Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance
Abstract
1. Introduction
- Statement of problem:
- Goal:
- Novelty:
2. Materials and Methods
2.1. Materials and Synthesis
2.1.1. Metallurgical Process of Nickel Production
2.1.2. Synthesis of Ni-Mo-W Electroplating and Subsequent Deposition on the Al Substrate
2.2. Characterization Methods
3. Results
3.1. Obtaining Nickel as a Matrix Metal in a Composite
3.2. Investigation of the Process for Obtaining Phases of Tungsten and Molybdenum Oxides Embedded in a Nickel Matrix
3.3. Studies of the Processes of Heat Treatment and Dehydration of MoO3-WO3 Structures
3.4. XRD Studies
3.5. EPR Studies
3.6. Investigation of the Formation of Ni-MoO3-WO3 Galvanic Coatings on an Aluminum Substrate
3.7. Wear Resistance Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chinta, J.P. Coinage metal nanoparticles based colorimetric assays for natural amino acids: A review of recent developments. Sens. Actuators B Chem. 2017, 248, 733–752. [Google Scholar] [CrossRef]
- Dordsheikh Torkamani, A.; Velashjerdi, M.; Abbas, A.; Bolourchi, M.; Maji, P. Electrodeposition of Nickel Matrix Composite Coatings via Various Boride Particles: A Review. J. Compos. Compd. 2021, 3, 106–113. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Yu, A.; Huang, W. Preparation and tribological performance of electrodeposited Ni-TiB2-Dy2O3 composite coatings. J. Rare Earths 2009, 27, 480–485. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Hashmi, M.S.J. Metal matrix composite: A methodological review. Adv. Mater. Process. Technol. 2019, 6, 13–24. [Google Scholar] [CrossRef]
- Perna, A.S.; Viscusi, A.; Astarita, A.; Boccarusso, L.; Carrino, L.; Durante, M.; Sansone, R. Manufacturing of a Metal Matrix Composite Coating on a Polymer Matrix Composite Through Cold Gas Dynamic Spray Technique. J. Mater. Eng. Perform. 2019, 28, 3211–3219. [Google Scholar] [CrossRef]
- Alem, S.A.A.; Sabzvand, M.H.; Govahi, P.; Poormehrabi, P.; Azar, M.H.; Siouki, S.S.; Rashidi, R.; Angizi, S.; Bagherifard, S. Advancing the next generation of high-performance metal matrix composites through metal particle reinforcement. Adv. Compos. Hybrid Mater. 2025, 8, 3. [Google Scholar] [CrossRef]
- Alem, S.A.A.; Latifi, R.; Angizi, S.; Hassanaghaei, F.; Aghaahmadi, M.; Ghasali, E.; Rajabi, M. Microwave sintering of ceramic reinforced metal matrix composites and their properties: A review. Mater. Manuf. Process. 2020, 35, 303–327. [Google Scholar] [CrossRef]
- Khalaj, M.; Zarabi Golkhatmi, S.; Alem, S.A.A.; Baghchesaraee, K.; Hasanzadeh Azar, M.; Angizi, S. Recent Progress in the Study of Thermal Properties and Tribological Behaviors of Hexagonal Boron Nitride-Reinforced Composites. J. Compos. Sci. 2020, 4, 116. [Google Scholar] [CrossRef]
- Wang, Z.; Georgarakis, K.; Nakayama, K.S.; Li, Y.; Tsarkov, A.A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D.V.; Yavari, A.R. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 2016, 6, 24384. [Google Scholar] [CrossRef]
- Gupta, P.; Pal, S.; Yedla, N. Molecular dynamics based cohesive zone modeling of Al (metal)–Cu 50 Zr 50 (metallic glass) interfacial mechanical behavior and investigation of dissipative mechanisms. Mater. Des. 2016, 105, 41–50. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 515–523. [Google Scholar] [CrossRef]
- Yolcular, S.; Karaoglu, S.; Unal, I. Aerospace Industry and Aluminum Metal Matrix Composites. Int. J. Aviat. Sci. Technol. 2021, 2, 73–81. [Google Scholar] [CrossRef]
- Divagar, S.; Vigneshwar, M.; Selvamani, S.T. Impacts of Nano Particles on Fatigue Strength of Aluminum Based Metal Matrix Composites for Aerospace. Mater. Today Proc. 2016, 3, 3734–3739. [Google Scholar] [CrossRef]
- Li, Y.-H.; Liu, B.X.; Zhang, X.B.; Zhao, F.; Jing, L.-L. Application of lightweight magnesium alloy in satellite antenna products. J. Phys. Conf. Ser. 2021, 1885, 052001. [Google Scholar] [CrossRef]
- Kumar, V.M.; Venkatesh, C. A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Mater. Res. Express 2019, 6, 072001. [Google Scholar] [CrossRef]
- Ajay Kumar, P.; Rohatgi, P.; Weiss, D. 50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities. Int. J. Met. 2019, 14, 291–317. [Google Scholar] [CrossRef]
