Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (239)

Search Parameters:
Keywords = WO3 film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1803 KB  
Article
Layer-by-Layer Hybrid Film of PAMAM and Reduced Graphene Oxide–WO3 Nanofibers as an Electroactive Interface for Supercapacitor Electrodes
by Vanderley F. Gomes Junior, Danilo A. Oliveira, Paulo V. Morais and José R. Siqueira Junior
Nanoenergy Adv. 2025, 5(4), 22; https://doi.org/10.3390/nanoenergyadv5040022 - 12 Dec 2025
Viewed by 348
Abstract
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes [...] Read more.
Tungsten oxide (WO3) nanostructures have emerged as promising electroactive materials due to their high pseudocapacitance, structural versatility, and chemical stability, while reduced graphene oxide (rGO) provides excellent electrical conductivity and surface area. The strategic combination of these nanomaterials in hybrid electrodes has gained attention for enhancing the energy storage performance of supercapacitors. In this work, we report the fabrication and electrochemical performance of nanostructured multilayer films based on the electrostatic Layer-by-Layer (LbL) self-assembly of poly (amidoamine) (PAMAM) dendrimers alternated with tungsten oxide (WO3) nanofibers dispersed in reduced graphene oxide (rGO). The films were deposited onto indium tin oxide (ITO) substrates and subsequently subjected to electrochemical reduction. UV-Vis spectroscopy confirmed the linear growth of the multilayers, while atomic force microscopy (AFM) revealed homogeneous surface morphology and thickness control. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) revealed a predominantly electrical double-layer capacitive (EDLC) behavior. From the GCD measurements (PAMAM/rGO-WO3)20 films achieved an areal capacitance of ≈2.20 mF·cm−2, delivering an areal energy density of ≈0.17 µWh·cm−2 and an areal power density of ≈2.10 µW·cm−2, demonstrating efficient charge storage in an ultrathin electrode architecture. These results show that the synergistic integration of PAMAM dendrimers, reduced graphene oxide, and WO3 nanofibers yields a promising strategy for designing high-performance electrode materials for next-generation supercapacitors. Full article
(This article belongs to the Special Issue Hybrid Energy Storage Systems Based on Nanostructured Materials)
Show Figures

Graphical abstract

19 pages, 3328 KB  
Article
Investigation of Surface Modification Effects on the Optical and Electrical Hydrogen Sensing Characteristics of WO3 Films
by Jiabin Hu, Jie Wei, Jianmin Ye, Wen Ye, Ying Li, Zhe Lv and Meng Zhao
Sensors 2025, 25(23), 7268; https://doi.org/10.3390/s25237268 - 28 Nov 2025
Viewed by 483
Abstract
The development of hydrogen energy is advancing rapidly, while the progress of hydrogen sensors has been relatively lagging behind and cannot meet the stringent performance requirements of hydrogen energy applications. WO3 has attracted significant attention due to its highly complementary optical and [...] Read more.
The development of hydrogen energy is advancing rapidly, while the progress of hydrogen sensors has been relatively lagging behind and cannot meet the stringent performance requirements of hydrogen energy applications. WO3 has attracted significant attention due to its highly complementary optical and electrical responses to hydrogen. In this study, hydrogen-sensitive WO3 thin films characterized by vertically aligned crystallites were fabricated by modulating the substrate temperature and oxygen pressure during pulsed laser deposition. Building upon this foundation, a comprehensive investigation into surface modification strategies for enhancing sensitivity was undertaken. The surface modifications encompassed eight distinct metals and four different metal oxides. Among the metal-modified samples, palladium (Pd) Pd exhibited a markedly enhanced electrical response, defined as the ratio of the resistance in hydrogen-free air to that in hydrogen, of 1022, corresponding to ~45 times higher than the value of 22.4 achieved for Pt-modified films and 120 times higher than the value of 8.4 for Au-modified films. In addition, Pd/WO3 films showed a measurable optical transmittance change of 9.7%, while all other metal-modified samples exhibited negligible optical responses (<1%). This enhancement is attributable to the catalytic and electronic sensitisation effects of Pd. Conversely, metals such as platinum (Pt), gold (Au), and silver (Ag) elicited negligible optical responses, suggesting minimal catalytic activity. The electrical response in these cases was primarily governed by electronic sensitization effects related to the work function of the metal, with higher work function values correlating with more pronounced sensitization. Regarding metal oxide modifications, the sensitization effect was more substantial when the disparity in work function between the oxide and WO3 was greater, and this enhancement was found to be independent of the charge carrier type of the modifying oxide. These results offer significant insights into the design principles underlying high-performance WO3-based hydrogen sensors and underscore the pivotal influence of surface modification in governing their sensing characteristics. Full article
Show Figures

