Advanced Low-Dimensional Materials for Sensing Applications

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: 25 July 2025 | Viewed by 1535

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
Interests: growth kinetics and thermodynamic regulation of low-dimensional materials; wafer level two-dimensional single crystal epitaxy manufacturing; ultra-high sensitivity nanospectroscopy technology for low-dimensional materials; surface coupling physical and optical devices

Special Issue Information

Dear Colleagues,

Low-dimensional materials typically refer to materials constrained to specific dimensions, such as two-dimensional materials (like graphene), quantum dots, nanowires, and others. These materials possess unique physical and chemical properties and surface effects, endowing them with extensive potential applications in the field of sensors. High-performance sensors based on low-dimensional materials aim to achieve high sensitivity and selectivity in detecting chemical substances, biomolecules, environmental factors, and more. Researchers explore the characteristics of low-dimensional materials and integrate advanced fabrication techniques to design and construct novel sensors, thereby addressing various monitoring and detection needs in real-life applications.

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  1. Low-dimensional material preparation;
  2. Gas sensor;
  3. Sensitivity mechanism analysis;
  4. Selectivity.

Dr. Can Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • low-dimensional materials
  • sensing applications
  • graphene
  • two-dimensional materials
  • quantum dots
  • nanowires
  • sensor performance
  • material optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 7168 KiB  
Article
Robust Carbon Nanotube Transistor Ion Sensors with Near-Nernstian Sensitivity for Multi-Ion Detection in Neurological Diseases
by Lidan Yan, Yang Zhang, Zhibiao Zhu, Yuqi Liang and Mengmeng Xiao
Nanomaterials 2025, 15(6), 447; https://doi.org/10.3390/nano15060447 - 15 Mar 2025
Viewed by 500
Abstract
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems [...] Read more.
Accurate monitoring of sodium and potassium ions in biological fluids is crucial for diseases related to electrolyte imbalance. Low-dimensional materials such as carbon nanotubes can be used to construct biochemical sensors based on high-performance field effect transistor (FET), but they face the problems of poor device consistency and difficulty in stable and reliable operation. In this work, we mass-produced carbon nanotube (CNT) floating-gate field-effect transistor devices with high uniformity and consistency through micro-/nanofabrication technology to improve the accuracy and reliability of detection without the need for statistical analysis based on machine learning. By introducing waterproof hafnium oxide gate dielectrics on the CNT FET channel, we not only effectively protect the channel area but also significantly improve the stability of the sensor. We have prepared array sensing technology based on CNT FET that can detect potassium, sodium, calcium, and hydrogen ions in artificial cerebrospinal fluid. The detection concentration range is 10 μM–100 mM and pH 3–pH 9, with a sensitivity close to the Nernst limit, and exhibits selective and long-term stable responses. This could help achieve early diagnosis and real-time monitoring of central nervous system diseases, highlighting the potential of this ion-sensing platform for highly sensitive and stable detection of various neurobiological markers. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

17 pages, 5915 KiB  
Article
Improved Selectivity of CeMnOx/Pt@SnO2 Laminated MOS Sensor for Hydrogen Cyanide Under Temperature Dynamic Modulation
by Yadong Liu, Yelin Qi, Wen Yang, Tengbo Ma, Shunping Zhang and Ting Liang
Nanomaterials 2025, 15(3), 155; https://doi.org/10.3390/nano15030155 - 21 Jan 2025
Viewed by 623
Abstract
Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO2 as the gas-sensitive layer material, we [...] Read more.
Poor selectivity is one of the main bottlenecks restricting the development of metal oxide semiconductor (MOS) sensors. In this paper, using hydrogen cyanide (HCN) as the target gas, CeMnOx as the catalytic layer material and Pt@SnO2 as the gas-sensitive layer material, we have proposed a scheme to improve the selectivity of a catalytic layer/gas-sensitive layer-laminated MOS sensor under dynamic temperature modulation. We tested HCN and 12 kinds of battlefield environment simulation gases, and the results showed that the CeMnOx/Pt@SnO2 sensor, under the condition of temperature dynamic modulation (a constant temperature of 400 °C for the gas-sensitive layer and a variable temperature of room temperature to 400 °C for the catalytic layer; the heating and cooling rates were 200 °C/s, the highest temperature was maintained for 2 s, and the lowest temperature was maintained for 2 s), distinct characteristic peaks appeared on the G-T curves of the resistance response to HCN only. The quantification of the characteristic peaks was performed by peak heights, and the peak height of 5 mg/m3 HCN was obtained up to 0.104, while the peak heights of the other gases at the same concentration were up to 0.034. The peak height of HCN was significantly higher than that of other gases, which verified the high selectivity of the sensor for HCN. Meanwhile, the sensor also showed good sensitivity, response/recovery time, stability and anti-interference for HCN under the above temperature dynamic modulation. This work provides an important reference for the selectivity improvement of MOS sensors for HCN. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

Back to TopTop