- Essien, U.; Vaudreuil, S. Issues in Metal Matrix Composites Fabricated by Laser Powder Bed Fusion Technique: A Review. Adv. Eng. Mater. 2022, 24, 2200055. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, K.K.; Salem, K.H.; Mohammed, K.A.; Singh, R.; Prakash, C. Effects of various fabrication techniques on the mechanical characteristics of metal matrix composites: A review. Adv. Mater. Process. Technol. 2022, 10, 277–294. [Google Scholar] [CrossRef]
- Lichtenberg, K.; Orsolani-Uhlig, E.; Roessler, R.; Weidenmann, K.A. Influence of heat treatment on the properties of AlSi10Mg-based metal matrix composites reinforced with metallic glass flakes processed by gas pressure infiltration. J. Compos. Mater. 2017, 51, 4165–4175. [Google Scholar] [CrossRef]
- Rezaei, M.R.; Shabestari, S.G.; Razavi, S.H. Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. J. Mater. Sci. Technol. 2017, 33, 1031–1038. [Google Scholar] [CrossRef]
- Kerr, C.; Barker, D.; Walsh, F.; Archer, J. The Electrodeposition of Composite Coatings based on Metal Matrix-Included Particle Deposits. Trans. IMF 2000, 78, 171–178. [Google Scholar] [CrossRef]
- Vinokurov, E.; Margolin, L.; Farafonov, V. Electrodeposition of composite coatings. Izv. Vyss. Uchebnykh Zaved. Khimiya Khimicheskaya Tekhnologiya 2020, 63, 4–38. [Google Scholar] [CrossRef]
- Gatzen, C.; Smokovych, I.; Scheffler, M.; Krüger, M. Oxidation-Resistant Environmental Barrier Coatings for Mo-Based Alloys: A Review. Adv. Eng. Mater. 2021, 23, 2001016. [Google Scholar] [CrossRef]
- Wen, T.; Fan, K.; Zhang, F. High strength and high ductility in nickel matrix nanocomposites reinforced by carbon nanotubes and onion-like-carbon hybrid reinforcements. J. Alloys Compd. 2020, 814, 152303. [Google Scholar] [CrossRef]
- Suarez, S.; Lasserre, F.; Mücklich, F. Mechanical properties of MWNT/Ni bulk composites: Influence of the microstructural refinement on the hardness. Mater. Sci. Eng. A 2013, 587, 381–386. [Google Scholar] [CrossRef]
- Watanabe, Y.; Gonda, S.; Sato, H.; Miura, S. Fabrication of Ni-aluminides long-fiber reinforced Ni matrix composite by a reaction at narrow holes method. J. Mater. Process. Technol. 2018, 259, 320–331. [Google Scholar] [CrossRef]
- Fu, K.; Zhang, X.; Shi, C.; Liu, E.; He, F.; Li, J.; Zhao, N.; He, C. An approach for fabricating Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater. Sci. Eng. A 2018, 715, 108–116. [Google Scholar] [CrossRef]
- León-Patiño, C.A.; Braulio-Sánchez, M.; Aguilar-Reyes, E.A.; Bedolla-Becerril, E. Microstructure, mechanical and thermal properties of Ni matrix composites reinforced with high-volume TiC. J. Alloys Compd. 2019, 719, 1102–1111. [Google Scholar] [CrossRef]
- Nagirnyi, V.M.; Apostolova, R.D.; Baskevich, A.S.; Shembel’, E.M. Electrolytic synthesis of complex oxide systems by cathodic deposition of molybdenum oxide from aqueous solutions in the presence of nickel(II) and thiosulfate ions. Russ. J. Appl. Chem. 2003, 76, 1438–1443. [Google Scholar] [CrossRef]
- Sumer, A. Molybdenum oxide clusters: Structure, stability, and electronic properties. J. Phys. Chem. A 2021, 125, 5201–5211. [Google Scholar] [CrossRef]
- Saji, V.S.; Lee, C.W. Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 2012, 5, 1146–1161. [Google Scholar] [CrossRef]
- Monyai, T.; Fayomi, O.S.I.; Popoola, A.P.I.; Agboola, O. Integration of MoO2 composite on the micro-evolution and anticorrosion mitigation of Zn–Ni–MoO2 thin films coating by electrodeposition system. J. Bio-Tribo-Corros. 2019, 5, 17. [Google Scholar] [CrossRef]
- Giebeler, L.; Wirth, A.; Martens, J.A.; Vogel, H.; Fuess, H. Phase transitions of V-Mo-W mixed oxides during reduction/re-oxidation cycles. Appl. Catal. A Gen. 2010, 379, 155–165. [Google Scholar] [CrossRef]
- Sarkisov, V.V.; Logvinovich, A.S.; Shcherbakova, V.B.; Sadovskaya, L.Y.; Sviridova, T.V.; Kapariha, A.V.; Sviridov, D.V. Structure and morphology control of metal-matrix composites by using redox-active nanophases. Phys. Chem. Asp. Study Clust. Nanostruct. Nanomater. 2019, 11, 645–653. [Google Scholar] [CrossRef]
- Concepción, O.; de Melo, O. The versatile family of molybdenum oxides: Synthesis, properties, and recent applications. J. Phys. Condens. Matter 2023, 35, 143002. [Google Scholar] [CrossRef]