Figure 1

18 pages, 4131 KB  
Article
Influence of Interfacial Stress on the Structural Characteristics and Hydrogen Sensing Performance of WO3 Films
by Zhihong Qiao, Jianmin Ye, Wen Ye, Jie Wei, Ying Li, Zhe Lv and Meng Zhao
Nanomaterials 2025, 15(23), 1785; https://doi.org/10.3390/nano15231785 - 27 Nov 2025
Viewed by 414
Abstract
Tungsten trioxide (WO3) exhibits complementary optical and electrical responses toward hydrogen, yet the interplay between interfacial stress, crystal phase stabilization, and gasochromic/chemiresistive performance remains insufficiently understood. In this work, WO3 films were grown on four single-crystal oxide substrates to systematically [...] Read more.
Tungsten trioxide (WO3) exhibits complementary optical and electrical responses toward hydrogen, yet the interplay between interfacial stress, crystal phase stabilization, and gasochromic/chemiresistive performance remains insufficiently understood. In this work, WO3 films were grown on four single-crystal oxide substrates to systematically tune interfacial stress and thereby modulate the resulting crystal phase, microstructure, and exposed facets. θ–2θ diffraction revealed that WO3 adopts a monoclinic phase on YAlO3 and SrLaAlO4, whereas a high-temperature orthorhombic phase is stabilized on LaAlO3 (LAO) and SrTiO3 due to stronger interfacial constraint. Compared with the amorphous quartz reference, the single-crystal substrates significantly enhanced both gasochromic and chemiresistive responses. In particular, the orthorhombic WO3/LAO film exhibited an electrical response of 1.97 × 104 (Rair/RH2), an optical transmittance changed of 12.7%, and an electrical response time of 1 s toward 2% H2 at 80 °C, far exceeding the monoclinic and amorphous counterparts. The combined effects of stress-induced phase stabilization, film orientation, and hydrogen diffusion pathways are shown to govern the non-monotonic sensing trends among different substrates. These findings elucidate the structural origin of hydrogen sensitivity in WO3 and provide guidance for stress-engineered design of high-performance gasochromic and chemiresistive sensors. Full article
Show Figures

Graphical abstract

37 pages, 2700 KB  
Review
Research Progress on Electrochromic Properties of WO3 Thin Films
by Fuyueyang Tan, Jinhui Zhou, Zhengjie Guo, Chi Zhang, Shaoyi Yu, Yikun Yang, Yixian Xie, Xi Cao, Xinyi Wu, Xiaofei Gao, Zaijin Li, Yi Qu and Lin Li
Coatings 2025, 15(11), 1310; https://doi.org/10.3390/coatings15111310 - 10 Nov 2025
Cited by 2 | Viewed by 1719
Abstract
With continuous breakthroughs in electrochromic technology, tungsten trioxide (WO3) thin films, as a core material in this field, are rapidly expanding their applications in smart windows, anti-glare automotive rearview mirrors, and adaptive optical lenses. Owing to its excellent electrochromic properties—including high [...] Read more.
With continuous breakthroughs in electrochromic technology, tungsten trioxide (WO3) thin films, as a core material in this field, are rapidly expanding their applications in smart windows, anti-glare automotive rearview mirrors, and adaptive optical lenses. Owing to its excellent electrochromic properties—including high optical modulation, short switching times, and high coloration efficiency—WO3 has become a research focus in the field of electrochromic devices. This review takes WO3 thin films as the research subject. It begins by introducing the crystal structure of WO3 and the ion/electron co-intercalation-based electrochromic mechanism and explains two key performance parameters for evaluating electrochromic properties: optical modulation amplitude and coloration efficiency. Subsequently, it provides a detailed review of recent advances in the preparation of WO3 thin films via physical methods (including sputtering deposition, evaporative deposition, and pulsed laser deposition) and chemical methods (including hydrothermal, sol–gel, and electrodeposition methods). A systematic comparison is made of the microstructure and electrochromic performance (optical modulation amplitude and coloration efficiency) of films prepared by different methods, and the interaction between WO3 film morphology and device structure is analyzed. Finally, the advantages and challenges of physical and chemical methods in tuning film properties are summarized, and the outlook of their application prospects in high-performance electrochromic devices is given. This review aims to provide guidance for the selection and process optimization of WO3 thin films with enhanced performance for applications such as smart windows, anti-glare rearview mirrors, and adaptive optical systems. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

