2. Nucl. Instrum. Methods Phys. Res. A 2024, 1069, 169984. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, Z.; Liu, Z.; Long, T.; Zhao, J.; Li, X.; Liu, M.; Wang, M. A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations. Micromachines 2025, 16, 912. https://doi.org/10.3390/mi16080912
Zhu X, Li Z, Liu Z, Long T, Zhao J, Li X, Liu M, Wang M. A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations. Micromachines. 2025; 16(8):912. https://doi.org/10.3390/mi16080912
Chicago/Turabian StyleZhu, Xuran, Zheng Li, Zhiyu Liu, Tao Long, Jun Zhao, Xinqing Li, Manwen Liu, and Meishan Wang. 2025. "A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations" Micromachines 16, no. 8: 912. https://doi.org/10.3390/mi16080912
APA StyleZhu, X., Li, Z., Liu, Z., Long, T., Zhao, J., Li, X., Liu, M., & Wang, M. (2025). A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations. Micromachines, 16(8), 912. https://doi.org/10.3390/mi16080912