- Tang, W.; Liu, R.; Lu, X.; Zhang, S.; Liu, S. Tribological behavior of lamellar molybdenum trioxide as a lubricant additive. Materials 2018, 11, 2427. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Liu, Z.; Yuan, Z.; Zhang, Z.; Chen, S. Preparation of nanocrystalline Ni–Mo and Ni–Mo–ZrO2 coating and investigation of its corrosion resistance and wear behaviors. Ceram. Int. 2022, 48, 37102–37113. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Z.; Savilov, S.; Wang, G.; Chen, Z.; Chen, Q. Enhanced structurally stable cathodes by surface and grain boundary tailoring of Ni-Rich material with molybdenum trioxide. J. Power Sources 2020, 478, 229051. [Google Scholar] [CrossRef]
- Wasekar, N.P.; Verulkar, S.; Vamsi, M.V.N.; Sundararajan, G. Influence of molybdenum on the mechanical properties, electrochemical corrosion and wear behavior of electrodeposited Ni-Mo alloy. Surf. Coat. Tech. 2019, 370, 298–310. [Google Scholar] [CrossRef]
- Lunk, H.-J.; Hartl, H. Discovery, properties and applications of molybdenum and its compounds. ChemTexts 2017, 3, 13. [Google Scholar] [CrossRef]
- Pramanik, S.; Cherusseri, J.; Baban, N.S.; Sowntharya, L.; Kar, K.K. Metal Matrix Composites: Theory, Techniques, and Applications. In Composite Materials: Processing, Applications, Characterizations; Springer: Berlin/Heidelberg, Germany, 2017; pp. 369–411. [Google Scholar] [CrossRef]
- Li, C.; Hsieh, J.H.; Hung, M.-T.; Huang, B.Q. Electrochromic study on amorphous tungsten oxide films by sputtering. Thin Solid Film. 2015, 587, 75–82. [Google Scholar] [CrossRef]
- Lopez-Pinto, N.; Tom, T.; Bertomeu, J.; Asensi, J.M.; Ros, E.; Ortega, P.; Voz, C. Deposition and characterisation of sputtered molybdenum oxide thin films with hydrogen atmosphere. Appl. Surf. Sci. 2021, 563, 150285. [Google Scholar] [CrossRef]
- Ho, M.Y.; Khiew, P.S.; Isa, D.; Chiu, W.S.; Chia, C.H. Solvothermal synthesis of molybdenum oxide on liquid-phase exfoliated graphene composite electrodes for aqueous supercapacitor application. J. Mater. Sci. Mater. Electron. 2017, 28, 6907–6918. [Google Scholar] [CrossRef]
- Ishizuka, S.; Kimura, Y.; Yokoi, S.; Yamazaki, T.; Sato, R.; Hama, T. Self-assembly of MoO3 needles in gas current for cubic formation pathway. Nanoscale 2017, 9, 10109–10116. [Google Scholar] [CrossRef] [PubMed]
- Akl, A.; Aly, S.; Kaid, M.A. Microstructural and Electrical Properties of (WO3)1−x(MoO3)x Thin Films Synthesized by Spray Pyrolysis Technique. Res. Rev. J. Mater. Sci. 2016, 2, 10–19. [Google Scholar]
- Lebukhova, N.V.; Makarevich, K.S.; Chigrin, P.G.; Karpovich, N.F. Morphology of α-MoO3 nanoplates obtained by pyrolysis of organic molybdenum complexes. Nanotechnol. Russ. 2010, 5, 826–830. [Google Scholar] [CrossRef]
- Bushkova, T.M.; Egorova, A.A.; Khoroshilov, A.V.; Ivanova, O.S.; Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Selective Synthesis of γ-WO3 and β-WO3⋅H2O by the Hydrothermal Treatment of Peroxotungstic Acid. Russ. J. Inorg. Chem. 2021, 66, 496–501. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Bocharova, V.A.; Simonenko, N.P.; Gorobtsov, F.Y.; Simonenko, E.P.; Muradova, A.G.; Sevastyanov, V.G.; Kuznetsov, N.T. Formation of One-Dimensional Hierarchical MoO3 Nanostructures under Hydrothermal Conditions. Russ. J. Inorg. Chem. 2020, 65, 459–465. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Synthesis of Nanoscale WO3 by Chemical Precipitation Using Oxalic Acid. Russ. J. Inorg. Chem. 2021, 66, 1811–1816. [Google Scholar] [CrossRef]
- Zainol, Z.; Nicol, M.J. Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings. Hydrometallurgy 2009, 96, 283–287. [Google Scholar] [CrossRef]
- Seggiani, M.; Vitolo, S.; D’Antone, S. Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin. Hydrometallurgy 2006, 81, 9–14. [Google Scholar] [CrossRef]
- Kasikov, A.; Dyakova, L.; Khomchenko, O. An Extraction Technology for Nickel Sulfate Production from Nickel Solutions Produced by the Kola MMC. Theor. Found. Chem. Eng. 2022, 56, 589–594. [Google Scholar] [CrossRef]
- Kondratyeva: The influence of the polarity of the medium on the solubility product of alkali metal sulfates in aqueous-alcohol solutions. Bull. Bashkir Univ. 2021, 26, 903–908.