26 pages, 5508 KB  
Review
From Sources to Environmental Risks: Research Progress on Per- and Polyfluoroalkyl Substances (PFASs) in River and Lake Environments
by Zhanqi Zhou, Fuwen Deng, Jiayang Nie, He Li, Xia Jiang, Shuhang Wang and Yunyan Guo
Water 2025, 17(21), 3061; https://doi.org/10.3390/w17213061 - 25 Oct 2025
Viewed by 1668
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted global attention due to their persistence and biological toxicity, becoming critical emerging contaminants in river and lake environments worldwide. Building upon existing studies, this work aims to comprehensively understand the pollution patterns, environmental behaviors, and potential [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) have attracted global attention due to their persistence and biological toxicity, becoming critical emerging contaminants in river and lake environments worldwide. Building upon existing studies, this work aims to comprehensively understand the pollution patterns, environmental behaviors, and potential risks of PFASs in freshwater systems, thereby providing scientific evidence and technical support for precise pollution control, risk prevention, and the protection of aquatic ecosystems and human health. Based on publications from 2002 to 2025 indexed in the Web of Science (WoS), bibliometric analysis was used to explore the temporal evolution and research hotspots of PFASs, and to systematically review their input pathways, pollution characteristics, environmental behaviors, influencing factors, and ecological and health risks in river and lake environments. Results show that PFAS inputs originate from both direct and indirect pathways. Direct emissions mainly stem from industrial production, consumer product use, and waste disposal, while indirect emissions arise from precursor transformation, secondary releases from wastewater treatment plants (WWTPs), and long-range atmospheric transport (LRAT). Affected by source distribution, physicochemical properties, and environmental conditions, PFASs display pronounced spatial variability among environmental media. Their partitioning, degradation, and migration are jointly controlled by molecular properties, aquatic physicochemical conditions, and interactions with dissolved organic matter (DOM). Current risk assessments indicate that PFASs generally pose low risks in non-industrial areas, yet elevated ecological and health risks persist in industrial clusters and regions with intensive aqueous film-forming foam (AFFF) use. Quantitative evaluation of mixture toxicity and chronic low-dose exposure risks remains insufficient and warrants further investigation. This study reveals the complex, dynamic environmental behaviors of PFASs in river and lake systems. Considering the interactions between PFASs and coexisting components, future research should emphasize mechanisms, key influencing factors, and synergistic control strategies under multi-media co-pollution. Developing quantitative risk assessment frameworks capable of characterizing integrated mixture toxicity will provide a scientific basis for the precise identification and effective management of PFAS pollution in aquatic environments. Full article
(This article belongs to the Special Issue Pollution Process and Microbial Responses in Aquatic Environment)
Show Figures

Figure 1

15 pages, 4211 KB  
Article
Reusable BiOI-Modified CuWO4 Heterojunction Films and Their Excellent Photocatalytic Oxidation Activity of Nanoplastics and Methylene Blue
by Te Hu, Liang Hao, Xiaohui Zhao, Sujun Guan and Yun Lu
Nanomaterials 2025, 15(20), 1579; https://doi.org/10.3390/nano15201579 - 16 Oct 2025
Viewed by 544
Abstract
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and [...] Read more.
CuWO4 films were prepared on FTO glass substrates by the hydrothermal method. To improve their photocatalytic activity, the CuWO4 films were further modified with BiOI using the successive ionic layer adsorption and reaction (SILAR) method. Characterization results indicate that BiOI and CuWO4 achieved nanoscale mixing and formed a Type II p-n heterojunction. The heterojunction formation not only extends the light absorption threshold of CuWO4 from 530 nm to 660 nm but also enhances the light absorption capacity across the entire solar spectrum. More importantly, the heterojunction formation facilitates the separation and transfer of photogenerated carriers and inhibits the recombination of photogenerated electrons and holes, which is evidenced by the results of PL spectra, photocurrent density, and EIS spectra. Compared with individual CuWO4 films, the photocatalytic activity of BiOI/CuWO4 heterojunction films in degrading the organic dye MB is increased by up to 1.17 times. Additionally, BiOI/CuWO4 heterojunction films exhibit certain activity in the photocatalytic degradation of polystyrene (PS) nanoplastics and are capable of reducing the average particle size of nanoplastics from 425 nm to 325 nm within 80 h. Full article
Show Figures

Graphical abstract

18 pages, 4685 KB  
Article
Hydrothermal Versus Physical Mixing: Superior Photocatalytic Activity of TiO2/WO3 Nanocomposites for Water Treatment Applications
by Mabrouka Ghiloufi, Tobias Schnabel, Christian Springer, Simon Mehling, Axel Wolfram, Fathi Touati and Salah Kouass
Environments 2025, 12(10), 359; https://doi.org/10.3390/environments12100359 - 5 Oct 2025
Viewed by 1177
Abstract
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through [...] Read more.
The photocatalytic efficiency of TiO2 was significantly enhanced by coupling with WO3 to form a TiO2/WO3 heterostructure, designed to operate effectively under UV-LED irradiation. The nanocomposites were synthesized via a hydrothermal route, and their activity was evaluated through the degradation of the pharmaceutical pollutant venlafaxine. Contaminants are rarely addressed in photocatalytic studies. Unlike a simple physical mixture of commercial TiO2 and WO3 powders, the hydrothermally synthesized TiO2/WO3 photocatalyst exhibited superior efficiency, attributable to its nanoscale dimensions achieved via the hydrothermal route, which promoted improved charge carrier separation, enhanced surface homogeneity, and the formation of an effective heterojunction interface. An optimization study varying the WO3 content (5, 10, 20, and 30 wt.%) within the TiO2 revealed that the 10 wt.% WO3 composition achieved the highest performance, with ~52% venlafaxine degradation within 60 min. SEM, TEM, FTIR, Raman spectroscopy, XRD, and UV-Vis DRS revealed the successful incorporation of WO3 into the TiO2 matrix, confirming phase purity and composition-dependent structural evolution of the nanocomposite, and evidencing extended light absorption and superior charge-transfer properties. Importantly, the optimized photocatalyst thin film retained excellent stability and reusability, maintaining high degradation efficiency over three consecutive cycles with negligible activity loss, which avoids slurry separation. These findings establish hydrothermally synthesized TiO2/10%WO3 thin film heterostructures as effective and sustainable photocatalytic platforms for the removal of pharmaceutical pollutants in wastewater under UV-LED irradiation. Full article
(This article belongs to the Special Issue Research Progress in Groundwater Contamination and Treatment)
Show Figures

Figure 1

18 pages, 3356 KB  
Article
Characterizations of Semiconductive W-Doped Ga2O3 Thin Films and Application in Heterojunction Diode Fabrication
by Chia-Te Liao, Yi-Wen Wang, Cheng-Fu Yang and Kao-Wei Min
Inorganics 2025, 13(10), 329; https://doi.org/10.3390/inorganics13100329 - 1 Oct 2025
Cited by 1 | Viewed by 828
Abstract
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to [...] Read more.
In this study, high-conductivity W-doped Ga2O3 thin films were successfully fabricated by directly depositing a composition of Ga2O3 with 10.7 at% WO3 (W:Ga = 12:100) using electron beam evaporation. The resulting thin films were found to be amorphous. Due to the ohmic contact behavior observed between the W-doped Ga2O3 film and platinum (Pt), Pt was used as the contact electrode. Current-voltage (J-V) measurements of the W-doped Ga2O3 thin films demonstrated that the samples exhibited significant current density even without any post-deposition annealing treatment. To further validate the excellent charge transport characteristics, Hall effect measurements were conducted. Compared to undoped Ga2O3 thin films, which showed non-conductive characteristics, the W-doped thin films showed an increased carrier concentration and enhanced electron mobility, along with a substantial decrease in resistivity. The measured Hall coefficient of the W-doped Ga2O3 thin films was negative, indicating that these thin films were n-type semiconductors. Energy-Dispersive X-ray Spectroscopy was employed to verify the elemental ratios of Ga, O, and W in the W-doped Ga2O3 thin films, while X-ray photoelectron spectroscopy analysis further confirmed these ratios and demonstrated their variation with the depth of the deposited thin films. Furthermore, the W-doped Ga2O3 thin films were deposited onto both p-type and heavily doped p+-type silicon (Si) substrates to fabricate heterojunction diodes. All resulting devices exhibited good rectifying behavior, highlighting the promising potential of W-doped Ga2O3 thin films for use in rectifying electronic components. Full article
(This article belongs to the Special Issue Advanced Inorganic Semiconductor Materials, 3rd Edition)
Show Figures