- Evdokimov, A.; Kurzin, A.; Sivakov, A.; Golikova, V. Solubility in alcohols and alcoholysis reactions of carbonates, sulfides, cyanides, and phosphates of alkali metals. Izv. Vyss. Uchebnykh Zaved. Khimiya Khimicheskaya Tekhnologiya 2018, 61, 14–23. [Google Scholar] [CrossRef]
Product | Ni Content, g/L | Fe Content, g/L | Mg Content, g/L |
---|---|---|---|
Solution after leaching | 2.10 | 25.1 | 35.3 |
Solution after impurity removal for sorption | 2.15 | - | 40.4 |
Desorbate | 65.0 | - | - |
Element | N | Na | Cl | Mo | W |
---|---|---|---|---|---|
Spectrum total | 4.41 | 1.15 | 1.39 | 43.91 | 14.54 |
Spectrum 1 | 3.86 | 8.69 | 9.61 | 37.68 | 11.22 |
Spectrum 2 | 4.54 | 0.09 | 0.14 | 44.07 | 14.44 |
Sample after washing | 4.35 | 0.04 | 0.07 | 45.15 | 13.82 |
Stages of the Process | Weight Loss Sequence | Weight Loss, % | Volatile Components | Temperature Ranges, °C |
---|---|---|---|---|
1 | Δm1 | 6.0 | H2O | 20–140 |
2 | Δm2 | 1.95 | OH+ acid residue | 140–200 |
3 | Δm3 | 1.05 | OH | 200–305 |
4 | Δm4 | 0.25 | CO2 | 305–545 |
Total | ∑Δm | 9.25 | H2O, OH, CO2 | 20–1000 |
Temperature °C | The Crystalline Phase | ||
---|---|---|---|
Initial | MoO3 | WO3 | - |
350 | MoO3 | WO3 | - |
550 | MoO3 | WO3 | W0.4Mo0.6O3 |
700 | MoO3 | WO3 | W0.71Mo0.29O3 |
725 | MoO3 | WO3 | W0.71Mo0.29O3 |
Temperature °C | a (Å) | b (Å) | c (Å) |
---|---|---|---|
550 | 5.318335 | 5.524896 | 7.141768 |
700 | 7.442842 | 7.420851 | 7.609771 |
725 | 7.443129 | 7.421137 | 7.610064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osipov, P.; Shayakhmetova, R.; Murzalinov, D.; Sagyndykov, A.; Kali, A.; Mukhametzhanova, A.; Maldybayev, G.; Mit, K. Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance. Materials 2025, 18, 2781. https://doi.org/10.3390/ma18122781
Osipov P, Shayakhmetova R, Murzalinov D, Sagyndykov A, Kali A, Mukhametzhanova A, Maldybayev G, Mit K. Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance. Materials. 2025; 18(12):2781. https://doi.org/10.3390/ma18122781
Chicago/Turabian StyleOsipov, Petr, Roza Shayakhmetova, Danatbek Murzalinov, Azamat Sagyndykov, Ainur Kali, Anar Mukhametzhanova, Galymzhan Maldybayev, and Konstantin Mit. 2025. "Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance" Materials 18, no. 12: 2781. https://doi.org/10.3390/ma18122781
APA StyleOsipov, P., Shayakhmetova, R., Murzalinov, D., Sagyndykov, A., Kali, A., Mukhametzhanova, A., Maldybayev, G., & Mit, K. (2025). Electroplating Composite Coatings of Nickel with Dispersed WO3 and MoO3 on Al Substrate to Increase Wear Resistance. Materials, 18(12), 2781. https://doi.org/10.3390/ma18122781