Figure 1

52 pages, 7164 KB  
Review
Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
by Yana Suchikova, Serhii Nazarovets, Marina Konuhova and Anatoli I. Popov
Ceramics 2025, 8(4), 119; https://doi.org/10.3390/ceramics8040119 - 23 Sep 2025
Cited by 13 | Viewed by 4038
Abstract
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2 [...] Read more.
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate highly specialized applications in surface passivation and interface engineering, while CeO2 offers UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. Together, these findings suggest that binary oxide ceramics are poised to transition from supporting roles to essential components of stable, efficient, and environmentally safer next-generation solar cells. Full article
Show Figures

Figure 1

19 pages, 7946 KB  
Article
Synergistic Disinfection of Photocatalytic Nanomaterials Exposed to UVC, Electricity and Magnetic Fields Against Candida albicans
by María Cristina Grijalva-Castillo, Renee Joselin Saénz-Hernández, Adrián Alberto Cobos-Márquez, Francisco Alonso Herrera-Ojeda, Fernando Efraín Díaz-Chávez, Irving Ricardo Acosta-Galindo, César Leyva-Porras, Alva Rocío Castillo-González, María Alejandra Favila-Pérez, Celia María Quiñonez-Flores, Javier Camarillo Cisneros and Carlos Arzate-Quintana
Coatings 2025, 15(8), 968; https://doi.org/10.3390/coatings15080968 - 19 Aug 2025
Cited by 1 | Viewed by 1268
Abstract
Nosocomial infections caused by Candida albicans pose serious challenges to healthcare systems due to their persistence on medical surfaces and resistance to conventional disinfectants. This study evaluates antifungal properties of SnO2 doped with silver and cuprite nanoparticles and WO3 thin films, [...] Read more.
Nosocomial infections caused by Candida albicans pose serious challenges to healthcare systems due to their persistence on medical surfaces and resistance to conventional disinfectants. This study evaluates antifungal properties of SnO2 doped with silver and cuprite nanoparticles and WO3 thin films, as well as cobalt (CoFe2O4) and cobalt–nickel (Co0.5Ni0.5Fe2O4) ferrite nanoparticles, activated by ultraviolet C (UVC) radiation, direct electric current (up to 100 V), and magnetic fields. SnO2 films were synthesized by Spray Pyrolysis and WO3 by Sputtering deposition, Ferrites nanoparticles by sol–gel, while metallic nanoparticles were synthetized via chemical reduction. Characterization consisted mainly of SEM, TEM, and XRD, and their antimicrobial activity was tested against C. albicans. WO3 films achieved 86.2% fungal inhibition after 5 min of UVC exposure. SnO2 films doped with nanoparticles reached 100% inhibition when combined with UVC and 100 V. Ferrite nanoparticles alone showed moderate activity (21.9%–40.4%) but exhibited strong surface adhesion to fungal cells, indicating potential for magnetically guided antifungal therapies. These results demonstrate the feasibility of using multifunctional nanomaterials for rapid, non-chemical disinfection. The materials are low-cost, scalable, and adaptable to hospital settings, making them promising candidates for reducing healthcare-associated fungal infections through advanced surface sterilization technologies. Full article
Show Figures

Figure 1

15 pages, 7541 KB  
Article
Improving the Selectivity of a Catalytic Film/Gas-Sensitive Film Laminated Metal Oxide Semiconductor Sensor for Mustard Using Temperature Dynamic Modulation
by Yelin Qi, Ting Liang, Wen Yang, Tengbo Ma, Siyue Zhao and Yadong Liu
Nanomaterials 2025, 15(16), 1232; https://doi.org/10.3390/nano15161232 - 12 Aug 2025
Cited by 1 | Viewed by 626
Abstract
The poor selectivity of metal oxide semiconductor sensors is a major constraint to their application in the detection of chemical warfare agents. We prepared a (Pt+Pd+Rh)@Al2O3/(Pt+Rh)-WO3 sensor by using (Pt+Pd+Rh)@Al2O3 as a catalytic film material [...] Read more.
The poor selectivity of metal oxide semiconductor sensors is a major constraint to their application in the detection of chemical warfare agents. We prepared a (Pt+Pd+Rh)@Al2O3/(Pt+Rh)-WO3 sensor by using (Pt+Pd+Rh)@Al2O3 as a catalytic film material and (Pt+Rh)-WO3 as a gas-sensitive film material. Using temperature dynamic modulation, the (Pt+Pd+Rh)@Al2O3/(Pt+Rh)-WO3 sensor was realised to improve the selectivity for mustard. Due to the catalytic effect of the (Pt+Pd+Rh)@Al2O3 catalytic film on mustard, mustard was able to be catalytically generated into mustard sulphoxide after passing through the (Pt+Pd+Rh)@Al2O3 catalytic film. Under a certain temperature dynamic modulation, the mustard concentration on the surface of the (Pt+Rh)-WO3 gas-sensitive film showed an increase and then a decrease. Since the resistance response of the (Pt+Rh)-WO3 gas-sensitive film to mustard was much higher than that of mustard sulphoxide, the change in the resistance of the (Pt+Rh)-WO3 gas-sensitive film was mainly determined by the change in the concentration of mustard, which led to the peak signal in the curve of its resistance response to mustard. The experimental results showed that the (Pt+Pd+Rh)@Al2O3/(Pt+Rh)-WO3 sensor had peak signals in the resistance response to mustard only, and not in the resistance response to 12 interfering gases, such as carbon monoxide. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

14 pages, 2310 KB  
Article
High-Performance Electrochromic Energy Storage Devices Based on Hexagonal WO3 and SnO2/PB Composite Films
by Yi Wang, Zilong Zhang, Ze Wang, Yujie Yan, Tong Feng and An Xie
Materials 2025, 18(12), 2871; https://doi.org/10.3390/ma18122871 - 17 Jun 2025
Cited by 3 | Viewed by 1012
Abstract
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices [...] Read more.
Electrochromic devices have garnered significant interest owing to their promising applications in smart multifunctional electrochromic energy storage systems (EESDs) and their emerging next-generation electronic technologies. Tungsten oxide (WO3), possessing both electrochromic and pseudocapacitive characteristics, offers great potential for developing multifunctional devices with enhanced performance. However, achieving an efficient and straightforward synthesis of WO3 electrochromic films, while simultaneously ensuring high coloration efficiency and energy storage capability, remains a significant challenge. In this work, a low-temperature hydrothermal approach is employed to directly grow hexagonal-phase WO3 films on FTO substrates. This process utilizes sorbitol to promote nucleation and rubidium sulfate to regulate crystal growth, enabling a one-step in situ fabrication strategy. To complement the high-performance WO3 cathode, a composite PB/SnO2 film was designed as the anode, offering improved electrochromic properties and enhanced stability. The assembled EESD exhibited fast bleaching/coloration response and a high coloration efficiency of 101.2 cm2 C−1. Furthermore, it exhibited a clear and reversible change in optical properties, shifting from a transparent state to a deep blue color, with a transmittance modulation reaching 81.47%. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

13 pages, 3330 KB  
Article
Super Hydrophobic UHMWPE/PTFE/PVA Composites with Low Friction: Preparation and Wear Mechanism
by Hai Wang, Zhiwei Shao, Kuiyuan Shen, Buhe Bateer, Fushen Ren and Xiaowen Qi
Polymers 2025, 17(12), 1664; https://doi.org/10.3390/polym17121664 - 16 Jun 2025
Viewed by 1325
Abstract
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 [...] Read more.
This study develops novel superhydrophobic UHMWPE/PTFE/PVA composites via hot-pressing sintering to achieve ultra-low friction and enhanced wear resistance. The ternary system synergistically combines UHMWPE’s mechanical stability, PTFE’s lubricity, and PVA’s dispersion/binding capability. Results show PTFE disrupts UHMWPE crystallization, reducing melting temperature by 2.77 °C and enabling energy dissipation. All composites exhibit hydrophobicity, with optimal formulations (UPP3/UPP4) reaching superhydrophobicity. Tribological testing under varied loads and frequencies reveals low friction, where UPP1 achieves a COF of 0.043 and wear rate below 1.5 × 10−5 mm3/(N·m) under low-load conditions. UHMWPE oxidative degradation forming carboxylic acids at the interface (C=O at 289 eV, C–O at 286 eV). Formation of tungsten oxides (WO3/WO2), carbides (WC), and transfer films on steel counterparts. A four-step tribochemical reaction pathway is established. PVA promotes uniform transfer films, while PTFE lamellar peeling and UHMWPE chain stability enable sustained lubrication. Carbon-rich stratified accumulations under high-load/speed increase COF via abrasive effects. The composites demonstrate exceptional biocompatibility and provide a scalable solution for biomedical and industrial tribological applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 6335 KB  
Article
Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
by Petr Osipov, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev and Konstantin Mit
Materials 2025, 18(12), 2781; https://doi.org/10.3390/ma18122781 - 13 Jun 2025
Cited by 1 | Viewed by 1066
Abstract
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used [...] Read more.
Investigations of the synthesis of multicomponent coatings and their subsequent application to metal substrates to increase the wear resistance of materials is relevant for industry. Nickel compounds obtained from oxidized magnesia-iron nickel ores with a desorption rate of more than 94% were used to create Ni-MoO3-WO3 electroplating. Such composite samples formed from an aqueous alcohol solution reduced the content of sodium and ammonium chlorides. The annealing and dehydration of samples at a temperature of 725 °C in an air atmosphere made it possible to achieve the highest level of crystallinity. In this case, an isomorphic substitution of W atoms by Mo occurs, which is confirmed by electron paramagnetic resonance (EPR) spectroscopy studies. The invariance of the shape of the EPR spectrum with a sequential increase in microwave radiation power revealed the stability of the bonds between the particles. The surface morphology of Ni-MoO3-WO3 films deposited on an Al substrate is smooth and has low roughness. In this case, an increased degree of wear resistance has been achieved. Thus, a recipe for the formation of an electroplating with stable bonds between the components and increased wear resistance was obtained. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

11 pages, 8115 KB  
Article
Early Detection of Hydrogen Leakage Using Fiber Optic Hydrogen Sensor Based on WO3-PdPt-Pt Nanocomposite Films
by Jixiang Dai, Zhangning Chen, Rundong Yang, Zhouyang Wu, Zhengan Tang, Wenbin Hu, Cheng Cheng, Xuewen Wang and Minghong Yang
Nanomaterials 2025, 15(11), 836; https://doi.org/10.3390/nano15110836 - 30 May 2025
Cited by 4 | Viewed by 1295
Abstract
Quickly detecting hydrogen leakage is crucial to provide early warning for taking emergency measures to avoid personnel casualties and explosion accidents in hydrogen energy fields. Here, a compact optical fiber hydrogen sensing system with high sensitivity and quick response rate is proposed in [...] Read more.
Quickly detecting hydrogen leakage is crucial to provide early warning for taking emergency measures to avoid personnel casualties and explosion accidents in hydrogen energy fields. Here, a compact optical fiber hydrogen sensing system with high sensitivity and quick response rate is proposed in this work. A laser diode (LD) and two photodetectors (PD) are employed as light source and optical signal transformation devices, respectively. This sensing system employs single-mode optical fiber deposited with WO3-PdPt-Pt nanocomposite film system as sensing element. Under irrigating power of 6 mW, the sensing probe exhibits an ultra-fast response to hydrogen concentrations of 4000 ppm and 10,000 ppm, with response times of 0.44 s and 0.34 s, respectively. In addition, detection limit of 3 ppm can be achieved by using this sensing system. The sensor also shows good repeatability during hydrogen exposure of 3~10,000 ppm, demonstrating its great potential application for hydrogen leakage in hydrogen energy facilities. Full article
Show Figures

Graphical abstract

Back to TopTop